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ABSTRACT

Capsule Network is a contemporary approach to image anal-
ysis that emphasizes part-whole relationships. However, its
applications to segmentation tasks are limited due to train-
ing difficulties such as initialization and convergence. In this
study, we propose a novel Capsule Network, called CapNeXt,
that unifies Capsule and ResNeXt architectures for medical
image segmentation. CapNeXt advances the existing capsule-
based segmentation model by integrating optimization tech-
niques from Convolutional Neural Networks (CNN) to make
training much easier than other contemporary Capsule-based
segmentation methods. Experimental results on two public
datasets show that CapNeXt outperforms the CNNs and other
Capsule architectures in 2D and 3D segmentation tasks by 1%
of the Dice score. The code will be released on GitHub after
being accepted.

Index Terms— Capsule Network, Medical Image Seg-
mentation, ResNeXt Architecture

1. INTRODUCTION

Medical image segmentation algorithms attempt to extract
and localize organs, tumors, and other structures of interest
at pixel level accuracy, to aid health professionals in making
accurate diagnoses more efficiently. Existing state-of-the-art
medical image segmentation methods mainly use deep con-
volutional neural networks (CNNs) [1, 2]. Although deep
CNNs have proven to be very good feature extractors, they
have several limitations, such as lacking robustness against
affine transformations and losing relevant spatial information
of pixels due to max-pooling layers.

An alternative to CNNs was recently proposed by Sabour
et al. [3], called Capsule network. In this network, Cap-
sules replaces neurons as the building blocks. Unlike neu-
rons, Capsule output is a vector representing an object’s
specific characteristics. Unlike CNNs, Capsule networks
do not utilize max-pooling layers but make use of either an
iterative routing-by-agreement algorithm [3] or Expectation-
Maximization (EM) routing algorithm [4] that determines the
coupling of Capsules between consecutive layers. Therefore,
the networks emphasize the preservation of part-whole rela-
tionships in the data. It was shown that a shallow Capsule

network outperforms a deep CNN on the MNIST dataset [3].
Furthermore, Capsule networks have fewer parameters and
require less training data by learning viewpoint invariant
feature representations [4].

More recently, several works have expanded Capsule net-
works to semantic segmentation and applied them to medical
image segmentation. Generally, Capsule networks are well-
suited to solve medical image segmentation tasks where the
objects are structured. Segcaps [5] replaces the feature vector
at each pixel in a feature map with a Capsule matrix where
the number of rows is equal to the number of the Capsule,
and the number of columns is equal to the number of Capsule
features vectors. All Capsule features in SegCaps transform
the same going from one layer to the next, limiting Capsule
architecture’s capability. UCaps [6] follows the same design
as SegCaps, except that the decoder branch uses the standard
Convolutional transpose. The UCaps design is more straight-
forward to train than SegCaps because of the normalization
and initialization techniques in the decoder part. However, it
suffers the same limitation as SegCaps because children Cap-
sules share a transformation matrix. Inception Capsule net-
work [7] uses the Inception V4 model to extract features and
only replaces the output head with 2 Capsule layers. This de-
sign, therefore, does not emphasize Capsule architecture.

To overcome the issues mentioned above, we propose a
novel Capsule network, called CapNeXt, that unifies Capsule
and ResNeXt architectures for medical image segmentation.
In summary, our contributions are as follows:

• We discover a connection between the ResNeXt architec-
ture and the Capsule architecture.

• We propose the CapNeXt architecture that unifies ResNeXt
and Capsule architectures into one.

• We proposed architecture is more straightforward to train
than other Capsule architectures, more robust to perspec-
tive transformation than standard CNN, and improves per-
formance by 1% on tumor segmentation tasks based on 2D
SIIM Pneumothorax [8] and 3D KiTS19 [9] datasets.

2. METHOD

We first overview ResNeXt [10] and Capsule [3, 4] architec-
tures followed by their unification into CapNeXt.
ResNeXt architecture. In ResNeXt architecture, the residual
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path is first separated into smaller groups, each transforms
independently from the other. The outputs of the groups are
then summed to produce the residual outputs. The residual
outputs from the final convolution layer and summation can
be expressed as follows:

h(x) =
∑
i

Wixi, (1)

where i is the group index, Wi is the weight of group i, and
xi is a feature vector of group i from original input x.
Capsule architecture. For the Capsule architecture, instead
of using neurons that only output a scalar, the authors [3, 4]
proposed replacing them with higher-order outputs, e.g., vec-
tor and matrix. Furthermore, to emphasize the hierarchical re-
lationship between consecutive layers, Capsule architectures
use a routing-by-agreement algorithm that dynamically as-
signs a connection weight from capsules of the previous layer
to the next depending on their feature alignment (Fig. 1).

