• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Wray Buntine, PhD.
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Wray Buntine, PhD.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

AUC Maximization for Low-Resource Named Entity Recognition

Thumbnail
Xem/Mở
AUC Maximization for Low-Resource Named Entity Recognition.pdf (1.228Mb)
Năm xuất bản
2023-04-13
Tác giả
Nguyen, Ngoc Dang
Tan, Wei
Du, Lan
Buntine, Wray
Beare, Richard
Chen, Changyou
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
Current work in named entity recognition (NER) uses either cross entropy (CE) or conditional random fields (CRF) as the objective/loss functions to optimize the underlying NER model. Both of these traditional objective functions for the NER problem generally produce adequate performance when the data distribution is balanced and there are sufficient annotated training examples. But since NER is inherently an imbalanced tagging problem, the model performance under the low-resource settings could suffer using these standard objective functions. Based on recent advances in area under the ROC curve (AUC) maximization, we propose to optimize the NER model by maximizing the AUC score. We give evidence that by simply combining two binary-classifiers that maximize the AUC score, significant performance improvement over traditional loss functions is achieved under low-resource NER settings. We also conduct extensive experiments to demonstrate the advantages of our method under the low-resource and highly-imbalanced data distribution settings. To the best of our knowledge, this is the first work that brings AUC maximization to the NER setting. Furthermore, we show that our method is agnostic to different types of NER embeddings, models, and domains. The code of this work is available at https://github.com/dngu0061/NER-AUC-2T.
Định danh
https://vinspace.edu.vn/handle/VIN/221
Collections
  • Wray Buntine, PhD. [13]

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi