Hiển thị đơn giản biểu ghi

dc.contributor.authorLi, Xinzhe
dc.contributor.authorLiu, Ming
dc.contributor.authorGao, Shang
dc.contributor.authorBuntine, Wray
dc.date.accessioned2025-02-22T19:08:39Z
dc.date.available2025-02-22T19:08:39Z
dc.date.issued2023-06-27
dc.identifier.urihttps://vinspace.edu.vn/handle/VIN/578
dc.description.abstractAdversarial robustness, domain generalization, and dataset biases are three active lines of research contributing to out-of-distribution (OOD) evaluation on neural NLP models. However, a comprehensive, integrated discussion of the three research lines is still lacking in the literature. In this survey, we: 1. Compare the three lines of research under a unifying definition. 2. Summarize the data-generating processes and evaluation protocols for each line of research. 3. Emphasize the challenges and opportunities for future work.en_US
dc.language.isoen_USen_US
dc.titleA survey on out-of-distribution evaluation of neural NLP modelsen_US
dc.typeArticleen_US


Các tập tin trong tài liệu này

Thumbnail

Tài liệu này xuất hiện trong Bộ sưu tập

  • Wray Buntine, PhD. [13]
    College of Engineering and Computer Science Director, Computer Science program

Hiển thị đơn giản biểu ghi


Vin University Library
Da Ton, Gia Lam
Vinhomes Oceanpark, Ha Noi, Viet Nam
Phone: +84-2471-089-779 | 1800-8189
Contact: library@vinuni.edu.vn