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Benchmarking Full Version of GureKDDCup, UNSW-NB15, and 

CIDDS-001 NIDS Datasets using Rolling-origin Resampling 

Network intrusion detection system (NIDS) is a system that analyses network 

traffic to flag malicious traffic or suspicious activities. Several recent NIDS 

datasets have been published, however, the lack of baseline experimental results 

on the full version of datasets had made it difficult for researchers to perform 

benchmarking. As the train-test distribution of the datasets has yet to be pre-

defined by the creators, this further obstruct the researchers to compare the 

performance unbiasedly across each of the machine classifiers. Moreover, cross-

validation resampling scheme have also been addressed in the literatures to be 

inappropriate in the domain of NIDS. Thus, rolling-origin – a standard resampling 

technique which is also known as a common cross-validation scheme in the 

forecasting domain is employed to allocate the training and testing distributions. 

In this paper, rigorous experiments are conducted on the full version of the three 

recent NIDS datasets: GureKDDCup, UNSW-NB15, and CIDDS-001. While the 

datasets chosen might not be the latest available datasets, we have selected them 

as they include the essential IP addresses fields which are usually missing or 

removed due to some sort of privacy concerns. To deliver the baseline empirical 

results, 10 well-known classifiers from Weka are utilized.  

Keywords: Network Intrusion Detection System (NIDS), Baseline, Benchmark, 

Sampling, Rolling-origin, Cross-Validation, Machine Classifier, GureKDDCup, 

UNSW-NB15, CIDDS-001 

1 Introduction 

As the number of coordinated cyberattacks are observed to be escalating swiftly over the 

past few years, numerous works have been developed by the research communities to 

enhance the capability of an intrusion detection system (IDS) for safeguarding an 

individual or organization against cyber threats (Mishra et al., 2018; Singh & Silakari, 

2009). In particular, NIDS is designed to detect malicious traffic from network traces, 

and this can be achieved by creating a classification model to detect malicious traffic. 

With the explosive growth of computer vision, a number of machine learning techniques 
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were predominantly proposed to segregate the malicious traffics from the benign traffic. 

Although many machine algorithms have been enhanced to improve the detection 

rate of malicious traffic, most of the studies tend to perform their experiments on the 

benchmark datasets: KDDCup’99 (Stolfo et al., 2000) and NSL-KDD (Tavallaee et al., 

2009). Several researchers (Ahmed et al., 2016; Mahoney & Chan, 2003; McHugh, 2000; 

Tavallaee et al., 2009) have critiqued the datasets as being outdated , since they were 

generated by the Defense Advanced Research Projects Office Agency (DARPA) for well 

over two decades ago.  

Sommer and Paxson (2010) and Małowidzki et al. (2015) have pointed out that 

the lack of a recent representative publicly available NIDS datasets remains the biggest 

challenges in this domain. Following their comments, several NIDS datasets have been 

published, for instance, UNSW-NB15 (Moustafa & Slay, 2015) and CIDDS-001 (Ring 

et al., 2017) datasets have been made available online by the Australian Centre for Cyber 

Security and the University of Coburg. 

In this paper, UNSW-NB15 (Moustafa & Slay, 2015) and CIDDS-001 (Ring et 

al., 2017) have been selected to be rigorously experimented as they contain modern 

attacks that are typically not observed in KDDCup'99. Both datasets mentioned are 

dedicated to tackle a different drawback by the previous benchmark KDDCup'99. 

Particularly, UNSW-NB15 complement for attacks which have low footprints by 

introducing 10 attack class (e.g., fuzzers, backdoors, exploits, reconnaissance, etc.) into 

the dataset (Moustafa & Slay, 2015), while CIDDS-001 contains a number of 

sophisticated attack scenarios associated with ping scanning, port scanning, brute force, 

and denial-of-service attacks (Ring et al., 2017).  Additionally, GureKDDCup (Perona et 

al., 2016; Perona et al., 2008) is also chosen to be extensively experimented in this paper. 

Although GureKDDCup might not be the most recent NIDS datasets, considering it's 
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methodology in mimicking the generation process of the benchmark KDDCup'99, 

GureKDDCup is able to maintain most of the features from KDDCup'99 while furnishing 

the missing payload information, IP addresses, and port numbers in KDDCup'99. All the 

three datasets that have been selected contain labelled instances that is necessary for 

training and evaluating a machine classifier. We refer to Ring et al. (2019) for a more 

comprehensive review for NIDS datasets.  

Instead of experimenting on portion of the dataset, we utilized the full version of 

GureKDDCup, UNSW-NB15, and CIDDS-001. In general, there are two dominant 

reasons as to why the full version of these datasets are yet to be thoroughly examined. 

The primary reason is due to the enormous size of the datasets that would require a 

tremendous amount of computation resources that can lead to a very long processing time 

(Masduki & Ramli, 2016). Secondly, the full version of these datasets has not been 

partitioned into training and testing distribution by the original authors (Ring et al. 2019). 

This would imply that the researchers will not be able to fairly evaluate the performance 

of their classifiers alongside with other related work as each of us might have a distinct 

subset of train-test partitioned that tries to maximize the evaluation metrics (e.g., 

classification accuracy, detection rate, etc.). In practical, enormous volume of network 

traffics are generated every second, hence, classifiers adopted should be adequately 

competent to cope with the massive amount of network traffics. To prove the practicality 

of the machine classifiers, the full datasets are employed instead of the portion of the 

datasets. With the emerging trend of deep learning, huge amounts of data are necessary 

to be feed into the learning algorithms to build a high-performance algorithm (Ng, 2015). 

By conducting the experiments on the full version of datasets with machine classifiers, 

we have set forth a baseline performance for comparison purposes in the future. 

  Before evaluating the models, it is necessary to decide upon the type of sampling 

Acc
ep

ted
 M

an
us

cri
pt



procedure to gauge the performance of machine algorithms. In general, a direct train-test 

evaluation scheme can be utilized if the datasets have been separated into a pre-defined 

split of training and testing distributions. However, training and testing sets are often not 

found in the full version of NIDS datasets, as they are simply not pre-distributed by the 

creators of the datasets. In the absence of train-test distribution, tenfold cross-validation 

(Kohavi, 1995) is an alternative approach which can be used to deliver unbiased and fair 

comparisons. While tenfold cross-validation have been recognized as a renowned 

evaluation scheme in multiple domains, such approach has deemed to be unsuitable in 

this domain, whereby the models will yield an over-realistic experimental results (Al Tobi 

& Duncan, 2019) and the possibility of leakage of test data into the training distribution 

(Ring et al., 2019). Thus, a distinct resampling scheme – rolling-origin, that is commonly 

use in the forecasting domain is adopted in this paper to avoid the biasness of cherry 

picking the training and testing distribution. Through some background studies, we 

noticed the lack of empirical experiments and results, specifically on the full version of 

the datasets. Hence, 10 distinct notable machine learning classifiers are utilized in this 

paper to empirically evaluate the aforementioned datasets.  

The main contribution present in this paper are as follows: (i) the usage of rolling-

origin resampling technique to partition the train-test distribution of the three NIDS 

datasets, (ii) the datasets cleaning and pre-processing procedure for the three NIDS 

datasets, and (iii) the utilization of 10 well-known classifiers to set forth a baseline 

empirical result. In Section 2, related experiments conducted on GureKDDCup, UNSW-

NB15, and CIDDS-001 NIDS datasets are reviewed. As this section is meant to examine 

the concerns when adopting the datasets, the proposed technique in each of the literatures 

will not be deliberated extensively. The selection of the 10 machine learning classifiers 

and the rolling-origin evaluation approach is discussed in Section 3. Section 4 provides 
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datasets cleansing procedure and the experimental results for the 10 machine algorithms 

on the three NIDS datasets. Lastly, Section 5 concludes the work. 

2 Background Study 

Most benchmarking papers that has been published aim to deliver a baseline performance 

predominantly for KDDCup'99 and NSL-KDD. Kayacık and Zincir-(Heywood 2005) 

employed K-means clustering and neural network algorithm on KDDCup-99 and two 

private NIDS datasets. In the work performed by Patil and Pattewar (2014), they compare 

the performance of AdaBoost against seven machine classifiers on KDDCup-99 and 

NSL-KDD. Divekar et al. (2018) have selected six classifiers to provide the benchmark 

experimental results on KDDCup'99, NSL-KDD, and UNSW-NB15. In their 

experimental studies, they utilized feature selection technique such as SMOTE 

oversampling (Chawla et al., 2002) and random undersampling on the datasets before 

delivering it to the six classifiers. It should be noted that the authors use the smaller 

version of UNSW-NB15 instead of the full version. Al Tobi and Duncan (2019) employed 

support vector machines, random forest and decision tree with threshold adaption and 

SMOTE feature selection to improve the detection rate on GureKDDCup, STA2018 

(generated from ISCX dataset) (Shiravi et al., 2012) and two other synthetic datasets. 

Although the full version of GureKDDCup is employed, the evaluation strategy and 

sampling technique are slightly different from the work we proposed in this paper. For 

both of the studies (Al Tobi & Duncan, 2019; Divekar et al., 2018), feature selection is 

performed before evaluating the machine classifiers. 

In general, the feature selection step is important to select the salient attributes 

and filter the unneeded, irrelevant and redundant attributes from the dataset to reduce the 

running time of a learning algorithm (Dash & Liu, 1997), improve the prediction 

Acc
ep

ted
 M

an
us

cri
pt



performance (Guyon & Elisseeff, 2003), and simplify the models for easier interpretation 

(Bermingham et al., 2015). In this work, we do perform a simple filtering process where 

all redundant attributes were removed. However, we do not employ any feature selection 

techniques to automatically pick the “appeared to be important” attributes due to several 

reasons. First, we are not the domain expert to judge if the selected attributes do 

consequential in separating benign and malicious traffics. Furthermore, removing 

attributes will be harmful if all candidate attributes are equally relevant.  Secondly, this 

step is omitted to avoid biasness towards certain classifiers so that the performances of 

each classifiers can be fairly judged (i.e., it is interesting to observe how a tree-based 

strategy can retrieve its own subset through the pruning process, etc.). It is also 

intentionally left out to avoid the feature subset selection bias because the performances 

of classifiers are evaluated using rolling-origin resampling method in this work. Thus, 

feature selection techniques are not utilized in this paper although it was employed in the 

previous studies conducted by Al Tobi & Duncan (2019) and Divekar et al. (2018). 

