Hiển thị đơn giản biểu ghi

dc.contributor.authorTran, Dinh Tien
dc.contributor.authorNguyen, Tuan Anh
dc.contributor.authorNguyen, Hoang Tran
dc.contributor.authorTa, Duc Huy
dc.contributor.authorDuong, T. M. Soan
dc.contributor.authorNguyen, D. Tr. Chanh
dc.contributor.authorTruong, Q. H. Steven
dc.date.accessioned2025-02-22T19:05:47Z
dc.date.available2025-02-22T19:05:47Z
dc.date.issued2023
dc.identifier.urihttps://vinspace.edu.vn/handle/VIN/576
dc.description.abstractAnomaly detection is an important application in large-scale industrial manufacturing. Recent methods for this task have demonstrated excellent accuracy but come with a latency trade-off. Memory based approaches with dominant performances like PatchCore or Coupled-hypersphere-based Feature Adaptation (CFA) require an external memory bank, which significantly lengthens the execution time. Another approach that employs Reversed Distillation (RD) can perform well while maintaining low latency. In this paper, we revisit this idea to improve its performance, establishing a new state-of-the-art benchmark on the challenging MVTec dataset for both anomaly detection and localization. The proposed method, called RD++, runs six times faster than PatchCore, and two times faster than CFA but introduces a negligible latency compared to RD. We also experiment on the BTAD and Retinal OCT datasets to demonstrate our method’s generalizability and conduct important ablation experiments to provide insights into its configurations. Source code will be available at https://github.com/tientrandinh/Revisiting-Reverse-Distillationen_US
dc.language.isoen_USen_US
dc.titleRevisiting reverse distillation for anomaly detectionen_US
dc.typeArticleen_US


Các tập tin trong tài liệu này

Thumbnail

Tài liệu này xuất hiện trong Bộ sưu tập

Hiển thị đơn giản biểu ghi


Vin University Library
Da Ton, Gia Lam
Vinhomes Oceanpark, Ha Noi, Viet Nam
Phone: +84-2471-089-779 | 1800-8189
Contact: library@vinuni.edu.vn