N
Capsules

M

 Capsules

Capsule Layer  Routing Capsule Layer 

Fig. 1: Capsule network uses a routing-by-agreement proce-
dure to assign which capsule in the lower layer belongs to
which capsule in the upper layer.

The computation of a capsule layer can be summarized as
follows:

rij = ROUTING(Wijvi, n), (2)

vj =
∑
i

rijWijvi, (3)

where 0 ≤ i < N and 0 ≤ j < M are index of the previ-
ous and current capsules respectively, vi and vj are outputs of
capsules i-th and j-th, respectively. Wij and rij are transfor-
mation matrix and connection strength of capsule i-th with re-
spect to capsule j-th, and n is the number of routing iteration.
The routing procedure can either be Dynamic Routing [3] or
EM Routing [4].
CapNeXt. Eq. (1) resembles that of Eq. (3) with rij = 1.
Therefore, ResNeXt can be treated as a simplified version
of Capsule architecture with a trivial routing procedure, and
Capsule can be treated as a regularized version of ResNeXt
where each path is weighted by their contribution. Our
method replaces the path summation of ResNeXt with an
iterative routing-by-agreement procedure. This replacement

, 1x1, b , 1x1, b , 1x1, b

b, 3x3, b b, 3x3, b b, 3x3, b

b, 1x1, b, 1x1, b, 1x1, 

N

Capsules

M

Capsules

Routing

Fig. 2: Integrate Capsule into ResNeXt architecture, the
transformation of the inputs follow closely that of ResNeXt.
C0 is the number of features of a capsule.

leverages standard techniques that make a CNN easy to train,
such as Normalization and ReLU activation, while keeping
the emphasis on Capsule’s part-whole relationship routing
(Fig. 2). Furthermore, in order to promote the residual ar-
chitecture for better gradient flow, we add a constraint to the
number of output capsules and features.

M × C0 = Ci. (4)

Eq. (4) guarantees that part-object relationship features ex-
tracted by capsule routing can be used alongside with de-
fault feature extracted by CNN as a residual block. We use
the optimized dynamic routing algorithm as the routing pro-
cedure. The algorithm is summarized by pseudo-codes in
Alg. 1. More detailed descriptions regarding the routing al-
gorithm can be found in [11].

Algorithm 1 Dynamic Routing Algorithm

1: procedure ROUTING(uij , n)
2: bij ← 0
3: for n iterations do
4: rij ←

exp (bij)∑
j exp (bij)

. assign capsules

5: vj ←
∑

i rijuij . weighted average
6: vj ← vj/||vj || . normalize length
7: bij ← bij + 〈vj , uij〉 . iterative update
8: end for
9: return rij

10: end procedure
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3. EXPERIMENTAL RESULTS

3.1. Implementation Details

Datasets. We evaluated our approach on two segmentation
datasets: SIIM Pneumothroax [8] and KiTS19 [9] datasets.
The SIIM Pneumothorax dataset [8] contains 10,675 chest
X-ray images and corresponding Pneumothorax segmenta-
tion masks with 2,379 positive and 8,296 negative cases of
Pneumothorax. The KiTS19 dataset [9] consists of 210 CT
volumes and corresponding kidney and kidney tumor masks.
Both datasets were stratified split into three folds, each with
a training set and a valid set, to get a better performance
overview on each dataset.
Preprocessing and data augmentations. For chest X-ray
images in the SIIM Pneumothorax dataset, we resized them
to the size of 512 × 512. For CT volumes in the KiTS19
dataset, we resampled them to have the following spacing
3mm × 1.5mm × 1.5mm. Because the anatomical loca-
tions of kidneys in the lower half of the body, we bottom
cropped the volume to have the size of 128 × 160 × 256
to reduce the computation. The HU values of CT volumes
were then clipped into the range of [-80, 300]. All input data
were normalized to the range of [-1, 1]. We used random flip-
ping, shifting, rotating, and scaling as augmentations in both
datasets.

