• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Le Duy Dung, PhD
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Le Duy Dung, PhD
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving Pareto front learning via multi-sample hypernetworks

Thumbnail
Xem/Mở
Improving Pareto Front Learning via Multi-Sample Hypernetworks.pdf (4.549Mb)
Năm xuất bản
2023-04-28
Tác giả
Le, Duy Dung
Tran, Anh Tuan
Tran, Ngoc Thang
Pham, Hoang Long
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
Pareto Front Learning (PFL) was recently introduced as an effective approach to obtain a mapping function from a given trade-off vector to a solution on the Pareto front, which solves the multi-objective optimization (MOO) problem. Due to the inherent trade-off between conflicting objectives, PFL offers a flexible approach in many scenarios in which the decision makers can not specify the preference of one Pareto solution over another, and must switch between them depending on the situation. However, existing PFL methods ignore the relationship between the solutions during the optimization process, which hinders the quality of the obtained front. To overcome this issue, we propose a novel PFL framework namely PHN-HVI, which employs a hypernetwork to generate multiple solutions from a set of diverse trade-off preferences and enhance the quality of the Pareto front by maximizing the Hypervolume indicator defined by these solutions. The experimental results on several MOO machine learning tasks show that the proposed framework significantly outperforms the baselines in producing the trade-off Pareto front.
Định danh
https://vinspace.edu.vn/handle/VIN/296
Collections
  • Le Duy Dung, PhD [5]

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi