• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Wray Buntine, PhD.
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Wray Buntine, PhD.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust Educational Dialogue Act Classifiers with Low-Resource and Imbalanced Datasets

Thumbnail
Xem/Mở
Robust Educational Dialogue Act Classifiers with Low-Resource and Imbalanced Datasets.pdf (661.0Kb)
Năm xuất bản
2023-04-15
Tác giả
Lin, Jionghao
Tan, Wei
Nguyen, Ngoc Dang
Lang, David
Du, Lan
Buntine, Wray
Beare, Richard
Chen, Guanliang
Gašević, Dragan
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
Dialogue acts (DAs) can represent conversational actions of tutors or students that take place during tutoring dialogues. Automating the identification of DAs in tutoring dialogues is significant to the design of dialogue-based intelligent tutoring systems. Many prior studies employ machine learning models to classify DAs in tutoring dialogues and invest much effort to optimize the classification accuracy by using limited amounts of training data (i.e., low-resource data scenario). However, beyond the classification accuracy, the robustness of the classifier is also important, which can reflect the capability of the classifier on learning the patterns from different class distributions. We note that many prior studies on classifying educational DAs employ cross entropy (CE) loss to optimize DA classifiers on low-resource data with imbalanced DA distribution. The DA classifiers in these studies tend to prioritize accuracy on the majority class at the expense of the minority class which might not be robust to the data with imbalanced ratios of different DA classes. To optimize the robustness of classifiers on imbalanced class distributions, we propose to optimize the performance of the DA classifier by maximizing the area under the ROC curve (AUC) score (i.e., AUC maximization). Through extensive experiments, our study provides evidence that (i) by maximizing AUC in the training process, the DA classifier achieves significant performance improvement compared to the CE approach under low-resource data, and (ii) AUC maximization approaches can improve the robustness of the DA classifier under different class imbalance ratios.
Định danh
https://vinspace.edu.vn/handle/VIN/376
Collections
  • Wray Buntine, PhD. [13]

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi