Show simple item record

dc.contributor.authorPham, Huy Hieu
dc.contributor.authorNguyen, Trong Tung
dc.contributor.authorNguyen, Phi Le
dc.contributor.authorNguyen, Thanh Hung
dc.contributor.authorDo, Minh
dc.date.accessioned2024-10-24T11:16:04Z
dc.date.available2024-10-24T11:16:04Z
dc.date.issued2022
dc.identifier.urihttps://vinspace.edu.vn/handle/VIN/318
dc.description.abstractClassifying pill categories from real-world images is crucial for various smart healthcare applications. Although existing approaches in image classification might achieve a good performance on fixed pill categories, they fail to handle novel instances of pill categories that are frequently presented to the learning algorithm. To this end, a trivial solution is to train the model with novel classes. However, this may result in a phenomenon known as catastrophic forgetting, in which the system forgets what it learned in previous classes. In this paper, we address this challenge by introducing the class incremental learning (CIL) ability to traditional pill image classification systems. Specifically, we propose a novel incremental multi-stream intermediate fusion framework enabling incorporation of an additional guidance information stream that best matches the domain of the problem into various state-of-the-art CIL methods. From this framework, we consider color-specific information of pill images as a guidance stream and devise an approach, namely “Color Guidance with Multi-stream intermediate fusion” (CG-IMIF) for solving CIL pill image classification task. We conduct comprehensive experiments on real-world incremental pill image classification dataset, namely VAIPE-PCIL, and find that the CG-IMIF consistently outperforms several state-of-the-art methods by a large margin in different task settings. Our code, data, and trained model are available at https://github.com/vinuni-vishc/CG-IMIF.en_US
dc.language.isoen_USen_US
dc.titleMulti-stream fusion for class incremental learning in pill image classificationen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Pham Huy Hieu, PhD. [27]
    College of Engineering and Computer Science Associate Director, VinUni-Illinois Smart Health Center Assistant Professor, Computer Science program

Show simple item record


Vin University Library
Da Ton, Gia Lam
Vinhomes Oceanpark, Ha Noi, Viet Nam
Phone: +84-2471-089-779 | 1800-8189
Contact: library@vinuni.edu.vn