• English
    • Tiếng Việt
  • English 
    • English
    • Tiếng Việt
  • Login
View Item 
  •   VinSpace Home
  • The College of Engineering and Computer Science
  • Pham Huy Hieu, PhD.
  • View Item
  •   VinSpace Home
  • The College of Engineering and Computer Science
  • Pham Huy Hieu, PhD.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecting COVID-19 from digitized ECG printouts using 1D convolutional neural networks

Thumbnail
View/Open
Detecting-COVID19-from-digitized-ECG-printouts-using-1D-convolutional-neural-networksPLoS-ONE.pdf (2.765Mb)
Date
2022-11
Author
Nguyen, Thao
Pham, Hieu H.
Le, Khiem H.
Nguyen, Anh Tu
Thanh, Tien
Do, Cuong
Metadata
Show full item record
Abstract
The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, raising the need to develop novel tools to provide rapid and cost-effective screening and diagnosis. Clinical reports indicated that COVID-19 infection may cause cardiac injury, and electrocardiograms (ECG) may serve as a diagnostic biomarker for COVID-19. This study aims to utilize ECG signals to detect COVID-19 automatically. We propose a novel method to extract ECG signals from ECG paper records, which are then fed into one-dimensional convolution neural network (1D-CNN) to learn and diagnose the disease. To evaluate the quality of digitized signals, R peaks in the paper-based ECG images are labeled. Afterward, RR intervals calculated from each image are compared to RR intervals of the corresponding digitized signal. Experiments on the COVID-19 ECG images dataset demonstrate that the proposed digitization method is able to capture correctly the original signals, with a mean absolute error of 28.11 ms. The 1D-CNN model (SEResNet18), which is trained on the digitized ECG signals, allows to identify between individuals with COVID-19 and other subjects accurately, with classification accuracies of 98.42% and 98.50% for classifying COVID-19 vs. Normal and COVID-19 vs. other classes, respectively. Furthermore, the proposed method also achieves a high-level of performance for the multi-classification task. Our findings indicate that a deep learning system trained on digitized ECG signals can serve as a potential tool for diagnosing COVID-19.
URI
https://vinspace.edu.vn/handle/VIN/498
Collections
  • Pham Huy Hieu, PhD. [36]

Contact Us | Send Feedback
 

 

Browse

All of VinSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Contact Us | Send Feedback