While the work in the previous studies were interesting (Al Tobi & Duncan, 2019; 

Divekar et al., 2018), they do not include any exhaustive review on the full version of the 

GureKDDCup, UNSW-NB15, and CIDDS-001. Hence, detailed of past experiments 

performed on the three NIDS datasets are comprehensively explored. 
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2.1 Recent Dataset 

For decades, KDDCup’99 (Stolfo et al., 2000) and NSL-KDD (Tavallaee et al., 2009) 

have been widely known as the benchmark datasets for the domain of NIDS. Considering 

their availability, many researchers have performed various classification task on the 

datasets (Ahmed et al., 2016). As the datasets were created way back in 1999, several 

literatures have criticized the datasets to be obsolete because it does not represent modern 

attack in the present (Ahmed et al., 2016; Mahoney & Chan, 2003; McHugh, 2000; 

Tavallaee et al., 2009). To resolve the issues raised, several NIDS datasets have been 

published recently. For instance, GureKDDCup (Perona et al., 2016; Perona et al., 2008), 

UNSW-NB15 (Moustafa & Slay, 2015) and CIDDS-001 (Ring et al., 2017) datasets have 

been made publicly available in conducting intrusion detection relevant tasks. Though 

some time have passed since the datasets have been made to be accessible publicly, only 

limited studies and experiments have been carried out on the aforementioned datasets. 

Particularly, the full version of the datasets has yet to be explored extensively due to the 

enormous amount of data, leading it to the computational resource dilemma (Elhag et al., 

2017; Masduki & Ramli, 2016). In this section, discussions are focused predominantly 

on the experiments that have been conducted on GureKDDCup, UNSW-NB15, and 

CIDDS-001 datasets. As the primary intention of this section is to investigate the train-

test data distribution and the approach undertaken to evaluate the models using the 

datasets, the proposed technique and classification accuracy in each of the literatures will 

not be deliberated in detailed since they are not the main concern in this study.   
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2.1.1 GureKDDCup 

In 2008, GureKDDCup (Perona et al., 2016; Perona et al., 2008) dataset was generated 

according to the same process as KDDCup’99 but it additionally includes each pair of IP 

addresses, pair of port numbers, and a few new attacks that are not found in KDDCup’99. 

Apart from the full version GureKDDCup dataset, the creators of GureKDDCup also 

released a smaller version (6 percent) extracted from the entire GureKDDCup dataset.  

While GureKDDCup was published more than 10 years ago, GureKDDCup 

dataset contains a much richer and cleaner features describing each connections in 

comparison towards KDDCup’99 (Stolfo et al., 2000). Additionally, creators of the 

datasets prepared the data in a way that it is suitable to be used for machine classification 

tasks further motivates us to investigate the datasets with various machine classifiers. 

Table 1 summarizes all the experiments performed on the GureKDDCup dataset. 

Referring to the table, it can be observed that most of the researchers employed the 6 

percent GureKDDCup version in their experimental settings except Al Tobi and Duncan 

(2019). Besides, it can also be seen that there are no standard schemes for allocating the 

percentage of train-test data and evaluating the models.  

Al Tobi and Duncan (2019) adopted the prospective sampling method (File-to-

File) in evaluating C5.0, random forest, and SVM. For example, the model is trained on 

File 1 and tested on File 2, 3 and 4; or being trained on File 2 and evaluated on File 1, 3 

and 4. Although their work utilizes the full version of the dataset, the sampling and 

evaluation methods employed are completely different than the methodology proposed in 

this paper. 
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Table 1: Summary of the Experiments Conducted on GureKDDCup 

Author(s) Technique Dataset(s) #Train  #Test  #Class Acc. (%) 
Sahu and 
Jena 
(2014) 

K-means 
Clustering 

6% 
GureKDDCup 160,904 n/a 3 83.9 

Abas et al.  
(2015)  

Feature 
Selection +  

r-chunk 
Artificial Neural 
Network (ANN)  

6% 
GureKDDCup n/a 500 2 n/a 

Sahu and 
Jena 
(2016)  

 Multi-Class 
Support Vector 

Machine 
Classifier 
(MSVM)  

GureKDDCup 160,904 178,810 28 99.146 

Ikram and 
Cherukuri  
(2016) 

PCA + SVM 
with Automated 

Parameter 
Selection  

10% 
GureKDDCup n/a 10 CV 28 DR = 

0.999 

Masduki 
and Ramli 
(2016) 

Feature 
Selection + 

SVM for R2L 
and DoS class 

10% 
GureKDDCup 90% 10% 2 

DR = 

99.9735 

(DoS) 

 

DR = 
99.0297 
(R2L) 

Zhu et al. 
(2017)  

Feature 
Selection with  

I-NGSA-III  

6% 
GureKDDCup n/a 10 CV 5 

DR = 
99.62 ± 
0.17  

Elhag et al. 
(2017) 

Fuzzy 
Association 
Rule Mining 
with Multi-
Objective 

Evolutionary 
Algorithm 

(FARC-HD 
with NGSA-II) 

6% 
GureKDDCup 

10% 
(17,911) 

90% 
(160,862) 5 78.8 

Jabbar et 
al. (2017) 

K-mean + 
ADTree with K-

Nearest 
Neighbour 

(KNN) 

6% 
GureKDDCup n/a 10 CV 2 99.93 

Wang et 
al. (2017)  

 Logarithm 
Marginal 

Density Ratios 
Transformation-
Support Vector 

Machines 
(LMDRT-SVM) 

6% 
GureKDDCup n/a 10 CV 2 99.18 
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Author(s) Technique Dataset(s) #Train  #Test  #Class Acc. (%) 

Sainis et 
al. (2018) 

Feature 
Selection + 

Outlier Removal 
with 

Interquartile 
Range 

6% 
GureKDDCup n/a 10 CV n/a 99.08 

Al-Riyami 
et al. 
(2018) 

Long Short-
Term Memory 

(LSTM) 

6% 
GureKDDCup 80% 20% n/a F1 = 

99.42 

Al Tobi 
and 
Duncan 
(2019) 

Batch Learning 
with Prediction 
threshold (cut-

off)  

Full 
GureKDDCup 

n/a 10 CV 2 G-Acc. = 
0.9998 

n/a File-to-
File 2 G-Acc. = 

0.9998 
DR – Detection Rate;  CV – Cross-Validation;  
G-Acc. – G-mean Accuracy;  F1 – F1-Score 
Not available (n/a) – not mentioned by author(s) 

2.1.2 UNSW-NB15 

Cyber Range Lab of the Australian Center for Cyber Security (ACCS) released 

the UNSW-NB15 dataset in 2015 to complement the lack of modern network traffic 

(Moustafa & Slay, 2015). Based on the original documentation, the full version of the 

dataset encompassed of 2,540,044. Due to the huge amount of instances, the authors also 

prepared a smaller version of the dataset containing predefined split of train-test 

distribution with the redundant records being discarded in both the training and testing 

sets (Moustafa & Slay, 2016). It should be noted that the smaller version does not include 

5 features (scrip, sport, dstip, stime and ltime) that are found in the full version (Al-

Zewairi et al., 2017; Janarthanan & Zargari, 2017). Additionally, Al-Zewairi et al. (2017) 

have verified that the full version of UNSW-NB15 contains three extra instances, leading 

to a total of 2,540,047 instances.  

All of the research experiments conducted on the UNSW-NB15 are tabulated in 

Table 2. Aside from Al-Zewairi et al. (2017) which adopted the full version of the dataset 

to evaluate their model, other literatures employed the smaller version of the dataset that 

have been partitioned by the creators. Similar to the examination in Section 2.1.1 on 

Acc
ep

ted
 M

an
us

cri
pt



GureKDDCup, various train-test distributions and evaluation methods can also be 

observed from Table 2. 

Table 2: Summary of the Experiments Conducted on UNSW-NB15 

Author(s) Technique Dataset(s) #Train  #Test  #Class Acc. (%) 

Guha et al. 
(2016) 

Feature 
Selection with 

Genetic 
Algorithm + 

Artificial Neural 
Network  

Part of 
UNSW-
NB15 

n/a 119,747 9 95.46 

Gharaee 
and 
Hosseinva
nd (2016) 

Feature 
Selection with 

Genetic 
Algorithm + 

Support Vector 
Machine (GF-

SVM) 

UNSW-
NB15 n/a n/a 10 91.22 

(DoS) 

Moustafa 
and Slay 
(2017) 

Feature 
Selection + 
Association 

Rule Mining + 
Logistic 

Regression 

Part of 
UNSW-
NB15 

175,341 82,332 2 83.0 

Timčenko 
and Gajin, 
(2017) 

Bagged Tree UNSW-
NB15 40,000 5 CV 10 DR = 92.6 

(DoS) 

Baig et al. 
(2017) 

Cascade of 
Boosting-based 
Artificial Neural 

Network 
(CANID) 

Part of 
UNSW-
NB15 

82,232 175,341 2 86.4 

Al-
Zewairi, 
Almajali, 
and  
Awajan 
(2017) 

Multilayer 
Feedforward 

Artificial Neural 
Network  

Full 
UNSW-
NB15 

60% 
(Train) 

 
10% 

(Validation) 

30% 2 98.99 

Belouch et 
al. (2017) 

Feature 
Selection + 
REPTree 

Part of 
UNSW-
NB15 

175,341 82,232 2 88.95 

Benmessah
el et al. 
(2017) 

Multiverse 
Optimiser + 

Artificial Neural 
Network 

Part of 
UNSW-
NB15 

175,341 82,232 2 99.61 

Idhammad 
et al. 
(2017) 

Artificial Neural 
Network-based 
DoS Detection 

Method 
(ADDM) 

Part of 
UNSW-
NB15 

(109370 
instances) 

60% 40% 2 97.1 
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Author(s) Technique Dataset(s) #Train  #Test  #Class Acc. (%) 
Primartha 
and Tama 
(2017) 

Random Forest 
with 800 Trees 

Part of 
UNSW-
NB15 

175,341 10 CV 2 95.5 

Janarthana
n and 
Zargari 
(2017) 

Feature 
Selection + 

Random Forest  

Part of 
UNSW-
NB15 

82,332 175,341 10 81.6175 

Zhou et al. 
(2018) 

Deep Feature 
Embedding 
Learning 

(DFEL) + Naïve 
Bayes 

20% of Part 
UNSW-
NB15 

70% 30% 10 92.52 

Idhammad 
et al. 
(2018c) 

Online 
Sequential 

Semi-
Supervised 
Machine 
Learning 

Part of 
UNSW-
NB15  

(277705 
instances)  

