• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Pham Ngoc Nam, PhD
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Pham Ngoc Nam, PhD
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An LSTM-based Approach for Overall Quality Prediction in HTTP Adaptive Streaming

Thumbnail
Xem/Mở
An LSTM-based Approach for Overall Quality.pdf (958.1Kb)
Năm xuất bản
2019-04
Tác giả
Nam, Pham Ngoc
Tran, T. T. Huyen
Nguyen, D. Duong
Truong, Cong Thang
Nguyen, V. Duc
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
HTTP Adaptive Streaming (HAS) has become a popular solution for multimedia delivery nowadays. In HAS, video quality is generally varying in each streaming session. Therefore, a key question in HTTP Adaptive Streaming is how to evaluate the overall quality of a streaming session. In this paper, we propose a machine learning approach for overall quality prediction in HTTP Adaptive Streaming. In the proposed approach, each segment is represented by four features of segment quality, stalling durations, content characteristics, and padding. The features are fed into a Long Short Term Memory (LSTM) network that is capable of exploring temporal relations between segments. The overall quality of the streaming session is predicted from the outputs of the LSTM network using a linear regression module. Experiment results show that the proposed approach is effective in predicting the overall quality of streaming sessions. Also, it is found that our proposed approach outperforms four existing approaches.
Định danh
https://vinspace.edu.vn/handle/VIN/67
Collections
  • Pham Ngoc Nam, PhD [31]

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi