• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Nguyen Van Dinh, PhD.
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Nguyen Van Dinh, PhD.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework

Thumbnail
Xem/Mở
Network-Aided_Intelligent_Traffic_Steering_in_6G_O-RAN_A_Multi-Layer_Optimization_Framework.pdf (10.67Mb)
Năm xuất bản
2018
Tác giả
Nguyen, Van-Dinh
Vu, Thang X.
Nguyen, Nhan Thanh
Luong, Nguyen Cong
Hoang, Dinh Thai
Nguyen, Dinh C.
Juntti, Markku
Nguyen, Diep N.
Chatzinotas, Symeon
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.
Định danh
https://vinspace.edu.vn/handle/VIN/432
Collections
  • Nguyen Van Dinh, PhD. [15]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Awareness and preparedness of healthcare workers against the first wave of the COVID-19 pandemic: A cross-sectional survey across 57 countries 

    Nguyen, Tien Huy; Chico, R. Matthew; Vuong, Thanh Huan; Shaikhkhalil, Hosam Waleed; Vuong, Ngoc Thao Uyen; Qarawi, Ahmad Taysir Atieh; Alhady, Shamael Thabit Mohammed; Nguyen, Lam Vuong; Le, Van Truong; Luu, Mai Ngoc; Dumre, Shyam Prakash; Imoto, Atsuko; Lee, Peter N.; Dao, Ngoc Hien Tam; Ng, Sze Jia; Hashan, Mohammad Rashidul; Matsui, Mitsuaki; Nguyen, Tran Minh Duc; Karimzadeh, Sedighe; Koonrungsesomboon, Nut; Smith, Chris; Cox, Sharon; Moji, Kazuhiko; Hirayama, Kenji; Abbas, Kirellos Said; Le, Khac Linh; Tran, Nu Thuy Dung; AL-Ahdal, Tareq Mohammed Ali; Balogun, Emmanuel Oluwadare; Nguyen, The Duy; Eltaras, Mennatullah Mohamed; Huynh, Trang; Nguyen, Thi Linh Hue; Bui, Diem Khue; Gad, Abdelrahman; Tawfik, Gehad Mohamed; Kubota, Kazumi; Nguyen, Hoang Minh; Pavlenko, Dmytro; Le; Vu, Thi Thu Trang; Le, Thuong Vu; Tran, Hai Yen; Nguyen, Thi Yen Xuan; Luong, Thi Trang; Vinh, Dong; Sharma, Akash; Vu, Quoc Dat; Soliman, Mohammed; Abdul Aziz, Jeza; Shah, Jaffer; Pham, Dinh Long Hung; Jee, Yap Siang; Dang, Thuy Ha Phuong; Tran, Thuy Huong Quynh; Hoang, Thi Nam Giang; Vy, Thi Nhat Huynh; Nguyen, Anh Thi; Truc, Phan; Nguyen, Hai Nam; Dhouibi, Nacir; Duru, Vincent; Ghozy, Sherief (2021-12-22)
    Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the ...
  • Thumbnail

    VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations 

    Nguyen, Ha Q.; Lam, Khanh; Le, Linh T.; Pham, Hieu H.; Tran, Dat Q.; Nguyen, Dung B.; Le, Dung D.; Pham, Chi M.; Tong, Hang T. T.; Dinh, Diep H.; Do, Cuong D.; Doan, Luu T.; Nguyen, Cuong N.; Nguyen, Binh T.; Nguyen, Que V.; Hoang, Au D.; Phan, Hien N.; Nguyen, Anh T.; Ho, Phuong H.; Ngo, Dat T.; Nguyen, Nghia T.; Nguyen, Nhan T.; Dao, Minh; Vu, Van (2022)
    Most of the existing chest X-ray datasets include labels from a list of findings without specifying their locations on the radiographs. This limits the development of machine learning algorithms for the detection and ...
  • Thumbnail

    VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations 

    Nguyen, Ha Q.; Lam, Khanh; Le, T. Linh; Pham, H. Hieu; Tran, Q. Dat; Nguyen, B. Dung; Le, D. Dung; Tong, T. T. Hang; Dinh, H. Hiep; Do, D. Cuong; Doan, T. Luu; Nguyen, N. Cuong; Nguyen, T. Binh; Nguyen, V. Que; Hoang, D. Au; Phan, N. Hien; Nguyen, T. Anh; Ho, H. Phuong; Ngo, T. Dat; Nguyen, T. Nghia; Nguyen, T. Nhan; Dao, Minh; Vu, Van (2022-03-20)
    Most of the existing chest X-ray datasets include labels from a list of findings without specifying their locations on the radiographs. This limits the development of machine learning algorithms for the detection and ...

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi