• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Minh Do, PhD.
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Minh Do, PhD.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Use of a convolutional neural network and quantitative ultrasound for diagnosis of fatty liver

Thumbnail
Xem/Mở
Use of a convolutional neural network and quantitative ultrasound for diagnosis of fatty liver.pdf (1.655Mb)
Năm xuất bản
2022-03-01
Tác giả
Nguyen, Trong N.
Podkowa, Anthony S.
Park, Trevor H.
Miller, Rita J.
Do, Minh N.
Oelze, Michael L.
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
Quantitative ultrasound (QUS) was used to classify rabbits that were induced to have liver disease by placing them on a fatty diet for a defined duration and/or periodically injecting them with CCl4. The ground truth of the liver state was based on lipid liver percents estimated via the Folch assay and hydroxyproline concentration to quantify fibrosis. Rabbits were scanned ultrasonically in vivo using a SonixOne scanner and an L9–4/38 linear array. Liver fat percentage was classified based on the ultrasonic backscattered radio-frequency (RF) signals from the livers using either QUS or a 1D convolutional neural network (CNN). Use of QUS parameters with linear regression and canonical correlation analysis (CCA) demonstrated that the QUS parameters could differentiate between livers with lipid levels above or below 5%. However, the QUS parameters were not sensitive to fibrosis. The CNN was implemented by analyzing raw RF ultrasound signals without using separate reference data. The CNN output the classification of liver as either above or below a threshold of 5% fat level in the liver. The CNN outperformed the classification utilizing the QUS parameters combined with a support vector machine (SVM) in differentiating between low and high lipid liver levels, i.e., accuracies of 74% versus 59% on the testing data. Therefore, while the CNN did not provide a physical interpretation of the tissue properties, e.g., attenuation of the medium or scatterer properties, the CNN had much higher accuracy in predicting fatty liver state and did not require an external reference scan.
Định danh
https://vinspace.edu.vn/handle/VIN/313
Collections
  • Minh Do, PhD. [7]

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi