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Abstract—HTTP Adaptive Streaming (HAS) has become a
popular solution for multimedia delivery nowadays. In HAS,
video quality is generally varying in each streaming session.
Therefore, a key question in HTTP Adaptive Streaming is how to
evaluate the overall quality of a streaming session. In this paper,
we propose a machine learning approach for overall quality
prediction in HTTP Adaptive Streaming. In the proposed ap-
proach, each segment is represented by four features of segment
quality, stalling durations, content characteristics, and padding.
The features are fed into a Long Short Term Memory (LSTM)
network that is capable of exploring temporal relations between
segments. The overall quality of the streaming session is predicted
from the outputs of the LSTM network using a linear regression
module. Experiment results show that the proposed approach is
effective in predicting the overall quality of streaming sessions.
Also, it is found that our proposed approach outperforms four
existing approaches.

Index Terms—Quality of Experience, Machine Learning Ap-
proach, Long Short Term Memory

I. Introduction
HTTP Adaptive Streaming (HAS) has become a cost ef-

fective means for multimedia delivery nowadays. In HAS, a
video is firstly encoded into multiple versions with different
quality levels. Each version is further divided into a sequence
of short segments [1], [2]. Based on network statuses, suitable
versions of segments are selected. Due to network bandwidth
fluctuations, selected versions of segments may vary strongly
during a streaming session, causing quality variations [3], [4].
Also, stalling events may occur if a segment cannot arrive at
the client before its playback deadline. Quality variations and
stalling events are known to cause negative impacts to the user
viewing experience [3]. Therefore, a main challenge in HAS
is how to evaluate the overall quality of a streaming session
considering the impacts of these factors.

Most existing approaches for overall quality prediction are
analytical model-based approaches, in which the impacts of
the factors are modeled using some analytical functions (e.g.,
a linear function) of some statistics such as the average of seg-
ment quality values and the average of stalling durations [5]–
[8]. Among these approaches, only a few took into account
the impacts of both quality variations and stalling events [5],
[6].

To the best of our knowledge, the work in [9] is the first
study that proposed an advanced machine learning approach
for overall quality prediction. In the approach, a random neural

network is employed. The inputs consist of the average of
quantization parameters over all macro blocks of all video
frames, the number of stalling events, the average and maxi-
mum of stalling durations. The approach was evaluated using
118 streaming sessions with the duration of 16 seconds.

In [10], the authors proposed an advanced machine learning
approach using support vector regression. The inputs of the
approach are the average of segment quality values, the time
over which segment quality decreases took place, the time
since the last impairment event (i.e., either a stalling event
or a segment quality decrease), the number of stalling events,
and the sum of stalling durations. The approach was evaluated
using 112 sessions with the duration of approximately 72
seconds. It should be noted that the two studies of [9],
[10] did not take into account the impacts of video content
characteristics.

In this study, we propose a new advanced machine learning
approach to predict the overall quality of HAS sessions.
In the proposed approach, we employ a Long Short Term
Memory (LSTM) network because of two reasons. First, it
can exploit temporal relations between video segments by
using a memory [11]. Second, LSTM network has been
successfully employed in various video-related tasks such as
video summarization [12] and video action recognition [13].

Our main contributions in this study are summarized as
follows. First, we propose a new advanced machine learning
approach using an LSTM network to predict the overall quality
of HAS sessions. The proposed approach takes into account
the impacts of quality variations, stalling events, and content
characteristics. To the best of our knowledge, this is the first
study using an LSTM network in overall quality prediction for
HTTP adaptive streaming. Second, the proposed approach is
evaluated using a dataset consisting of 515 sessions with the
durations from 60 to 76 seconds. Experiment results show that
the proposed approach achieves a high prediction performance
and outperforms four existing approaches.

The rest of this paper is organized as follows. The proposed
approach is presented in Sect. II. In Sect. III, we evaluate
the performances of the proposed approach and four existing
approaches. Finally, conclusions are provided in Sect. IV.



Fig. 1: Architecture of the proposed approach.

II. Proposed Approach
In this section, we first present the architecture of the pro-

posed approach. Then the four segment features are described
in detail.

A. Architecture
Figure 1 shows the architecture of the proposed approach.

In particular, each streaming session is considered as a series
of segments. Each segment is attributed by a set of features.
The features are then fed into an LSTM network. The outputs
of the LSTM network are used to predict the overall quality
of streaming sessions through a linear regression module.