60% 40% 2 93.71 

Moustafa 
et al. 
(2018) 
 

Beta Mixture 
Model-

Anomaly-based 
IDS (BMM-

ADS) 

Part of 
UNSW-
NB15 

selected 
50,000 to 
200,000  

82,232 2 93.4 

Anwer et 
al. (2018) 

Feature 
Selection 

Framework with 
Filter and 

Wrapper using 
J48 and Naïve 

Bayes 

Part of 
UNSW-
NB15  

175,341 82,232 2 88.3 

DR – Detection Rate; CV – Cross-Validation; 
Not available (n/a) – not mentioned by author(s) 
Part of UNSW-NB15 – train-test split by original author (Moustafa and Slay 2016) 

2.1.3 CIDDS-001 

CIDDS-001 (Coburg Intrusion Detection Dataset) dataset was created by emulating a 

small business environment encompassed of internal servers with OpenStack 

environment and external servers (Ring et al., 2017). To generate a realistic network 

traffic, user activities and behaviors are simulated with scripts by taking consideration of 

the working hours and styles. Besides, several distinct types of attacks have also been 

initiated and labelled by the authors. In order to capture up-to-date real traffic, the external 

servers are set up on the Internet, thereby, allowing the servers to be accessed publicly.   
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Table 3 compiles most of the recent experiments conducted on the CIDDS-001 

dataset. As the dataset have not been partitioned into training and testing data by the 

authors, most of the studies are performed with different distribution and validation 

methods. Akin to the observations in GureKDDCup and UNSW-NB15 datasets, the 

allocation of train-test data and the validation strategy also vary from literature to 

literature. 

Table 3: Summary of the Experiments Conducted on CIDDS-001 

Author(s) Technique Dataset(s) #Train  #Test  #Class Acc. (%) 

Elmasry et 
al. (2019) 

Particle Swarm 
Optimisation + 

Deep Belief 
Network 

5% of 
CIDDS-001 800,000 800,000 5 94.66 

Tama and 
Rhee 
(2017) 

Deep Neural 
Network  

CIDDS-001 
(146500 

instances) 

146,500 10 CV 2 99.99 

146,500 5 x 2CV 2 99.99 

70% 30% 2 99.99 

Idhammad 
et al. 
(2018b)  

Naïve Bayes 
Anomaly 

Detection + 
Random Forest 

in Cloud 
Environment 

OpenStack 

CIDDS-001  

(Week 1) 

(8451520 
Instances) 

60% 40% 4 97 

Althubiti 
et al. 
(2018) 

LSTM with 
rmsprop 
optimizer  

External 
Server 

CIDDS-001 

67% 

(449,731) 

33% 

(221,510) 
5 84.83 

Idhammad 
et al. 
(2018a) 

Statistical 
Network 
Entropy 
Anomaly 

Detection + 
Random Forest 
Classification 

for DDoS 
Attacks 

CIDDS-001 

(1st Day of 

Week 1) 

(1501857 
Instances) 

60% 40% 2 99.54%  

Acc
ep

ted
 M

an
us

cri
pt



Author(s) Technique Dataset(s) #Train  #Test  #Class Acc. (%) 

Verma and 
Ranga 
(2018b) 

K-nearest 
Neighbour  

OpenStack 
CIDDS-001 

 (Week 1)  
(172839 

Instances) 

66% 34% 3 100 

External 

Server 

CIDDS-001 

(Week 3)  
(153026 

Instances) 

66% 34% 5 99.6 

Ring et al. 
(2018) 

Unsupervised 
and Supervised 

Learning for 
Port Scanning  

OpenStack 
CIDDS-001 Week 1 Week 2 2 n/a 

Verma and 
Ranga 
(2018a) 

Random Forest  

OpenStack 
CIDDS-001 172,839 Train 

Data 3 
 

100 

External 
Server 

CIDDS-001 
153,026 Train 

Data 5 99.9 

Nicholas et 
al. (2018) LSTM OpenStack 

CIDDS-001 

Week 1 

(8,415,1520) 

Week 2 

(10,310,733) 

2 DR = 
99.7896 

Chen and 
Tsai 
(2018) 

Search 
Economics with 

k-means 
clustering and 
support vector 

machine 
(SEKS) 

CIDDS-001 7,999 17,669 5 93.28 

DR – Detection Rate; CV – Cross-Validation; 
Not available (n/a) – not mentioned by author(s) 
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2.2 NIDS Dataset Information 

To further substantiate the observation in Section 2.1, the total number of instances 

contained in each of the aforementioned NIDS datasets are summarized in Table 4. From 

the table, it can be clearly seen that most of the datasets do not include a predefined split 

of training and testing data except 10% KDDCup’99, NSL-KDD, and part of UNSW-

NB15. It should be noted that the filename for ‘part of UNSW-NB15’ dataset have been 

named incorrectly, whereby the train file and test file is named inversely. 

 

Table 4: Summary of Datasets Information  

Dataset(s) Filename Total 
Instances #Train #Test 

KDDCup’99 KDDCup99_full.arff 4,898,430   

10% KDDCup’99 

KDDCup99.arff [Train] 

KDDCUp_corrected_testing 

data  

(filename: corrected [Test]) 

805,049 494,020 311,029 

NSL-KDD 

KDDTrain+.csv [Train] 

KDDTest+.csv [Test] 
148,516 125,973 22,543 

6% GureKDDCup gureKddcup6percent.arff 178,810   

Full GureKDDCup 
Multiple File of  

gureKddcup-matched.list 
2,759,494   

Part of UNSW-NB15 

(Train-test file  
named inversely) 

UNSW_NB15_testing-set.csv 

[Train] 

UNSW_NB15_training-set.csv  

[Test] 

257,573 175,341 82,232 

Full UNSW-NB15 All UNSW-NB15 2,540,047   
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Dataset(s) Filename Total 
Instances #Train #Test 

UNSW-NB15_1.csv 700,001   

UNSW-NB15_2.csv 700,001   

UNSW-NB15_3.csv 700,001   

UNSW-NB15_4.csv 440,044   

OpenStack CIDDS-001 

All OpenStack CIDDS-001 31,287,933   

CIDDS-001-internal-

week1.csv 
8,451,520   

CIDDS-001-internal-

week2.csv 
10,310,733   

CIDDS-001-internal-

week3.csv 
6,349,783   

CIDDS-001-internal-

week4.csv 
6,175,897   

External Server CIDDS-
001 

All External Server  

CIDDS-001 
23,009,251   

CIDDS-001-external-

week1.csv 
172,838   

CIDDS-001-external-

week2.csv 
10,310,733   

CIDDS-001-external-

week3.csv 
6,349,783   

CIDDS-001-external-

week4.csv 
6,175,897   
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2.3 Discussions on the NIDS Datasets 

As accentuated by Bamakan (2017), direct comparison of experimental results are not 

practical in most cases because it is an exhaustive task whereby consideration should be 

given on the pre-processing steps, experimental settings, sampling methods, evaluation 

metrics and etc. It is not even reasonable to directly compare the empirical results when 

the training and testing distribution is entirely different. As shown in Table 1 – Table 3, 

most of the experiments adopted a distinct set of distribution for building and evaluating 

the models. Additionally, the number of instances engage in some of the experiments are 

relatively small when compared against the total instances, as deliberated in Table 4. 

Masduki and Ramli (2016) pointed out that it is computationally expensive to 

evaluate the models on the full version of NIDS datasets as it required very long 

processing time due to the massive number of instances found in each of the datasets. 

Besides, Elhag et al. (2017) mentioned that the scalability of current models might not be 

able to handle such enormous amount of data. Due to these reasons, limited studies have 

been performed using the full version of GureKDDCup, UNSW-NB15 and CIDDS-001. 

Hence, the full version of these datasets will be extensively experimented in this paper to 

complement the lack of experimental results.  

While tenfold cross-validation (Kohavi, 1995) have been proven as one of the 

prominent evaluation techniques to provide fair results for comparison purposes, Ring et 

al. (2019) described that such approach might not be feasible in the case of intrusion 

detection. They justified that tenfold cross-validation is not suitable to be adopted in the 

domain of NIDS because there is a possibility that some of the testing data (e.g., flow of 

port scan) might be found in the training data during the splitting process of cross-

validation. By using CIDDS-002 dataset as an example, they recommended to build the 

model by employing week one data while the data from week two is utilized in evaluating 
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the model (and vice versa). On the other hand, the work by Al Tobi and Duncan (2019) 

revealed that the over-optimistic empirical results obtained from using cross-validation 

would not represent the genuine performance of the detection models in realistic 

scenarios. Thus, a distinct approach is utilized in this paper and the approach will be 

described thoroughly in Section 3.    
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3 Methodology  

3.1 Rolling-origin Evaluation  

By considering the latent interactivities and relationships between the network traffic, an 

amass of data instances are considered to be sequential, and they often exhibit some form 

of temporal properties (Bergmeir & Benítez, 2012). On this account, the standard and 

favored tenfold cross-validation (Kohavi, 1995) would not appropriate to be adopted in 

such setting, as it would undermines the temporal dependencies of the instances. In a 

typical forecasting task, training data should not contain future observations preceding 

the time step of the testing instances. Likewise, any observation prior to the timelines of 

the training set should not be included in the respective testing set (Hyndsight, 2016). 

Considering the domain of NIDS, the unsuitability of tenfold cross-validation is further 

substantiated by several literatures in Section 2.3. 

As shown in Table 4, the train-test distribution of the selected datasets has not 

been predefined by the author(s). Thus, rolling-origin (Tashman, 2000) is employed in 

this paper, which is commonly adopted in forecasting tasks as an alternate cross-

validation technique (Bergmeir & Benítez, 2012). Instead of adopting the standard 

practice to use a single distribution (e.g., a day) as the test set, all remaining data not 

utilized in training the model are employed. This seems to be a better approach as the 

majority of the forecasting tasks (e.g., stock market prediction) focuses on anticipating 

certain outcome (e.g., stock value) on a particular day, week or month in the future, as 

depicted in Figure 1. However, in the case of network intrusion detection, the data 

instances are not constrained to only a single point in time, but are unfolded indefinitely. 

Hence, the original rolling-origin evaluation is improvised as such: At any given fold, 

data instances (in the later time steps) that are yet to be used in training the model, are all 

adopted as the testing instances for the particular fold as shown in Figure 2. By using the 
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improvised rolling-origin approach, both the training and testing data are distributed 

accordingly to the number of weeks available in the datasets (as shown in Table 7, Table 

10 and Table 13). It is also worth mentioning that, for each of the train-test distributions, 

the machine model is required to be recalibrated and rebuilt in order to deliver the 

empirical results. 

