• English
    • Tiếng Việt
  • English 
    • English
    • Tiếng Việt
  • Login
View Item 
  •   VinSpace Home
  • The College of Engineering and Computer Science
  • Pham Huy Hieu, PhD.
  • View Item
  •   VinSpace Home
  • The College of Engineering and Computer Science
  • Pham Huy Hieu, PhD.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel transparency strategy-based data augmentation approach for BI-RADS classification of mammograms

Thumbnail
View/Open
hieupham2.pdf (876.4Kb)
Date
2023-04-17
Author
Tran, B. Sam
Nguyen, T. X. Huyen
Phan, Chi
Nguyen, Q. Ha
Pham, H. Hieu
Metadata
Show full item record
Abstract
Image augmentation techniques have been widely investigated to improve the performance of deep learning (DL) algorithms on mammography classification tasks. Recent methods have proved the efficiency of image augmentation on data deficiency or data imbalance issues. In this paper, we propose a novel transparency strategy to boost the Breast Imaging Reporting and Data System (BI-RADS) scores of mammogram classifiers. The proposed approach utilizes the Region of Interest (ROI) information to generate more high-risk training examples for breast cancer (BI-RADS 3, 4, 5) from original images. Our extensive experiments on three different datasets show that the proposed approach significantly improves the mammogram classification performance and surpasses a state-of-the-art data augmentation technique called CutMix. This study also highlights that our transparency method is more effective than other augmentation strategies for BI-RADS classification and can be widely applied to other computer vision tasks.
URI
https://vinspace.edu.vn/handle/VIN/572
Collections
  • Pham Huy Hieu, PhD. [36]

Contact Us | Send Feedback
 

 

Browse

All of VinSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Contact Us | Send Feedback