Let bold capital letters (e.g., X), bold lowercase letters (e.g.,
x), and italic letters (e.g., X) denote matrices, vectors, and
scalars, respectively. T denotes the number of segments in a
streaming session. Let

xt =


x1

t
x2

t
...

xM
t


(1)

be the feature vector of segment t (1 ≤ t ≤ T) with M is the
number of features per segment.

Each vector xt is connected to a hidden state ht via an LSTM
unit [14] as shown in Fig. 2. Specifically, the hidden state ht
is calculated using the following equations.

it = sigm(Wixxt + Vihht−1 + bi), (2)

ft = sigm(W f xxt + V f hht−1 + b f ), (3)

ot = sigm(Woxxt + Vohht−1 + bo), (4)

gt = tanh(Wgxxt + Vghht−1 + bg), (5)

ct = ft � ct−1 + it � gt, (6)

ht = ot � tanh(ct ), (7)

where � denotes the element-wise product, and the parameters
of W ∈ Rd×M , V ∈ Rd×d , and b ∈ Rd are learned during the
training process and shared across LSTM units. it, ft, ot , and ct

Fig. 2: LSTM unit architecture.

are respectively the output vectors of the input gate, forget gate,
output gate, and memory cell. They are important components
to enable the LSTM unit to exploit temporal relations between
segments. In particular, the input gate elects whether or not to
add new information from the current inputs to the memory
cell. The forget gate selects and removes old information from
the memory cell. The output gate selects useful information
from the memory cell to update the hidden state ht .
At the linear regression module, the overall quality Q of the

session is predicted from the hidden state hT corresponding
to the last segment as follows.

Q = wrhT + br , (8)

where wr and br are also parameters to be learned.

B. Segment Features
In this part, we will describe the four segment features used

in the proposed approach, namely segment quality, stalling
durations, content characteristics, and padding.

1) Segment Quality: The segment quality feature represents
visual quality of video segments. In this study, we use one of
three metrics, namely bitrate (BR), Peak Signal-to-Noise Ratio
(PSNR), and segment-MOS (S-MOS) [15]–[17] to represent
this feature.

2) Stalling Durations: The stalling duration feature (de-
noted SD) of a segment represents the amount of time that an
user has to wait since the playback of the previous segment
ends until the playback of that segment begins. If that segment
arrives at the client before the playback of the previous
segment finishes (called the playback deadline), then SD is set
to 0. Otherwise, a stalling event occurs and SD is a positive
number.

3) Content Characteristics: It is well known that the overall
quality of a session may be affected by video content charac-
teristics [18]. Similar to [18], two dimensions of the content
characteristic feature, namely spatial complexity and temporal
complexity, are taken into account in the proposed approach.



Fig. 3: An example of segment feature values

To represent the spatial complexity of a segment, we use
a metric of Spatial Variance (SV) in [18]. This metric is cal-
culated from MPEG-7 edge histogram descriptor. Specifically,
each frame is firstly divided into 4x4 sub-blocks, and then
histograms of 5 edge types (vertical, horizontal, 45°, 135°,
and non-direction) are calculated for all sub-blocks [19]. Let
Sqp denote the average histogram value of edge type p for all
sub-blocks in frame q. Finally, the SV value of a segment is
derived by

SV =
1

Q × P

Q−1∑
q=0

P−1∑
p=0

Sqp, (9)

where Q and P are respectively the number of frames in the
segment and the number of edge types.

The temporal complexity of a segment is represented by two
metrics calculated from the motion vectors of the segment.
Specifically, the mean (denoted MMM) and standard deviation
(denoted SMM) of the magnitudes of the motion vectors are
used.

4) Padding: In practice, streaming sessions usually have
different durations, and so the lengths (i.e., the number of
segments). In this study, we employ zero-padding method to
ensure that all sessions have the same length. In particular,
some segments, called padded segments, are appended to the
beginning of every session so that its length is the same as
the length of the longest session. Note that, for all padded
segments, their features consisting of segment quality, stalling
durations, and content characteristics take a value of 0.

To differentiate the padded and actual segments, we define
a boolean variable PS as follows.

PS(t) =
{
1, if segment t is a padded segment
0, otherwise (10)

Figure 3 shows an example of normalized segment feature
values in a streaming session. As can be seen in Fig. 3, the
segment quality (i.e., the BR metric) varies strongly during the
session. Also, it can be seen that there is one stalling event
occurring at the ninth segment where SD > 0. Regarding
the content characteristic feature, this session does not have
significant changes of the spatial complexity, whereas the
temporal complexity varies drastically. The PS values indicate

that the first four segments are padded segments and the
remaining segments are actual segments.