 

TIME

Training Set Testing Set Unused Set

Figure 1: 1-step-ahead Rolling-origin Evaluation (Redrawn from (Hyndsight, 2016))  

TIME

Training Set Testing Set
 

Figure 2: Improvised Rolling-origin Evaluation  
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3.2 Selected Classifiers for Evaluation 

Weka stable version 3.8 is used throughout the experiments. ZeroR, Random Tree, 

REPtree, Decision Stump (Iba & Langley, 1992), Adaboost (Freund & Schapire, 1996), 

Bayesnet (Pearl, 1985), Naïve Bayes (John & Langley, 1995), Random Forest (Breiman, 

2001), SMO (better known as Supper Vector Machine) (Vapnik & Lerner, 1963) and J48 

(better known as C4.8) (Quinlan, 1993) are used to evaluate the performances of each 

dataset. These 10 classifiers are selected because they are composed of varying types of 

machine learning techniques, which includes: (i) classifiers for measuring the lowest 

acceptable performance, e.g.: ZeroR, (ii) base learner (weak learner) which are used as 

building blocks for ensemble techniques, e.g.: Random Tree and Decision Stump, (iii) 

ensemble classifiers, e.g.: Adaboost (boosting) and Random Forest (bagging), (iv) 

probabilistic model, e.g.: Naïve Bayes and Bayesnet, and (v) non-probabilistic model, 

e.g.: SMO. Additionally, C4.5 decision tree (J48), support vector machine (SMO), 

Adaboost, and Naïve Bayes are recognized to be few of the most notable and influential 

data mining algorithms (Wu et al., 2008).  

4 Experiments 

4.1 Experimental Setup 

In this section, experiments with different machine classifiers are conducted on the 

computing platform with an eight-core 3.64 GHz AMD Ryzen 7 1700 CPU and 64 GB 

RAM running on Windows 10. To avoid the biasness resulted from the cherry-picked 

training and testing data distribution elaborated in Section 2.3, the experimental 

evaluation is performed based on the distribution as described in Section 3.1. The 10 

mentioned classifiers from Weka stable version 3.8 mentioned in Section 3.2 are adopted 

to deliver the empirical results. Attributes and class labels are intentionally not (minimal) 

Acc
ep

ted
 M

an
us

cri
pt



modified in this paper in order to conduct a fair comparison between classifiers. 

4.2 Datasets Selection 

Details and surveys for most of the NIDS datasets were greatly disclosed in (Bhuyan et 

al., 2014; Mishra et al., 2018; Nicholas et al., 2018). To obtain the empirical results, 

several experiments have been performed on three publicly available NIDS datasets: 

GureKDDCup (Perona et al., 2016; Perona et al., 2008), UNSW-NB15 (Moustafa & Slay, 

2015), and CIDDS-001 (Ring et al., 2017). The three aforementioned datasets are 

preferred over the benchmark NIDS datasets as the datasets contain a more recent 

network traffic and attacks which could better represent the current state of network 

traffics. The datasets adopted in this paper are summarized in Table 5. It should be noted 

that GureKDDCup was initially generated and made known to the public in 2008, while 

the full documentation for the procedure to generate the dataset was released in 2016.  

Table 5: Summary of Experimental Datasets 

Datasets #Used Instances 
Original Attributes 

(include Class) 
#Used Classes Year Released 

Full GureKDDCup 2,759,494 48 36 2008 (2016) 
Full  
UNSW-NB15 

2,540,047 49 (raw) 
48 (processed) 

10 2015 

CIDDS-001 18,762,253  
12 (raw) 
16 (processed) 5 2017 

4.3 Datasets Pre-processing 

To fairly evaluate the performance of each machine learner, no (minimal) data cleansing 

and pre-processing are performed against the datasets employed in order to conform to 

the different requirements of varying classifiers. Each of the description and pre-

processing steps for the datasets are thoroughly explained in Sections 4.3.1, 4.3.2, and 

4.3.3.  
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4.3.1 GureKDDCup 

GureKDDCup (Perona et al., 2016; Perona et al., 2008) was released in 2008 to 

complement the drawback of the KDDCup’99 (Stolfo et al., 2000) NIDS datasets. As 

KDDCup’99 is more than decades old, researchers have deemed the datasets to be 

obsolete in reflecting the present network traffics (Ahmed et al., 2016; Catania & Garino, 

2012). GureKDDCup was generated by utilizing the similar data collecting approach as 

of KDDCup’99. The dataset contains the network traffic data collected over a period of 

seven weeks, from Monday to Friday (five days per week). Additionally, the creators of 

GureKDDCup have included several new attacks that are absent in KDDCup’99. Full 

version of GureKDDCup dataset are compressed into a 9.3GB file 

(gureKddcup.tar.gz). The file size is tremendously huge due to the added payloads of 

each of the network traffic. However, only the daily logs found in their respective 

gureKddcup-matched.list are used for the experiment conducted. Each of the daily 

logs are concatenated and merged into a single file containing a week of network traffic. 

Table 6 shows the total number of instances available in each week while Table 7 presents 

the distribution of training and testing data in accordance to the number of weeks. No 

data cleansing and attribute reduction are necessary to be performed against 

GureKDDCup dataset. 

Table 6: Number of Instances for GureKDDCup in Each Week 

Week #Instances 

1 177,910 

2 188,790 

3 288,369 

4 113,946 

5 604,303 

6 951,361 

7 434,815 

total 2,759,494 
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Table 7: Train-Test Data Distribution for GureKDDCup 

Training Group Testing Group 

1 2~7 

1~2 3~7 

1~3 4~7 

1~4 5~7 

1~5 6~7 

1~6 7 

4.3.2 UNSW-NB15 

Moustafa and Slay (2015) released the UNSW-NB15 dataset in 2015 to complement for 

the lack of low footprint attacks in KDDCup’99 (Stolfo et al., 2000). Although the 

original documentation stated a total number of 2,540,044 instances, an additional 

instance has been verified and found in all three of the data set files, leading to a total of 

2,540,047 instances (Al-Zewairi et al., 2017). As shown in Table 8, some data cleansing 

is unavoidable, it is necessary to be conducted against the dataset before building the 

machine classifier. In the raw UNSW-NB15 dataset, some of the values for the state and 

service attributes are denoted as ‘-’. It can be assumed that these values are referring to 

the missing values since the data owner fails to provide them. As Weka processed missing 

values as ‘?’ instead of ‘-’, all the raw data containing ‘-’ values are changed to ‘?’. The 

label attribute consisting of binary class {normal, attack} is also discarded, and the 

attack_cat containing 10 different classes is subsequently employed as the class label. 

Table 9 tabulates the number of instances containing in each file while Table 10 provides 

the distribution of train-test data. 
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Table 8: Data Pre-processing for UNSW-NB15 

Attribute Name  Original Attribute Modified Attribute Value  

state - ? 

service - ? 

attack_cat 
NaN Normal 

Backdoors Backdoor 

label  (ALL) Drop 

sport / dport 

- 
0xc0a8 

? 
49320 

0x000b 11 

0x000c 12 

0x20205321 ? 

0xcc09 52233 

 

Table 9: Number of Instances for UNSW-NB15 in Each File 

File #Instances 

1 700,001 

2 700,001 

3 700,001 

4 440,044 

Total 2,540,047 

 

Table 10: Train-Test Data Distribution for UNSW-NB15 

Training Group Testing Group 

1 2~4 

1~2 3~4 

1~3 4 

4.3.3 CIDDS-001 

CIDDS-001 (Ring et al., 2017) dataset is publicly available since 2017. The dataset 

contains a total of 32 million flows, whereby 31 million from the emulated internal 

environment (OpenStack); and 0.7 million from the external traffic consisting of real 

traffics from the internet. External traffics have been excluded from the experiment 
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conducted in this paper due to its reduced precision in ground truth, and absence of certain 

simulated attacks. The full CIDDS-001 OpenStack internal traffics is employed in the 

experimental procedure. Table 11 shows some of the data cleansing process necessary to 

be performed on the dataset. The entire Flows attribute was removed from the dataset as 

it contains only a single constant value for all instances (Nicholas et al. 2018). In the case 

of Flags, it has been categorized into five distinct Flag in accordance to their value. Three 

of the decimal values in destination port (dst_pt) are converted to ‘0’ as they represent 

the ICMP error messages instead of the port. The IP addresses are modified in such a way 

that it won’t collides with other IP addresses and matches the dot delimiters of IP 

addresses. The total number of instances for each week are tabulated in Table 12, while 

the training and testing data distributions are presented as shown in Table 13. Since the 

instances in Week 3 and 4 only encompassed of normal traffics, it is reasonable to exclude 

them from the experiments. Besides, as timestamp attribute (date_first_seen) is not 

supported by Bayesnet, Naïve Bayes, and SMO models, it is removed before building the 

aforementioned classifiers. 

Table 11: Data Pre-processing for OpenStack CIDDS-001 

Attribute Name  Original Attribute Value Modified Attribute Value  

Bytes (M) Multiply (Bytes) with 100000 

Flows (ALL) DROP 

Attacktype --- normal 

dst_pt 3.1, 3.2, 3.4 0 

Flags APRSF 

Flag_A 

Flag_P 

Flag_R 

Flag_S 

Flag_F 

IP Address 
(Src IP Addr /  
Dst IP Addr) 

DNS  1000.1000.1000.1000 

EXT_SERVER 2000.2000.2000.2000 

(Anonymised IP) 3000.3000.3000.3000 
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Table 12: Number of Instances for OpenStack CIDDS-001 in Each Week 

Week #Instances 

1 8,451,520 

2 10,310,733 

3 6,349,783 

4 6,175,897 

total 31,287,933 

 

Table 13: Train-Test Data Distribution for OpenStack CIDDS-001 

Training Group Testing Group 

1 2 

4.3.4 Discussions on Datasets Class Distribution  

As mentioned in Section 4.1, experiments performed in this paper attempts to retain the 

features and class labels as close as possible to the original datasets to provide a baseline 

empirical results for future comparison. However, we would like to highlight the concern 

of imbalance classes in each of the datasets selected and provide some recommendation 

to be considered for future experiment settings. For instance, the class distributions for 

each dataset are summarized in Table 14 (GureKDDCup, Table 15 (UNSW-NB15), and 

Table 16 (CIDDS-001). 

