• English
    • Tiếng Việt
  • Tiếng Việt 
    • English
    • Tiếng Việt
  • Đăng nhập
View Item 
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Pham Huy Hieu, PhD.
  • View Item
  •   Trang chủ
  • The College of Engineering and Computer Science
  • Pham Huy Hieu, PhD.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

FedDRL: Deep reinforcement learning-based adaptive aggregation for non-IID data in federated learning

Thumbnail
Xem/Mở
FedDRL_ Deep Reinforcement Learning-based Adaptive Aggregation for Non-IID Data in Federated Learning.pdf (2.766Mb)
Năm xuất bản
2022-08-04
Tác giả
Pham, Huy Hieu
Nguyen, Nang Hung
Nguyen, Duc Long
Nguyen, Thuy Dung
Nguyen, Truong Thao
Nguyen, Thanh Hung
Nguyen, Phi Le
Metadata
Hiển thị đầy đủ biểu ghi
Tóm tắt
The uneven distribution of local data across different edge devices (clients) results in slow model training and accuracy reduction in federated learning. Naive federated learning (FL) strategy and most alternative solutions attempted to achieve more fairness by weighted aggregating deep learning models across clients. This work introduces a novel non-IID type encountered in real-world datasets, namely cluster-skew, in which groups of clients have local data with similar distributions, causing the global model to converge to an over-fitted solution. To deal with non-IID data, particularly the cluster-skewed data, we propose FedDRL, a novel FL model that employs deep reinforcement learning to adaptively determine each client’s impact factor (which will be used as the weights in the aggregation process). Extensive experiments on a suite of federated datasets confirm that the proposed FedDRL improves favorably against FedAvg and FedProx methods, e.g., up to 4.05% and 2.17% on average for the CIFAR-100 dataset, respectively.
Định danh
https://vinspace.edu.vn/handle/VIN/283
Collections
  • Pham Huy Hieu, PhD. [36]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Awareness and preparedness of healthcare workers against the first wave of the COVID-19 pandemic: A cross-sectional survey across 57 countries 

    Nguyen, Tien Huy; Chico, R. Matthew; Vuong, Thanh Huan; Shaikhkhalil, Hosam Waleed; Vuong, Ngoc Thao Uyen; Qarawi, Ahmad Taysir Atieh; Alhady, Shamael Thabit Mohammed; Nguyen, Lam Vuong; Le, Van Truong; Luu, Mai Ngoc; Dumre, Shyam Prakash; Imoto, Atsuko; Lee, Peter N.; Dao, Ngoc Hien Tam; Ng, Sze Jia; Hashan, Mohammad Rashidul; Matsui, Mitsuaki; Nguyen, Tran Minh Duc; Karimzadeh, Sedighe; Koonrungsesomboon, Nut; Smith, Chris; Cox, Sharon; Moji, Kazuhiko; Hirayama, Kenji; Abbas, Kirellos Said; Le, Khac Linh; Tran, Nu Thuy Dung; AL-Ahdal, Tareq Mohammed Ali; Balogun, Emmanuel Oluwadare; Nguyen, The Duy; Eltaras, Mennatullah Mohamed; Huynh, Trang; Nguyen, Thi Linh Hue; Bui, Diem Khue; Gad, Abdelrahman; Tawfik, Gehad Mohamed; Kubota, Kazumi; Nguyen, Hoang Minh; Pavlenko, Dmytro; Le; Vu, Thi Thu Trang; Le, Thuong Vu; Tran, Hai Yen; Nguyen, Thi Yen Xuan; Luong, Thi Trang; Vinh, Dong; Sharma, Akash; Vu, Quoc Dat; Soliman, Mohammed; Abdul Aziz, Jeza; Shah, Jaffer; Pham, Dinh Long Hung; Jee, Yap Siang; Dang, Thuy Ha Phuong; Tran, Thuy Huong Quynh; Hoang, Thi Nam Giang; Vy, Thi Nhat Huynh; Nguyen, Anh Thi; Truc, Phan; Nguyen, Hai Nam; Dhouibi, Nacir; Duru, Vincent; Ghozy, Sherief (2021-12-22)
    Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the ...
  • Thumbnail

    VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations 

    Nguyen, Ha Q.; Lam, Khanh; Le, Linh T.; Pham, Hieu H.; Tran, Dat Q.; Nguyen, Dung B.; Le, Dung D.; Pham, Chi M.; Tong, Hang T. T.; Dinh, Diep H.; Do, Cuong D.; Doan, Luu T.; Nguyen, Cuong N.; Nguyen, Binh T.; Nguyen, Que V.; Hoang, Au D.; Phan, Hien N.; Nguyen, Anh T.; Ho, Phuong H.; Ngo, Dat T.; Nguyen, Nghia T.; Nguyen, Nhan T.; Dao, Minh; Vu, Van (2022)
    Most of the existing chest X-ray datasets include labels from a list of findings without specifying their locations on the radiographs. This limits the development of machine learning algorithms for the detection and ...
  • Thumbnail

    VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations 

    Nguyen, Ha Q.; Lam, Khanh; Le, T. Linh; Pham, H. Hieu; Tran, Q. Dat; Nguyen, B. Dung; Le, D. Dung; Tong, T. T. Hang; Dinh, H. Hiep; Do, D. Cuong; Doan, T. Luu; Nguyen, N. Cuong; Nguyen, T. Binh; Nguyen, V. Que; Hoang, D. Au; Phan, N. Hien; Nguyen, T. Anh; Ho, H. Phuong; Ngo, T. Dat; Nguyen, T. Nghia; Nguyen, T. Nhan; Dao, Minh; Vu, Van (2022-03-20)
    Most of the existing chest X-ray datasets include labels from a list of findings without specifying their locations on the radiographs. This limits the development of machine learning algorithms for the detection and ...

Liên hệ | Gửi phản hồi
 

 

Duyệt theo

Toàn bộ thư việnĐơn vị và Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đềTrong Bộ sưu tậpNăm xuất bảnTác giảNhan đềChủ đề

Tài khoản

Đăng nhậpĐăng ký

Liên hệ | Gửi phản hồi