III. Evaluation
In this section, we first present experiment settings used to

evaluate the prediction performance of the proposed approach.
Next, we give some discussions on the roles of the segment
features in the proposed approach. Finally, a comparison
in terms of prediction performance between the proposed
approach and four existing approaches will be presented.

A. Experiment Settings
1) Dataset: To address the problem of lack of training

data, the dataset used in this study was combined from three
datasets. Two datasets were from the previous work of [5],
[15]. The remaining dataset was newly created by conducting
a subjective test. There were totally 144 sessions rated in the
subjective test. These sessions were generated from two videos
different from videos used in [5], [15].
In particular, each video was used to generate 72 sessions

consisting of 42 hand-crafted sessions and 30 real streaming
sessions. The hand-crafted sessions were generated from 5
patterns having no quality variation (i.e., selected versions
of segments fixed during sessions) and no stalling event, 10
patterns having periodic quality variations with the period of
10 seconds and no stalling event, and 27 patterns containing
from 1 to 6 stalling events with the durations of 0.25s, 0.5s, 1s,
2s, 3s, and 4s and no quality variation. The 30 real streaming
sessions were generated by running two adaptation methods
of [20], [21] in a streaming test-bed using bandwidth traces
from a mobile network [22]. The real streaming sessions
consist of both quality variations and stalling events.
Similar to prior studies [5], [15], the test conditions were

designed following Recommendation ITU-T P.913 [23]. In
order to minimize subjects’ fatigue, the subjective test was
divided into four parts that were conducted in different days.
The duration of each part was approximately 50minutes. Every
20minutes there was a break of 10minutes. Each subject took
part in at most two test parts. Before doing actual subjective
tests, subjects were trained to get accustomed to the rating
procedure and the range of video quality scores. The sessions
were randomly displayed on a 14-inch screen with a resolution
of 1,366×768 and a black background. At the end of each
session, each subject gave a rating score with the score range
from 1 (worst) to 5 (best).
There were totally 53 subjects taking part in the subjective

test with ages ranging from 18 to 41. The total time of
the subjective test was approximately 78 hours. A screening
analysis of the test results was performed following Recom-
mendation ITU-T P.913 [23], and two subjects were rejected.
After eliminating the scores of the rejected subjects, each
session was rated by 21 valid subjects. The subjective overall
quality value of each session is calculated as the average score
of the valid subjects.
The combined dataset consists of totally 515 sessions with

183 hand-crafted sessions and 332 real streaming sessions.



(a) PCC (Training set) (b) RMSE (Training set)

(c) PCC (Test set) (d) RMSE (Test set)

Fig. 4: Prediction performance of the proposed approach for the Full and w/oCC cases.

The durations of the sessions are from 60 to 76 seconds.
These sessions are randomly divided into a training set of
412 sessions and a test set of the 103 remaining sessions.
The division is repeated 100 times, resulting in 100 pairs of
training and test sets. The results presented in the following
sections are the average values over the 100 pairs of training
and test sets.

2) Training Parameters: For the training process in the pro-
posed approach, we apply a loss function of root mean squared
error. The loss function is minimized using stochastic gradient
descent method based on Adam optimization algorithm [24].
The parameters of the Adam algorithm are set as follows:
β1 = 0.9, β2 = 0.999, ε = 1e − 08. The learning rate, the
number of hidden units, and the number of epochs are set to
0.01, 5, and 5000, respectively.

3) Input Features: To investigate the roles of the segment
features in the proposed approach, we consider four cases of
input features. In the first case (denoted Full), each segment is
represented by all the four features described in Subsect. II-B.
For the three remaining cases, only three of the four features
are used. In particular, the content characteristic feature is
excluded from the inputs in the second case (denoted w/oCC).
In the third case (denoted w/oSQ), the segment quality feature
is not considered. For the last case (denoted w/oSD), the
stalling duration feature is not used as the inputs of the
proposed approach.

4) Evaluation Metrics: To evaluate the prediction perfor-
mance of the proposed approach, we use two metrics of
Pearson Correlation Coefficient (PCC) and Root Mean Squared
Error (RMSE) which are averaged over the 100 test sets. Note
that a higher PCC and a lower RMSE mean a better prediction
performance.