GureKDDCup that imitates the generation process of KDDCup'99 attempts to 

preserve as much class labels that are available in KDDCup'99. Referring to Table 15, a 

total of 36 classes are found and it can be observed that several classes contain only a 

small proportion compared to the number of instances in the entire dataset. To improve 

the performance of the models, the class labels can be commonly redistributed into two 

classes – benign and anomaly (Kanakarajan & Muniasamy, 2016; Nicholas et al., 2018), 

or five classes – benign, DoS, user to root (U2L), remote to local (R2L), and Probes 

(Bouzida & Cuppens, 2006; Nicholas et al., 2018).  
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On the other hand, UNSW-NB15 contains 10 classes while CIDDS-001 contains 

only 5 classes. Similarly, the class label in UNSW-NB15 and CIDDS-001 can also be 

reclassified according to the suggestion made for GureKDDCup. Alternatively, the 

classification models can also be designed to only detect a specific attack by training the 

models using only the specific attack sample. To avoid the datasets to immensely skewed 

towards the normal class, all normal class samples can be excluded for all three of the 

datasets in the future.  

To reiterate, we would like to emphasize that the primary objective of the 

empirical results presented in this paper are to be used as a baseline results in the future 

to evaluate the performance for any modification or enhancement in terms of features 

selection, model enhancement, class redistribution etc. For instance, if the classification 

results of the models after any feature selection or classes redistribution achieve a superior 

performance than the empirical results presented in this paper, this would imply that the 

procedures adopted are able to improve the model. Contrarily, the enhanced models 

would denote an insignificant improvement in the scenario whereby the model's 

classification performance is poorer than the baseline results exhibited in this paper. 

Hence, we aim to minimize the modification performed on the datasets to preserve the 

originality.  
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Table 14: Class Distribution for GureKDDCup in Each Week 

 Week  

Attack Type 
1 2 3 4 5 6 7 Total 

normal 15 985 203,815 800 449,092 257,406 217,743 1,129,856 

anomaly 0 0 1 2 4 2 0 9 

back 1 3 198 1798 0 100 148 2,248 

dict 0 1 8 41 0 829 0 879 

dict_simple 0 0 0 0 1 0 0 1 

eject 0 1 0 7 0 2 1 11 

eject-fail 0 0 0 0 1 0 0 1 

ffb 0 0 1 6 0 2 1 10 

ffb_clear 0 0 0 0 0 1 0 1 

format 0 0 1 0 2 3 0 6 

format_clear 0 0 0 1 0 0 0 1 

format-fail 0 0 0 0 0 1 0 1 

ftp-write 0 0 1 1 2 4 0 8 

guest 0 1 7 17 4 21 0 50 

imap 0 0 1 1 1 4 0 7 

ipsweep 1 49 1,950 510 7,633 4,851 766 15,760 

land 0 1 7 11 0 10 6 35 

load_clear 0 0 0 0 1 0 0 1 

loadmodule 0 0 1 1 2 3 1 8 

multihop 0 0 1 1 4 3 0 9 

neptune 177,889 186,706 72,676 98,627 128,516 656,629 205,600 1,526,643 

nmap 1 0 49 1,945 0 0 0 1,995 

perl_clear 0 0 0 0 0 1 0 1 

perlmagic 0 0 0 1 0 2 1 4 

phf 0 0 1 0 1 3 0 5 

pod 0 0 0 1 0 2 2 5 

portsweep 1 14 1,980 361 2,480 2,760 2,377 9,973 

rootkit 0 1 6 2 1 17 2 29 

satan 1 101 1,986 5,491 6,538 10,406 6,888 31,411 

smurf 1 924 5,632 2,509 9,434 17,988 1,178 37,666 

spy 0 0 0 1 0 1 0 2 

syslog 0 0 0 1 0 2 1 4 

teardrop 0 1 18 82 586 298 100 1,085 

warez 0 0 0 1 0 0 0 1 

warezclient 0 1 29 1,719 0 0 0 1,749 

warezmaster 0 1 0 8 0 10 0 19 

Total 177,910 188,790 288,369 113,946 604,303 951,361 434,815 2,759,494 
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Table 15: Class Distribution for UNSW-NB15 in Each File 

 File  

Attack Type 
1 2 3 4 Total 

normal  677,786   647,252   542,576   351,150   2,218,764  

analysis  526   608   873   670   2,677  

backdoor  534   370   759   666   2,329  

dos  1,167   4,637   5,642   4,907   16,353  

exploits  5,409   11,103   16,574   11,439   44,525  

fuzzers  5,051   4,668   9,137   5,390   24,246  

generic  7,522   27,883   118,198   61,878   215,481  

reconnaissance  1,759   3,116   5,582   3,530   13,987  

shellcode  223   324   593   371   1,511  

worms  24   40   67   43   174  

Total  700,001   700,001   700,001   440,044   2,540,047  

 

Table 16: Class Distribution for CIDDS-001 in Each File  

 Week  

Attack Type 
1 2 3 4 Total 

normal  7,010,897   8,515,329  6,349,783 
(not used) 

6,175,897 
(not used)  

 28,051,906  

dos  1,252,127   1,706,900  - -  2,959,027  

portscan  183,511   82,407  - -  265,918  

pingscan  3,359   2,731  - -  6,090  

bruteforce  1,626   3,366  - -  4,992  

Total  8,451,520   10,310,733  6,349,783 6,175,897  31,287,933  

 

4.4 Evaluation Metrics 

Empirical results are reported based on the classification accuracy, which is a standard 

performance evaluation metric used in the data mining community. As the NIDS classes 

are often imbalanced and are skewed towards the normal class, classification accuracy 

metric might not be sufficient to measure the effectiveness of a machine model 

(Tavallaee, 2011). Thus, detection rate and false positive rate are also included in the 
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scope of experimental discussion to complement the drawback of classification accuracy. 

Additionally, both of the metrics are deemed as one of the most commonly used metrics 

in this domain to evaluate the performance of a NIDS model based on the survey 

conducted by Tavallaee (2011). The conventional confusion matrix of performance 

measurement is shown in Figure 3.  

Classification accuracy, which is also known as the percentage of successful 

prediction are commonly adopted for gauging the overall performance of a classifiers. It 

can be formed from the confusion matrix as shown in Figure 3 as follows: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑃𝑃 + 𝑁𝑁  (1) 
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Figure 3: Performance Measurement Confusion Matrix 

 

Detection rate is the proportion of positive case (an intrusion or attack) correctly 

identified as an attack. In some literatures, detection rate can also be referred as true 

positive rate, recall, or sensitivity. The detection rate formula is expressed in Equation 2 

as follows: 
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 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 (2) 

 

False positive rate measures the proportion of negative case (a benign or normal 

traffic) incorrectly identified as an attack. The term false alarm rate or false acceptance 

rate can also be denoted to signify equivalent meaning as false positive rate. Equation 3 

presents the formulation of false positive rate:  

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐹𝐹𝐹𝐹 

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 (3) 

 

4.5 Experimental Results 

4.5.1 Classification Accuracy, Detection Rate, False Positive Rate 

Empirical results obtained by the 10 machine models on the NIDS datasets are tabulated 

in Supplementary Table 1 (classification accuracy), Supplementary Table 2 (detection 

rate), and Supplementary Table 3 (false positive rate). As shown in Supplementary Table 

1 – Supplementary Table 3, the performance of a model varies when a distinct set of train-

test is supplied to the classifiers.  

In terms of classification accuracy, the best results for GureKDDCup obtained are 

as follows: 88.5261% – Naïve Bayes [Train:1; Test:2~7], 87.1651% – Random Tree 

[Train:1~2; Test:3~7], 87.2992% – SMO [Train:1~3; Test:4~7], and 88.1692% / 

88.8412% / 99.9526% – J48 [Train: 1~4 / 1~5 / 1~6; Test: 5~7 / 6~7 / 7]. Among the 10 

classifiers, Random Tree score the best average accuracy of 80.1090% in GureKDDCup. 

On the other hand, J48 models outperform the other classifiers in UNSW-NB15 while 
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Adaboost in CIDDS-001 datasets. To be specific, the J48 algorithm achieve an average 

accuracy of 96.6325% in UNSW-NB15 while Adaboost attained 96.8684% in CIDDS-

001.  

Detection rate obtained by the 10 classifiers are obviously very encouraging, as 

most of them managed to attain a relatively decent performance. However, by observing 

the detection rates attained in Supplementary Table 2, we noticed that the empirical values 

delivered by each of the classifiers are similar to the classification accuracies in 

Supplementary Table 1. After analyzing the number of normal instances in each of the 

datasets, we discovered that the distributions are greatly skewed towards the normal class 

across the three datasets, as shown in Table 17. Although there is only 40.9443% of 

normal instances in GureKDDCup, the number of classes are particularly large when 

comparing against UNSW-NB15 and CIDDS-001. As most of the NIDS datasets attempt 

to mirror the scenarios in real world application, they often include unseen attacks 

(classes) in the test set. Hence, this causes some of the attacks to be undetected by the 

models and subsequently leading to an unknown detection rate.  

Table 17: Number of Normal Instances in Entire GureKDDCup, UNSW-NB15, and 

CIDDS-001 

Datasets 
#Number of 

Normal 
Instances 

#Number of 
Total Instances 

Ratio (%) of 
Normal : Total 

Instances 
#Used Classes 

GureKDDCup 1,129,856 2,759,494 40.9443 36 

UNSW-NB15 2,218,764 2,540,047 87.3513 10 

CIDDS-001 15,526,226 18,762,253 82.7523 5 

 

False positive rate empirical results are presented in Supplementary Table 3. In 

many cases, a high detection rate might indirectly result in a high false positive rate. 

However, Bayesnet is able to achieve a low false positive rate in GureKDDCup and 

UNSW-NB15 datasets while maintaining satisfactory detection rate (Supplementary 
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Table 2). In particular, an average detection rate of 98.3662% with 0.0271% false positive 

rate in GureKDDCup [Train:1~6; Test: 7] and 94.3472% of detection rate with 0.0994 

false positive rate in UNSW-NB15 [Train: 1~3; Test: 4]. Conversely, all of the models 

provide a high false positive rate in CIDDS-001 except Adaboost that is capable to 

achieve a false positive rate of 4.5325% along with an eminent detection rate of 

96.8684%.  

