Show simple item record

dc.contributor.authorNguyen, Van Thang
dc.contributor.authorLe, Van Bang
dc.date.accessioned2024-10-24T18:44:38Z
dc.date.available2024-10-24T18:44:38Z
dc.date.issued2023-06-06
dc.identifier.urihttps://vinspace.edu.vn/handle/VIN/416
dc.description.abstractRecent advancements in neural video compression networks have achieved notable results; however, most existing models focus primarily on low-delay configurations, where the order of display matches the coding order. In this paper, we propose a hierarchical random access coding approach that leverages bidirectional temporal redundancy to enhance the coding efficiency of current deep neural video compression models. Our framework integrates a video frame interpolation network to improve inter-frame prediction and introduces a hierarchical coding structure. Experimental results demonstrate that the proposed framework increases coding efficiency by 48.01% on the UVG dataset and 50.96% on the HEVC-class B dataset, significantly outperforming previous deep neural video compression networks.en_US
dc.language.isoenen_US
dc.subjectneural video compressionen_US
dc.subjecthierarchical random access codingen_US
dc.subjectvideo frame interpolationen_US
dc.titleHierarchical Random Access Coding for Deep Neural Video Compressionen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record