B. Roles of Segment Features

In this subsection, we will investigate the roles of the
segment features in the proposed approach. For this purpose,
we evaluate the prediction performance of the proposed ap-
proach in the four cases of input features as presented in
Subsect. III-A3.
Figure 4 shows the PCC and RMSE values of the proposed

approach in the Full and w/oCC cases when the number of
epochs e is from 500 to 5000 with a step size of 500. Note
that, the segment quality feature is represented by one of the
three metrics mentioned in Subsect. II-B1. From Fig. 4, it can
be seen that, given a segment quality metric, the training set
always has higher PCC values and lower RMSE values than
the test set.
For both the training and test sets, the PCC values increase

quickly and the RMSE values reduce rapidly when the number
of epochs e first increases. When the number of epochs
increases further, the PCC and RMSE values become stable.
It can be noted that the stable state is reached much quicker



TABLE I: Prediction performance of the proposed approach
using the S-MOS metric for the Full, w/oSQ, and w/oSD cases.

Case Training set Test set
PCC RMSE PCC RMSE

Full 0.98 0.20 0.96 0.26
w/oSQ 0.66 0.70 0.58 0.78
w/oSD 0.90 0.42 0.81 0.56

TABLE II: Prediction performance of the proposed approach
and four existing approaches.

Approach Test set
PCC RMSE

Proposed 0.96 0.26
Tran’s 0.90 0.40
P.1203.3 0.91 0.38
Singh’s 0.72 0.65
ATLAS 0.88 0.45

for the S-MOS and PSNR metrics than for the BR metric.
Specifically, the optimal number of epochs e for both the
Full and w/oCC cases is 1500 for the S-MOS and PSNR
metrics, and 2500 for the BR metric.
For the two metrics of BR and PSNR, the Full case

achieves a significantly higher prediction performance than the
w/oCC case. For the S-MOS metric, the Full and w/oCC cases
have similar prediction performances. This result implies that
the additional use of the content characteristic feature does not
bring significant improvements to the proposed approach when
S-MOS is used as the segment quality metric. Meanwhile, for
the metrics of BR and PSNR, it is necessary to include the
content characteristic feature. In other words, the role of the
content characteristic feature depends on the metric used to
represent the segment quality feature.

In the Full case, the prediction performance is highest when
the segment quality metric is S-MOS. This means that S-
MOS is the best metric to represent the segment quality feature.
Meanwhile, using the BR metric results in the lowest prediction
performance. Note that, in the rest of this paper, the S-MOS
metric is used to represent the segment quality feature in the
proposed approach because of the best prediction performance.

Table I shows the prediction performance of the proposed
approach for the three cases of Full, w/oSQ, and w/oSD when
the number of epochs is 5000. We can see that the PCC
value significantly reduces and the RMSE value substantially
increases when either the segment quality feature or the
stalling duration feature is excluded from the inputs of the
proposed approach. This indicates that quality variations and
stalling events have significant impacts on the overall quality
of sessions.

C. Comparison with Existing Approaches

In this part, we will compare the proposed approach with
four existing approaches, namely Tran’s [5], P.1203.3 [25]–
[27]1, Singh’s [9], and ATLAS [10]2. For the proposed ap-

1https://github.com/itu-p1203/itu-p1203/
2http://live.ece.utexas.edu/research/quality/VideoATLAS_release.zip

proach, the Full case and the segment quality metric of S-MOS
are used.
Table II shows the PCC and RMSE values of the proposed

and existing approaches for the test set. We can see that the
proposed approach outperforms the existing approaches by
achieving the highest prediction performance. In particular, the
PCC and RMSE values of the proposed approach are 0.96 and
0.26, respectively. This result indicates that LSTM network
is more effective than random neural network and support
vector regression in predicting the overall quality of HAS
sessions. Consequently, temporal relations between segments
in a session are essential to overall quality prediction. This
explains why the existing approaches, which use the statistics
over all segments such as the average of segment quality
values and the sum of stalling durations, have lower prediction
performances than that of the proposed approach.

IV. Conclusion
In this study, we have proposed a new advanced machine

learning approach using an LSTM network for predicting the
overall quality of HTTP Adaptive Streaming sessions. The pro-
posed approach took into account the four segment features of
quality, stalling durations, content characteristics, and padding.
Based on the experiment results, it was shown that LSTM
network is effective in predicting the overall quality of HTTP
Adaptive Streaming sessions. Also, temporal relations between
segments in sessions are essential to overall quality prediction.
In addition, segment-MOS is found to be the best metric to
represent the segment quality feature. For future work, we plan
to employ the proposed approach in performance evaluations
of adaptation strategies for HTTP Adaptive Streaming.
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