Supplementary Table 4 summarizes the effectiveness of the machine classifiers 

on the three NIDS datasets. It can be observed that there is no universal classifier that 

excels across all problem domains, in which the highest accuracy is achieved by Bayesnet 

in GureKDDCup, J48 in UNSW-NB15, and Adaboost in CIDDS-001. Although Naïve 

Bayes (1.0413%) attain a lower false positive rate in comparison towards J48 (2.6059%), 

Naïve Bayes (79.5543%) detection rate is widely inferior when comparing against J48 

(96.6325%) in UNSW-NB15.  

From Supplementary Table 1 – Supplementary Table 3, it is worth to note that the 

classification accuracy for SMO is denoted as ‘n/a’ (not available) when using 

GureKDDCup week 1~6 as training data and week 7 as testing data. This is due to the 

failed attempt of building the classification model even after running for 604,800 seconds 

(~7 days) as tabulated in Supplementary Table 5. For comparison purposes in the future, 

the unknown accuracy, detection rate, false positive rate, and evaluation time for the 

aforementioned SMO model can follows the preceding results (GureKDDCup week 1~5 

training data against week 6~7 testing data). 
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4.5.2 Build Time and Evaluation Time 

Apart from the classification accuracy, computation time is also one of the vital aspects 

when considering the application in a real-world scenario. Computation time to build the 

models is tabulated in Supplementary Table 5 while the time taken to evaluate each of 

the models is summarized in Supplementary Table 6. By analyzing the results, we can 

observe that the computation time is acceptable for most of the classifiers except REPtree, 

Random Forest and SMO in some cases. To be specific, the time taken required to build 

the classifiers exceeds 86,400 seconds (1 day) when it is train with week 1~6 of 

GureKDDCup. For instance, REPtree took 87,704.84 seconds, Random Forest required 

97,996.45 second, and SMO needed more than 604,800 seconds (~7 days) to completely 

build the models. Besides, we also noticed a fluctuation in terms of memory resources 

(RAM), whereby some of the classifiers consumed the entire 64GB RAM during the 

experimental procedure.  

The huge consumption of computation time is speculated to be precipitated by the 

massive amount of discrete (nominal) IP feature, as shown in Table 18. It is worth to point 

out that most classifiers might treat each the features (e.g., source IP and destination IP) 

as a separate feature or entity during the building and classification process. Thus, the 

collision of similar IP address in both source and destination is also calculated in the 

number of unique source and number of destination IP. For example, if the source IP of 

“192.168.1.1” is also seen in the destination IP features, both the number of unique source 

and destination IP are increased by one. However, the assumption made on the effects of 

the high dimensionality IP features in affecting the computation time required further 

investigation and justification to corroborate the claim. In addition, this scenario may also 

possibly cause by the algorithm behind the machine classifiers. Hence, examination can 

also be carried out directly on each of the classifiers to investigate the reasons for the 
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classifiers to exhaust tremendous resources. As the primary objective of this paper is to 

deliver a baseline empirical results, in-depth discussions for each of the classifiers will 

not be deliberated. 

Table 18: Number of Unique IP Address in Entire GureKDDCup, UNSW-NB15, and 

CIDDS-001 

Datasets #Number of Unique 
Source IP  

#Number of Unique 
Destination IP 

#Total Number of 
Unique IP Address 

GureKDDCup 8,483 21,018 29,501 

UNSW-NB15 43 47 90 

CIDDS-001 38 790 828 

 

4.5.3 Experimental Results of Cross-Validation  

To substantiate the claim made in Section 2.3 regarding the inappropriateness of adopting 

cross-validation in the domain of NIDS, we have also performed the experiments 

employing the identical experimental setup, datasets, and evaluation metrics. 

Supplementary Table 7 presents the classification accuracy, detection rate, and false 

positive rate while Supplementary Table 8 tabulates the time taken evaluate the machine 

classifiers.  

 As accentuate by Al Tobi and Duncan (2019), cross-validation will yield an over-

optimistic performance results. This claim is further corroborated by the experimental 

results shown in Supplementary Table 7. It can be observed that most of the classifiers 

achieve a remarkable boost in terms of performance. For instance, the classification 

accuracy attains by J48 decision tree achieved approximately 99% on all the three datasets 

when cross-validation is utilized. These over-optimistic empirical results might not be 

able to reflect the genuine performance of the classifiers.  

 Referring to Supplementary Table 8, we noticed the time taken required to 

evaluate the models is longer as compared to Supplementary Table 5 and Supplementary 
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Table 6. This observation is common as it is necessary to repeat the training and testing 

procedure for 10 times when 10 cross-validation sampling method is adopted.  

Theoretically, the time taken for building and evaluating the models are multiplied by 10. 

Akin to the observation in Section 4.5.2, a vast amount of computation time is required 

to evaluate the classifiers. It is also worth to mentioned there are more machine classifiers 

that are denoted with 'n/a' in Supplementary Table 7 and Supplementary Table 8 as it 

required an extensive span of time to complete the experiment. To be specific, random 

tree, REPtree, random forest, and SMO fails to be evaluated in GureKDDCup, while 

random forest and SMO fails to be evaluated in CIDDS-001. Although SMO have been 

successfully evaluated in UNSW-NB15, the time taken is considerable huge and it is not 

impractical in a real-world scenario. For instance, 2,159,708 seconds is needed to 

complete the 10 cycles of training and testing process. Similar to the observation in 

Section 4.5.2, we surmise that the vast amount of computation time might be also caused 

by the immense number of IP address features.   

 

4.5.4 Performance Compatibility with 5 Benchmark Feature Selection 

Techniques in UNSW-NB15  

Though the main contribution of this paper is to provide a benchmark study of different 

classifiers, but it is also important to observe their compatibility with other feature 

selection techniques. A wise use of feature selection technique can definitely bring many 

benefits, i.e., removing the agitated noises and improving the classifiers' performance 

(Guyon & Elisseeff, 2003).  

Thus, in this section, we would like to perform the same set of testing but with the 

additional usage of feature selection techniques, including Association Rule Mining 

(Moustafa & Slay, 2017), Information Gain (Janarthanan & Zargari, 2017), Principal 
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Component Analysis (Moustafa et al., 2018), Gain Ratio Filter (Anwer et al., 2018), and 

XGBoost (Kasongo & Sun, 2020) in UNSW-NB15 dataset. To provide a fair comparison 

among the feature selection techniques, we adopted the best-selected features in each of 

the studies and recomputes the results based on the identical experimental settings as 

described in section 4.1 and section 4.3.2. 

UNSW-NB15 is selected to be rigorously experimented in this section because it 

contains the largest number of attributes (i.e., 49 features) among the three datasets. As 

the same experimental settings should be employed to fairly compares the classification 

performance, we utilized the attack_cat along with its 10 distinct classes as described in 

Section 4.3.2 to conduct the experiment. The best-selected features in each of the works 

are tabulated in Table 19. It should be noted that only 17 attributes in Anwer, Farouk and 

Abdel-Hamid (2018) and 18 attributes in Kasongo and Sun (2020) work are utilized 

because the attribute of “rate” is not available in the full version of UNSW-NB15.  

Classification accuracy for each of the distinct selected features is tabulated in 

Supplementary Table 9. To demonstrate the usability of the baseline results delivered in 

Section 4.5.1, a scatter plot based on the baseline accuracy and 5 feature selection 

approach for each of the machine classifiers is presented in Supplementary Figure 1. In 

most cases, it can be seen that ZeroR, Decision Stump and Adaboost is less likely to be 

affected by the features selected. Generally, the performance of Random Tree, REPtree, 

Bayesnet, Naïve Bayes, Random Forest, SMO and J48 combining with feature selection 

techniques surpassed the baseline results. In specific, it can be observed that the 

performance of the mentioned 7 classifiers has been improved when adopting the 18 

features selected by XGBoost. However, we also noticed a significant degradation in 

terms of performance when using the 8 features chosen by Principal Component Analysis 

for the 7 classifiers.  
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Based on the empirical results, a suitable feature selection technique can 

undeniably boost the performance of the classifiers by eliminating noises. On the 

contrary, unsuitable feature selection techniques can also be dangerous as it may discard 

valuable attributes which can be employed to build a better classifier.     

Table 19: Features Selected for the 5 Distinct Feature Selection Techniques 

Authors Original 
Dataset 

Moustafa 
and Slay 
(2017) 

Janarthanan 
and Zargari 

(2017) 

Moustafa, 
Creech and 
Slay (2018) 

Answer, 
Farouk, and 

Abdel-
Hamid 
(2018) 

Kasongo 
and Sun 
(2020) 

Feature 
Selection 

Tech-
nique 

- Association 
Rule Mining 

CfsSubsetEv
al (attribute 
evaluator) + 

GreedyStepw
ise method + 
InfoGainAttri

buteEval + 
Ranker 
Method 
(Weka) 

Principal 
Component 

Analysis 

Gain Ratio 
Filter XGBoosts 

Number 
of 

Feature 
Selected 

49 
(including 
2 labels) 

11 5 8 18 
(use 17) 

19  
(use 18) 

No. Features      
1 srcip      
2 sport      
3 dstip      
4 dsport      
5 proto     ✓ 
6 state ✓   ✓ ✓ 
7 dur    ✓  
8 sbytes  ✓  ✓ ✓ 
9 dbytes    ✓ ✓ 
10 sttl ✓ ✓  ✓ ✓ 
11 dttl ✓   ✓  
12 sloss     ✓ 
13 dloss     ✓ 
14 service  ✓ ✓  ✓ 
15 Sload      
16 Dload    ✓  
17 Spkts      
18 Dpkts    ✓  
19 swin ✓     
20 dwin ✓  ✓   
21 stcpb      
22 dtcpb      
23 smeansz  ✓ ✓  ✓ 
24 dmeansz    ✓ ✓ 
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25 
trans_dept
h      

26 
res_bdy_le
n    ✓  

27 Sjit      
28 Djit ✓     
29 Stime      
30 Ltime      
31 Sintpkt      
32 Dintpkt    ✓  
33 tcprtt   ✓ ✓ ✓ 
34 synack ✓   ✓ ✓ 
35 ackdat    ✓  

36 
is_sm_ips_
ports    ✓  

37 ct_state_ttl ✓   ✓ ✓ 

38 
ct_flw_htt
p_mthd      

39 
is_ftp_logi
n      

40 ct_ftp_cmd      
41 ct_srv_src     ✓ 
42 ct_srv_dst ✓    ✓ 
43 ct_dst_ltm   ✓   
44 ct_src_ ltm ✓     

45 
ct_src_dpo
rt_ltm  ✓ ✓  ✓ 

46 
ct_dst_spo
rt_ltm ✓  ✓ ✓ ✓ 

47 
ct_dst_src_
ltm   ✓  ✓ 

48 attack_cat      
49 Label      

 

