Show simple item record

dc.contributor.authorTran, Minh Quan
dc.contributor.authorHildebrand, David Grant Colburn
dc.contributor.authorJeong, Won-Ki
dc.date.accessioned2024-08-21T15:49:10Z
dc.date.available2024-08-21T15:49:10Z
dc.date.issued2021-05-13
dc.identifier.urihttps://vinspace.edu.vn/handle/VIN/211
dc.description.abstractCellular-resolution connectomics is an ambitious research direction with the goal of generating comprehensive brain connectivity maps using high-throughput, nano-scale electron microscopy. One of the main challenges in connectomics research is developing scalable image analysis algorithms that require minimal user intervention. Deep learning has provided exceptional performance in image classification tasks in computer vision, leading to a recent explosion in popularity. Similarly, its application to connectomic analyses holds great promise. Here, we introduce a deep neural network architecture, FusionNet, with a focus on its application to accomplish automatic segmentation of neuronal structures in connectomics data. FusionNet combines recent advances in machine learning, such as semantic segmentation and residual neural networks, with summation-based skip connections. This results in a much deeper network architecture and improves segmentation accuracy. We demonstrate the performance of the proposed method by comparing it with several other popular electron microscopy segmentation methods. We further illustrate its flexibility through segmentation results for two different tasks: cell membrane segmentation and cell nucleus segmentation.en_US
dc.language.isoen_USen_US
dc.subjectconnectomic analysisen_US
dc.subjectimage segementationen_US
dc.subjectdeep learningen_US
dc.subjectrefinementen_US
dc.subjectskip connectionen_US
dc.titleFusionNet: A Deep Fully Residual Convolutional Neural Network for Image Segmentation in Connectomicsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Tran Minh Quan [8]
    Applied Scientist Engineering - College of Engineering and Computer Science

Show simple item record


Vin University Library
Da Ton, Gia Lam
Vinhomes Oceanpark, Ha Noi, Viet Nam
Phone: +84-2471-089-779 | 1800-8189
Contact: library@vinuni.edu.vn