Architecture. CapNeXt is based on U-Net architecture [1, 2].
Fig. 3 shows an overview of the CapNeXt architecture. The
Convolution block consists of Convolutional Layer, Group
Normalization Layer [12], and LeakyReLU [13] activation
layer with α = 0.2. All Convolution blocks use kernel 3× 3.
The CapNeXt block follows the same design as a residual
block in ResNeXt architecture [10] but with Batch Normal-
ization layer [14] replaced by Group Normalization [12]. We
also use LeakyReLU [13] as the non-linear activation func-
tion for the CapNeXt block for better performance. We set
N=32 and M=1 for the SIIM Pneumothorax dataset [8] and
N=16, M=1 for the KiTS19 dataset [9].

Down Stage 1

Down Stage 2

Down Stage 3

Up Stage 1

Up Stage 2

= Convolution block

= CapNeXt block

Fig. 3: CapNeXt architecture.

Training. The training batch size was 4 for both datasets. We
used the dice loss and cross-entropy loss for the segmentation
task on all datasets. For optimizer, we used Adam [15] with

a learning rate of 0.001. The learning rate was reduced by a
factor of 10 if the model’s performance on the valid set did
not increase for five epochs. The training was stopped if the
model’s performance on the valid set did not improve for ten
epochs. We experimentally found that progressive training of
CapNeXt from low routing iteration to higher ones yields the
best performance. Therefore, we first train CapNeXt for rout-
ing iteration 1 (n=1) to convergence, then train routing itera-
tion 3 (n=3) with a new initial learning = 0.1× initial learning
rate of n=1. This process is repeated for going from n=3 to
n=5 and so on. We implement all models with the PyTorch
framework and train them using 2 Nvidia V100 GPUs. We
acknowledged that our training pipeline is standard and not
optimized for specific tasks like those on the KiTs19 leader-
board. However, we want to study the effect of different ar-
chitectures using basic pipelines without over tuning for any
specific task.

3.2. Segmentation Performance

Table 1: Means and standard deviations of dice score of
baseline models and CapNeXt with increasing number of it-
erations based on 3 folds of SIIM Pneumothorax [8] and
KiTS19 [9] datasets. The best results are in bold. UResNeXt
is treated as CapNeXt - n=1.

Method SIIM KiTS19

Kidney Tumor

U-Net [1, 2] 1 0.7846 ± 0.0157 0.9528 ± 0.0013 0.6466 ± 0.0149
SegCaps [5] 2 0.1244 ± 0.0052 0.8091 ± 0.0204 0.3405 ± 0.0903
UCaps [6] 2 - 0.8066 ± 0.0076 0.3355 ± 0.0125
UResNeXt 0.8040 ± 0.0193 0.9556 ± 0.0018 0.7408 ± 0.0189

CapNeXt - n=3 0.8138 ± 0.0118 0.9573 ± 0.0029 0.7503 ± 0.0135
CapNeXt - n=5 0.8122 ± 0.0115 0.9577 ± 0.0020 0.7445 ± 0.0195
CapNeXt - n=7 0.8125 ± 0.0127 0.9583 ± 0.0009 0.7310 ± 0.0086

We compare CapNeXt against baselines: standard U-Net,
SegCaps, UCaps, and U-Net with ResNeXt backbone (URe-
sNeXt) on SIIM Pneumothorax (2D) and KiTS19 (3D)
datasets. CapNext - n=1 can be treated as UResNeXt because
each Capsule has the same connection strength. CapNeXt -
n=3 improves the Dice score performance by approximately
3% compared with standard U-Net and 1% compared with
UResNeXt on the SIIM dataset (Table 1). On the KiTS19
dataset, CapNeXt - n=3 only marginally improves on base-
lines in the Kidney segmentation task. We hypothesize
that due to the straightforwardness of the Kidney segmen-
tation task, the performances are already saturated, and any
improvement/regularization to existing models only gives
marginal results. However, for more complex tasks such
as tumor segmentation, CapNeXt - n=3 improves the Dice

2U-Net [1] for SIIM dataset and 3D U-Net [2] for KiTS19 dataset
2We adopt SegCaps to 3D segmentation task by replacing 2D convolution

by its 3D version and the other way around for UCaps.
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score performance by 10% compared with standard U-Net
and 1% compared with UResNeXt. These improvements on
two segmentation datasets show that CapNeXt is an effective
realization of Capsule architecture for segmentation tasks.