5 Conclusion and Future Works 

In this paper, a standard resampling method – rolling-origin is adopted to allocate the 

train-test distribution of the full version of three NIDS dataset (GureKDDCup, UNSW-

NB15 and CIDDS-001). Subsequently, 10 notable machine classifiers (ZeroR, Random 

Tree, REPtree, Decision Stump, Adaboost, Bayesnet, Naïve Bayes, Random Forest, 

SMO, and J48) are employed to evaluate on the selected three NIDS datasets. The results 

are presented with five evaluation metrics including classification accuracy, detection 

rate, false positive rate, building time, and evaluation time. Empirical results in this paper 

will be served as a baseline comparison for other studies performed on these datasets.  
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Due to privacy concerns and the massive efforts required to label NIDS dataset, 

Ring et al. (2019) highlighted that it is impossible to create a perfect NIDS dataset. A 

perfect NIDS dataset should keep up to date with recent attacks, correctly labelled, 

publicly available, contain real network traffic with all class of attacks, and captured over 

a long period of time (Ring et al., 2019). Assume that real network traffics with various 

attacks have been captured without privacy and computational resources constrain, the 

time taken necessary to accurately label the data would indefinitely delayed the 

publishing process. As new attacks are observed in every single day, these delayed would 

cause the dataset to be slightly outdated when it is published. For the details of traits and 

properties of a good benchmark NIDS dataset, we refer to the studies conducted by 

Małowidzki et al. (2015) and Ring et al. (2019). Although it is not possible to build a 

perfect NIDS dataset, Ring et al. (2019) pointed out that a perfect dataset is not necessary 

for most application, but instead a good dataset that fulfil a certain property is sufficient. 

For example, to evaluate a new reconnaissance technique, the NIDS dataset are not 

expected to contain all kinds of attacks.  

Among the three NIDS datasets that have been rigorously experimented in this 

paper, UNSW-NB15 is appropriate for attack detection in low footprint scenario, CIDDS-

001 is suitable for detecting reconnaissance techniques, while GureKDDCup contain 

most of the features akin to the previous benchmark KDDCup'99 and can be used in place 

of the previous benchmark dataset. 

For future works, rolling-origin resampling methods can be utilized in other NIDS 

datasets which do not comprise of a pre-defined train-test distribution. To gain a better 

insight of detection rate, we suggest to reduce the number of classes in GureKDDCup, 

whereby the 36 classes can be reduced to five classes (normal, probe, denial-of-service, 

user-to-root, and remote-to-local) or with only binary classes (normal, anomaly). Since 
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the results in this paper should serve as a baseline, experimental procedure adopting the 

smaller number of classes are excluded. Future experiments employing the smaller 

number of classes could utilize the baseline results provided in this paper for comparison 

purpose, which allows for the assessment of a model’s performance gain or loss. On the 

other hand, experiments that attempt to reduce the enormous number of discrete values 

in IP features should also be considered to substantiate the speculation made on the 

impacts of high dimensionality IP attributes on the computation time of the models in 

Section 4.5.2. 
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Appendices 

Supplementary Table 1: Classification Accuracy of 10 Machine Classifiers on GureKDDCup, UNSW-NB15, and CIDDS-001 

Dataset Classification Accuracy (%) of 10 Machine Classifiers for Original Data  

Train Test 
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

GureKDDCup 
1 2~7 36.8753 36.8746 36.8753 36.8753 36.8753 75.3595 88.5261 38.0152 78.5929 38.0293 

1~2 3~7 31.9819 87.1651 31.9844 31.9831 31.9831 73.4939 62.8376 31.9958 28.8684 33.1808 

1~3 4~7 32.9109 85.0984 62.2119 62.1153 62.1153 77.2154 81.3405 86.1029 87.2992 82.8830 

1~4 5~7 29.8400 87.8231 60.9671 60.7162 60.7162 86.6704 54.5618 87.9254 83.7842 88.1692 

1~5 6~7 33.5774 84.3049 82.4255 81.6088 81.6088 84.4639 79.2033 84.1741 83.4074 88.8412 

1~6 7 47.2845 99.3880 97.6507 95.7251 95.7251 98.3662 87.4997 99.5161 n/a 99.9526 

Average 35.4117 80.1090 62.0192 61.5040 61.5040 82.5949 75.6615 71.2883 72.3904 71.8427 

UNSW-NB15 
1 2~4 83.7467 91.7973 90.3676 92.9147 92.9147 92.8976 72.6009 94.7403 23.5704 96.5079 

1~2 3~4 78.3939 86.3023 90.2963 91.5745 91.5745 78.6976 77.0988 96.5630 90.9196 96.6146 

1~3 4 79.7988 79.1657 82.0959 91.6120 91.6120 94.3472 88.9631 96.6649 94.0967 96.7751 

Average 80.6465 85.7551 87.5866 92.0337 92.0337 88.6475 79.5543 95.9894 69.5289 96.6325 

CIDDS-001 
1 2 82.5870 78.9227 71.5996 85.5956 96.8684 85.4093 56.3338 84.6270 75.1466 94.4539 

Not available (n/a) 
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Supplementary Table 2: Detection Rate of 10 Machine Classifiers on GureKDDCup, UNSW-NB15, and CIDDS-001 

Dataset Detection Rate (%) of 10 Machine Classifiers for Original Data  

Train Test 
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

GureKDDCup 
1 2~7 36.8753 36.8746 36.8753 36.8753 36.8753 75.3595 88.5261 38.0152 78.5929 38.0293 

1~2 3~7 31.9819 87.1651 31.9845 31.9831 31.9831 73.4939 62.8376 31.9958 28.8684 33.1808 

1~3 4~7 32.9109 85.0984 62.2119 62.1153 62.1153 77.2154 81.3405 86.1029 87.2992 82.8830 

1~4 5~7 29.8400 87.8231 60.9671 60.7162 60.7162 86.6704 54.5618 87.9254 83.7842 88.1692 

1~5 6~7 33.5774 84.3049 82.4255 81.6088 81.6088 84.4639 79.2033 84.1741 83.4074 88.8412 

1~6 7 47.2845 99.3880 97.6507 95.7251 95.7251 98.3662 87.4997 99.5161 n/a 99.9526 

Average 35.4117 80.1090 62.0192 61.5040 61.5040 82.5949 75.6615 71.2883 72.3904 71.8427 

UNSW-NB15 
1 2~4 83.7467 91.7973 90.3676 92.9147 92.9147 92.8976 72.6009 94.7403 23.5704 96.5079 

1~2 3~4 78.3939 86.3023 90.2963 91.5745 91.5745 78.6976 77.0988 96.5630 90.9196 96.6146 

1~3 4 79.7988 79.1657 82.0959 91.6120 91.6120 94.3472 88.9631 96.6649 94.0967 96.7751 

Average 80.6465 85.7551 87.5866 92.0337 92.0337 88.6475 79.5543 95.9894 69.5289 96.6325 

CIDDS-001 
1 2 82.5870 78.9227 71.5996 85.5956 96.8684 85.4093 56.3338 84.6270 75.1466 94.4539 

Not available (n/a) 

 

Acc
ep

ted
 M

an
us

cri
pt



Supplementary Table 3: False Positive Rate of 10 Machine Classifiers on GureKDDCup, UNSW-NB15, and CIDDS-001 

Dataset False Positive Rate (%) of 10 Machine Classifiers for Original Data  

Train Test 
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

GureKDDCup 
1 2~7 36.8753 36.8753 36.8753 36.8753 36.8753 0.2528 7.9014 36.2095 8.3542 36.2325 

1~2 3~7 31.9819 6.0243 27.8922 31.9519 31.9519 0.2862 15.0886 31.7733 11.3712 27.2800 

1~3 4~7 32.9109 6.4898 13.3309 18.5845 18.5845 0.2734 5.9948 6.4003 0.6449 1.8845 

1~4 5~7 29.8400 4.9389 16.0890 16.7079 16.7079 0.0532 16.9361 1.5526 0.3385 0.3975 

1~5 6~7 33.5774 0.7966 8.3137 9.7326 9.7326 0.0843 3.7122 7.8700 0.4087 0.9563 

1~6 7 47.2845 0.3538 0.3464 3.9880 3.9880 0.0271 0.2218 0.3603 n/a 0.0374 

Average 35.4117 9.2465 17.1413 19.6400 19.6400 0.1628 8.3092 14.0277 4.2235 11.1314 

UNSW-NB15 
1 2~4 83.7467 13.0765 10.3127 0.9937 0.9937 0.1095 0.3064 12.6090 1.5891 3.3015 

1~2 3~4 78.3939 25.2890 2.2885 1.6602 1.6602 3.0296 2.5036 2.9460 21.6017 1.9251 

1~3 4 79.7988 4.4179 2.5511 1.6487 1.6487 0.0994 0.3140 2.0899 13.1853 2.5911 

Average 80.6465 14.2611 5.0508 1.4342 1.4342 1.0795 1.0413 5.8816 12.1254 2.6059 

CIDDS-001 
1 2 82.5870 65.1739 71.0452 6.7301 4.5325 68.1673 59.0684 69.4820 69.2468 25.9203 

Not available (n/a) 
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Supplementary Table 4: Best Results for Classification Accuracy, Detection Rate, and False Positive Rate of 10 Machine Classifiers on 

GureKDDCup, UNSW-NB15, and CIDDS-001 

Dataset Accuracy   Detection Rate  False Positive Rate 
Train Test Classifier (%) Classifier (%) Classifier (%) 

GureKDDCup   
1 2~7 Naïve Bayes 88.5261 Naïve Bayes 88.5261 Bayesnet 0.2528 

1~2 3~7 Random Tree 87.1651 Random Tree 87.1651 Bayesnet 0.2862 

1~3 4~7 SMO 87.2992 SMO 87.2992 Bayesnet 0.2734 

1~4 5~7 J48 88.1692 J48 88.1692 Bayesnet 0.0532 

1~5 6~7 J48 88.8412 J48 88.8412 Bayesnet 0.0843 

1~6 7 J48 99.9526 J48 99.9526 Bayesnet 0.0271 

Average Bayesnet 82.5949 Bayesnet 82.5949 Bayesnet 0.1628 

UNSW-NB15    
1 2~4 J48 96.5079 J48 96.5079 Bayesnet 0.1095 

1~2 3~4 J48 96.6146 J48 96.6146 Decision Stump / 
Adaboost 1.6602 

1~3 4 J48 96.7751 J48 96.7751 Bayesnet 0.0994 

Average J48 96.6325 J48 96.6325 Naïve Bayes 1.0413 

CIDDS-001   
1 2 Adaboost 96.8684 Adaboost 96.8684 Adaboost 4.5325 
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Supplementary Table 5: Build Time of 10 Machine Classifiers on GureKDDCup, UNSW-NB15, and CIDDS-001 

Dataset Model Building Time (seconds) of 10 Machine Classifiers for Original Data 

Train Test 
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

GureKDDCup 
1 2~7 0.06 1.05 232.97 9.03 140.91 28.23 1.37 36.39 225.27 10.56 

1~2 3~7 0.03 1.99 131.31 12.33 131.69 33.25 2.88 154.37 1102.89 99.42 

1~3 4~7 0.05 107.74 2473.48 29.55 127.56 65.71 4.99 3849.94 4356.92 242.68 

1~4 5~7 0.05 7.49 4189.84 24.25 125.07 92.85 5.76 7719.14 7738.95 242.65 

1~5 6~7 0.10 30.38 43050.39 52.67 130.13 148.13 30.13 38090.68 210451 495.51 

1~6 7 0.19 3154.34 87704.84 65.94 19.76 318.14 220.77 97996.45 604800 1053.40 

Average 0.08 550.50 22963.81 32.30 112.52 114.39 44.32 24641.16 138112.51 357.37 

UNSW-NB15 
1 2~4 0.42 12.45 24.00 17.42 131.75 84.11 11.49 540.50 1949.02 112.70 

1~2 3~4 0.17 29.82 52.22 40.16 202.85 159.82 21.60 1557.24 26547.31 372.31 

1~3 4 0.32 17.92 92.78 53.47 322.51 241.47 34.99 2225.02 153171 1091.03 

Average 0.30 20.06 56.33 37.02 219.04 161.80 22.69 1440.92 60555.78 525.35 

CIDDS-001 
1 2 5.80 41.18 811.30 68.73 486.31 139.47 14.20 16062.12 24979.81 522.52 

 Time required > 10800 seconds (3 hours) are bold 
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Supplementary Table 6: Evaluation Time of 10 Machine Classifiers on GureKDDCup, UNSW-NB15, and CIDDS-001 

Dataset Model Evaluation Time (seconds) of 10 Machine Classifiers for Original Data 

Train Test 
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

GureKDDCup 
1 2~7 204.20 215.37 383.04 287.12 5.73 555.52 1303.68 1505.20 1516.46 203.53 

1~2 3~7 203.47 198.97 770.50 301.58 3.55 611.53 1159.68 14817.11 3188.98 175.10 

1~3 4~7 135.69 546.64 1341.99 180.24 2.56 449.83 972.80 47115.73 7965.54 136.13 

1~4 5~7 134.58 128.72 1549.12 181.00 1.79 444.09 5438.14 46678.89 8683.84 331.35 

1~5 6~7 97.78 78.70 91.80 130.54 1.67 266.58 74750.26 19576.22 13660.68 81.11 

1~6 7 5.10 2377.31 13.13 16.37 219.58 55.88 29836.95 20955.79 n/a 6.03 

Average 130.14 590.95 691.60 182.81 39.15 397.24 18910.25 25108.16 7003.10 155.54 

UNSW-NB15 
1 2~4 5.69 5.37 6.28 22.14 33.62 68.19 2587.53 272.22 143.09 50.14 

1~2 3~4 2.86 3.09 3.23 3.14 18.22 40.95 1604.80 244.04 78.32 22.67 

1~3 4 1.08 1.22 1.25 1.18 9.09 17.11 592.69 339.76 30.97 5.86 

Average 3.21 3.23 3.59 8.82 20.31 42.08 1595.01 285.34 84.13 26.22 

CIDDS-001 
1 2 17.19 54.57 474.11 129.14 97.10 45.72 108.09 50907.07 1021.85 55.55 

Not available (n/a) Time required > 10800 seconds (3 hours) are bold 
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Supplementary Table 7: Classification Accuracy, Detection Rate and False Positive Rate of 10 Machine Classifiers on GureKDDCup, UNSW-

NB15, and CIDDS-001 using 10-Fold Cross-Validation 

Dataset Classification Accuracy (%) of 10 Machine Classifiers  

10-fold Cross Validation  
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

GureKDDCup 55.3233 n/a n/a 95.1351 95.1351 99.6401 85.1627 n/a n/a 99.9795 

UNSW-NB15 87.3513 98.0091 98.3296 94.1896 94.1896 96.3009 93.0825 98.3747 97.4715 98.5983 

CIDDS-001 82.7525 99.9578 99.9587 85.0414 92.2821 99.8454 48.2678 n/a n/a 99.9686 

           

 Detection Rate (%) of 10 Machine Classifiers  

GureKDDCup 0.5532 n/a n/a 0.9514 0.9514 0.9964 0.8516 n/a n/a 0.9998 

UNSW-NB15 0.8735 0.9801 0.9833 0.9419 0.9419 0.9630 0.9308 0.9837 0.9747 0.9860 

CIDDS-001 0.8275 0.9996 0.9996 0.8504 0.9228 0.9985 0.4827 n/a n/a 0.9997 

           

 False Positive Rate (%) of 10 Machine Classifiers  

GureKDDCup 0.5532 n/a n/a 0.0501 0.0501 0.0001 0.0013 n/a n/a 0.0001 

UNSW-NB15 0.8735 0.0156 0.0121 0.0084 0.0084 0.0004 0.0010 0.0105 0.0606 0.0102 

CIDDS-001 0.8275 0.0010 0.0011 0.0958 0.0825 0.0020 0.0147 n/a n/a 0.0011 
Not available (n/a) 
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Supplementary Table 8: Evaluation Time of 10 Machine Classifiers on GureKDDCup, UNSW-NB15, and CIDDS-001 using 10-Fold Cross-

Validation 

Dataset Model Evaluation Time (seconds) of 10 Machine Classifiers 

10-fold Cross Validation  
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

GureKDDCup 23.18 n/a n/a 508.90 1772.47 2260.53 11613.92 n/a n/a 18035.24 

UNSW-NB15 19.59 238.07 882.91 526.40 2327.19 2268.52 589.18 29096.73 2159708.79 23004.56 

CIDDS-001 177.67 69816.38 3083528.47 1243.59 7936.36 3589.40 581.44 n/a n/a 36550.10 
Not available (n/a) Time required > 10800 seconds (3 hours) are bold 

Supplementary Table 9: Classification Accuracy of 10 Machine Classifiers on UNSW-NB15 using 5 Feature Selection Techniques 

Dataset Classification Accuracy (%) of 10 Machine Classifiers using various Feature Selection Technique  

Train Test 
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

Moustafa and Slay (2017) – Association Rule Mining 
1 2~4 83.7467 87.8075 94.4311 92.9147 92.9147 85.4812 73.5953 94.7880 86.7895 94.0351 

1~2 3~4 78.3939 94.9908 95.4943 91.5745 91.5745 92.7926 88.4947 95.3841 94.9561 95.4376 

1~3 4 79.7988 95.0232 95.4407 91.6120 91.6120 93.9317 92.7928 95.3116 94.9030 95.4300 

Average 80.6465 92.6072 95.1220 92.0337 92.0337 90.7352 84.9609 95.1612 92.2162 94.9676 

Janarthanan and Zargari (2017) – Attribute Evaluator + Greedystepwise + Information Gain Attribute Evalutor + Ranker  
1 2~4 83.7467 97.0687 96.1727 92.9147 92.9147 95.4683 81.9252 96.5609 94.3444 96.3725 

1~2 3~4 78.3939 96.6811 96.5717 91.5745 91.5745 95.2693 90.3268 96.8058 94.0175 96.6035 

1~3 4 79.7988 96.6910 96.6331 91.3213 91.3213 95.1891 89.9392 96.7242 93.6104 96.6419 

Average 80.6465 96.8136 96.4592 91.9368 91.9368 95.3089 87.3971 96.6970 93.9908 96.5393 
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Dataset Classification Accuracy (%) of 10 Machine Classifiers using various Feature Selection Technique  

Train Test 
ZeroR Random 

Tree 
REPtree Decision 

Stump 
Adaboost Bayesnet Naïve 

Bayes 
Random 
Forest 

SMO J48 

Moustafa, Creech and Slay (2018) – Principal Component Analysis  
1 2~4 83.7467 84.9974 96.0241 83.5619 83.5619 84.8155 71.0558 95.6810 83.8246 96.3137 

1~2 3~4 78.3939 95.7234 96.1527 78.3939 78.3939 80.5646 74.3325 96.0559 92.7109 96.1545 

1~3 4 79.7988 95.7686 96.2249 79.7988 79.7988 84.2475 52.5572 95.9513 93.2230 96.1479 

Average 80.6465 92.1631 96.1339 80.5849 80.5849 83.2092 65.9818 95.8961 89.9195 96.2054 

Anwer, Farouk and Abdel-Hamid (2018) – Gain Ratio Filter 
1 2~4 83.7467 96.6198 96.7628 92.9147 92.9147 83.0921 71.5820 96.4831 87.4090 96.8069 

1~2 3~4 78.3939 96.4007 96.7513 91.5745 91.5745 78.2478 74.2159 96.8257 94.5487 96.7983 

1~3 4 79.7988 96.3847 96.8387 91.6120 91.6120 94.2013 87.1208 96.7892 94.5153 96.8824 

Average 80.6465 96.4684 96.7843 92.0337 92.0337 85.1804 77.6396 96.6993 92.1577 96.8292 

Kasongo and Sun (2020) – XGBoost  
1 2~4 83.7467 88.2560 97.1124 92.9147 92.9147 95.0714 72.6963 96.7667 95.8702 96.8220 

1~2 3~4 78.3939 96.6838 96.9249 91.5745 91.5745 94.4414 82.7535 97.0694 96.0434 96.8465 

1~3 4 79.7988 96.7153 96.8946 91.6120 91.6120 94.9632 89.4142 97.0033 95.9247 96.9533 

Average 80.6465 93.8850 96.9773 92.0337 92.0337 94.8253 81.6213 96.9465 95.9461 96.8739 
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Supplementary Figure 1: Classification Accuracy Comparison of 10 Machine 

Classifiers on UNSW-NB15 by utilizing the Baseline Results (Supplementary Table 1) 

against five distinct feature selection schemes (Supplementary Table 9)   
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