• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Do Danh Cuong, PhD
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Do Danh Cuong, PhD
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel deep learning-based approach for sleep apnea detection using single-lead ECG signals

Thumbnail
Xem/Mở
A novel deep learning-based approach for sleep apnea detection using single-lead ECG signals.pdf (417.7Kb)
Năm xuất bản
2022-08
Tác giả
Do, Danh Cuong
Pham, Huy Hieu
Le, Huy Khiem
Nguyen, Thao
Nguyen, Anh Tu
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
Sleep apnea (SA) is a type of sleep disorder characterized by snoring and chronic sleeplessness, which can lead to serious conditions such as high blood pressure, heart failure, and cardiomyopathy (enlargement of the muscle tissue of the heart). The electrocardiogram (ECG) plays a critical role in identifying SA since it might reveal abnormal cardiac activity. Recent research on ECG-based SA detection has focused on feature engineering techniques that extract specific characteristics from multiple-lead ECG signals and use them as classification model inputs. In this study, a novel method of feature extraction which based on the detection of S peaks is proposed to enhance the detection of adjacent SA segments using a single-lead ECG. In particular, ECG features collected from a single lead (V2) are used to identify SA episodes. On the extracted features, a CNN model is trained to detect SA. Experimental results demonstrate that the proposed method detects SA from single-lead ECG data is more accurate than existing state-of-the-art methods, with 91.13% classification accuracy, 92.58% sensitivity, and 88.75% specificity. Moreover, the further usage of features associated with the S peaks enhances the classification accuracy by 0.85%. Our findings indicate that the proposed machine learning system has the potential to be an effective method for detecting SA episodes.
Định danh
https://vinspace.edu.vn/handle/VIN/77
Collections
  • Do Danh Cuong, PhD [3]

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi