• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Nguyen Do Trung Chanh, PhD
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Nguyen Do Trung Chanh, PhD
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CapNext: Unifying Capsule and ResNeXt for Medical Image Segmentation

Thumbnail
Xem/Mở
CapNeXt Unifying Capsule And Resnext For Medical Image Segmentation.pdf (1.253Mb)
Năm xuất bản
2022
Tác giả
Nguyen, Do Trung Chanh
Huynh, Thanh M.
Nguyen, Khoa N. A.
Truong, Steven Q. H.
Bui, Trung
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
Capsule Network is a contemporary approach to image analysis that emphasizes part-whole relationships. However, its applications to segmentation tasks are limited due to training difficulties such as initialization and convergence. In this study, we propose a novel Capsule Network, called CapNeXt, that unifies Capsule and ResNeXt architectures for medical image segmentation. CapNeXt advances the existing capsule-based segmentation model by integrating optimization techniques from Convolutional Neural Networks (CNN) to make training much easier than other contemporary Capsule-based segmentation methods. Experimental results on two public datasets show that CapNeXt outperforms the CNNs and other Capsule architectures in 2D and 3D segmentation tasks by 1% of the Dice score. The code will be released on GitHub after being accepted.
Định danh
https://vinspace.edu.vn/handle/VIN/80
Collections
  • Nguyen Do Trung Chanh, PhD [11]

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi