Hiển thị đơn giản biểu ghi

dc.contributor.authorNguyen, Van Thang
dc.contributor.authorLe, Van Bang
dc.date.accessioned2024-10-24T18:44:38Z
dc.date.available2024-10-24T18:44:38Z
dc.date.issued2023-06-06
dc.identifier.urihttps://vinspace.edu.vn/handle/VIN/416
dc.description.abstractRecent advancements in neural video compression networks have achieved notable results; however, most existing models focus primarily on low-delay configurations, where the order of display matches the coding order. In this paper, we propose a hierarchical random access coding approach that leverages bidirectional temporal redundancy to enhance the coding efficiency of current deep neural video compression models. Our framework integrates a video frame interpolation network to improve inter-frame prediction and introduces a hierarchical coding structure. Experimental results demonstrate that the proposed framework increases coding efficiency by 48.01% on the UVG dataset and 50.96% on the HEVC-class B dataset, significantly outperforming previous deep neural video compression networks.en_US
dc.language.isoenen_US
dc.subjectneural video compressionen_US
dc.subjecthierarchical random access codingen_US
dc.subjectvideo frame interpolationen_US
dc.titleHierarchical Random Access Coding for Deep Neural Video Compressionen_US
dc.typeArticleen_US


Các tập tin trong tài liệu này

Thumbnail

Tài liệu này xuất hiện trong Bộ sưu tập

Hiển thị đơn giản biểu ghi


Vin University Library
Da Ton, Gia Lam
Vinhomes Oceanpark, Ha Noi, Viet Nam
Phone: +84-2471-089-779 | 1800-8189
Contact: library@vinuni.edu.vn