The performances of SegCaps [5] and UCaps [6] on these
datasets are sub-par compared with standard U-Net. UCaps
only returns constant outputs for the SIIM Pneumothorax
dataset. We hypothesize that SegCaps and UCaps are hard to
train for complex segmentation tasks such as Pneumothorax
and kidney tumor segmentation because the initialization of
Capsule weights is nontrivial. Furthermore, SegCaps and
UCaps do not leverage normalization techniques which were
shown to make the loss landscape easier to traverse [16]. On
the other hand, our approach, which is based on ResNeXt, en-
ables integrating those techniques into Capsule architecture;
hence CapNeXt is much easier to train.

0.1 0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10
Down Stage 1
Down Stage 2
Down Stage 3

(a) Down Stages

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12 Up Stage 1
Up Stage 2

(b) Up Stages

Fig. 4: Distributions of the standard deviation of rij with re-
spect to input Capsules in stages of CapNeXt - n=3 on SIIM
Pneumothorax dataset.

We further train CapNeXt with higher routing iterations
such as n=5 and n=7. The decrease in performance compared
with n=3 shows that our hypothesis of Capsule as a regular-
ization of ResNeXt is valid. We also investigate the variation
of connection strengths of all CapNeXt blocks for n=3 case
on SIIM Pneumothorax dataset to ensure they are adjusted
from being constant at initialization. Fig. 4 shows the stan-
dard deviation of rij with respect to i for each stage in Fig. 3.
The majority of the standard deviation of rij is far from 0,
this shows CapNeXt helps promote Capsules that contribute
to the task and regularize Capsules that are not useful for the
task.

3.3. Robustness to rotation

We investigate whether CapNeXt still retains the perspective
robustness of the original Capsule architecture [3]. Table 2
shows that CapNeXt architecture is more robust to perspec-
tive shift in the input than standard CNN. It is interesting that
SegCaps [5], an implementation of capsule network for seg-
mentation, is not robust to perspective change. This none ro-
bustness shows that generalize Capsule architecture to seg-
mentation tasks is highly nontrivial.

Image Ground Truth CapNeXt - n=3 UResNeXt

Fig. 5: 0◦, 90◦, 180◦, 270◦ perspective and model predictions
of a chest X-ray image in SIIM Pneumothorax dataset [8].
CapNeXt - n=3 matches the ground truth better than URes-
NeXt.

Table 2: Mean and standard deviation of dice score on SIIM
Pneumothorax dataset [8] for 4 different perspectives of the
inputs: normal, rotated 90◦, 180◦, 270◦.

Method default rotate - 90◦ rotate - 180◦ rotate - 270◦

SegCaps 0.0974 ± 0.0028 0.0430 ± 0.0024 0.1597 ± 0.0064 0.0300 ± 0.004
UResNeXt 0.7860 ± 0.0336 0.5428 ± 0.0736 0.5716 ± 0.0876 0.5392 ± 0.0653
CapNext - n = 3 0.7967 ± 0.0174 0.5575 ± 0.0552 0.5892 ± 0.0656 0.5431 ± 0.0348

Fig. 5 shows different perspectives of a Pneumotho-
rax positive chest X-ray image in the SIIM Pneumothorax
dataset [8]. CapNeXt - n=3 is more robust compared with
UResNeXt. This robustness shows that our combination of
the two architectures retains crucial properties of the Capsule
architecture while being easier to train just like a standard
CNN architecture.

4. CONCLUSION

We proposed the CapNeXt architecture that unifies ResNeXt
and Capsule architecture. This combination improves seg-
mentation performance and makes Capsule easier to train.
The improved performances on both 2D and 3D segmentation
datasets show that CapNeXt architecture is effective for seg-
mentation tasks. Furthermore, increasing capsule routing iter-
ation in CapNeXt results in general performance degradation.
This degradation shows that our treatment of Capsule archi-
tecture as a regularization of ResNeXt architecture is sound.
However, we only experimented with M = 1 case and Dy-
namic Routing, which may not leverage the total capacity of
the Capsule routing procedure. We leave this direction for
future works to explore.
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