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Abstract

Due to the significant resemblance in visual appearance, pill misuse is prevalent and has

become a critical issue, responsible for one-third of all deaths worldwide. Pill identification,

thus, is a crucial concern that needs to be investigated thoroughly. Recently, several

attempts have been made to exploit deep learning to tackle the pill identification problem.

However, most published works consider only single-pill identification and fail to distinguish

hard samples with identical appearances. Also, most existing pill image datasets only fea-

ture single pill images captured in carefully controlled environments under ideal lighting con-

ditions and clean backgrounds. In this work, we are the first to tackle the multi-pill detection

problem in real-world settings, aiming at localizing and identifying pills captured by users

during pill intake. Moreover, we also introduce a multi-pill image dataset taken in uncon-

strained conditions. To handle hard samples, we propose a novel method for constructing

heterogeneous a priori graphs incorporating three forms of inter-pill relationships, including

co-occurrence likelihood, relative size, and visual semantic correlation. We then offer a

framework for integrating a priori with pills’ visual features to enhance detection accuracy.

Our experimental results have proved the robustness, reliability, and explainability of the

proposed framework. Experimentally, it outperforms all detection benchmarks in terms of all

evaluation metrics. Specifically, our proposed framework improves COCO mAP metrics by

9.4% over Faster R-CNN and 12.0% compared to vanilla YOLOv5. Our study opens up new

opportunities for protecting patients from medication errors using an AI-based pill identifica-

tion solution.
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Introduction

Background

Oral pills are among the most popular and commonly used methods in healthcare due to their

efficacy and simplicity. Pills usually exhibit various visual features in terms of shape, color, and

imprinted text. Despite this, erroneously taking pills is exceptionally prevalent due to the sig-

nificant similarity in pill appearances. According to a WHO report [1], drug misuse rather

than illness is responsible for one-third of all deaths. Moreover, according to Yaniv et al. [2],

around six to eight thousand people are killed annually by prescription errors. Recently, the

US National Centers for Biomedical Computing (NCBCs) stated that taking this country

alone, each year, 7,000 to 9,000 people die due to a medication error. This circumstance neces-

sitates the invention of solutions to protect users/patients from taking incorrect pills. This

need is more stringent than ever, given the aging of the global population and the rising preva-

lence of chronic diseases requiring continuous medication.

Image-based pill recognition

In the early stages, pill recognition was handled through a variety of online systems that

allowed users to identify pills by manually entering multiple attributes, such as shape, color,

and imprinted text [3]. However, these methods are time-consuming and may not be reliable,

as the predefined features may not encompass all real-world cases. Recently, Artificial Intelli-

gence (AI) has made tremendous achievements and emerged as a powerful tool for resolving

various problems. Although still in its infancy, AI has been used to recognize pills from images,

helping prevent incorrect medication. An early effort to classify pills using a Deep Convolution

Network (DCN) was introduced in [4]. In [5], the authors provided ePillID, a large pill image

dataset comprising 13K images representing 8,184 appearance classes. Additionally, they con-

ducted experiments to evaluate various baseline models on the proposed dataset. Even with

the best baseline, the experimental findings demonstrated that it fails to discriminate between

confusing classes. The problem of few-shot pill recognition was addressed in [6]. The authors

also provided new pill image data named CURE. Recently, there have been a few works consid-

ering the multi-pill detection problem [7]. The authors adopted two-step deep neural networks

consisting of an object localization model and a classifier.

Problem statement

Despite several efforts that have been made, existing solutions for pill identification reveal the

following critical shortcomings.

• Most existing works have been restricted to the classification of single-pill images. This con-

straint limits the solutions’ application capacity, as in practice, users usually take multiple

pills simultaneously, resulting in multi-pill images in most cases. In such scenarios, the utili-

zation of existing frameworks necessitates the additional use of localization models and

depends on the behavior of these models. Extra efforts are needed to harmonize the work-

ings of the two models.

• Most of the current pill image datasets (e.g., ePillID, CURE) are limited to single-pill images.

Moreover, all of them were collected in tightly-controlled settings under ideal illumination

and background conditions, leading to a lack of diversity. Those previous works trained on

these datasets are vulnerable to Out-Of-Distribution (OOD) data (with arbitrary light or

angle configurations) when being evaluated in real-world settings.
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• No prior work has studied the explainability of the model. This insufficiency diminishes the

trustworthiness of the solutions, hence restricting their practical applications in healthcare,

which directly related to patiences’ safety.

We are, to the best of our knowledge, the first to tackle the multi-pill detection problem in

real-world settings. Specifically, we focus on a practical application that recognizes pills in

patients’ pill intake pictures. Our targeted problem can be formulated as follows. Given an
image capturing multiple pills in patients’ pill intake, we aim to determine each pill’s location
and identity. In addition to developing a novel pill detection framework with high reliability

and explainable capacity, we build a dataset of multi-pill images captured under unconstrained

real-world conditions.

Our motivation and key ideas

One of the most significant obstacles in the pill detection problem is the existence of numerous

pills with similar shapes, colors, and sizes (Fig 1). We call these hard samples, whose occur-

rence renders the pill identification problem complicated and challenging to solve by generic

object detection.

We argue that relying merely on pills’ appearance is insufficient to improve pill detection

accuracy, if not impossible. We discovered that besides the challenge (e.g., localizing pills in

hard cases such as overlapping pills), the multi-pill detection problem, on the other hand, pro-

vides us with an opportunity to improve pill recognition accuracy. Motivated by the human

tendency and ability to integrate different data sources while making decisions, our proposed

solution seeks to utilize external knowledge to improve detection accuracy. Specifically, we

rely on three different relationships between the pills. For each of them, we provide a corre-

sponding a priori graph modelling that relation. These connections include: co-occurrence,

relative size, and visual semantic correlation.

The first a priori, or co-occurrence graph, demonstrates the frequency with which medica-

tions are prescribed for the same diseases; thus, it reflects the likelihood that pills appear in the

same image. This a priori understandings originates from the understanding that the con-

sumption of pills is not random; rather, pharmacists prescribe them to treat or alleviate specific

symptoms or illnesses. This premise underscores the existence of a robust correlation among

concurrently consumed pills. In essence, when provided with a set of contextual pills and an

unfamiliar one, the co-occurrence graph enables the restriction of potential choices for the

remaining pill. By utilizing this knowledge, we can enhance the accuracy of dealing with hard

samples by leveraging the high accuracy of detecting easy samples in the same image. The sec-

ond one, i.e., the relative size graph, gives us the relative size information of the pills, thus,

improving our model’s capacity to distinguish pills of identical shape and color but differing in

size. Furthermore, this relationship also proves advantageous in tackling the inherent

Fig 1. Hard samples with high similarity in terms of shape, color and size (examples taken from our handcrafted

dataset). (a) Pills with similar shapes, colors, and different sizes. (b) Pills with similar shapes, sizes and colors.

https://doi.org/10.1371/journal.pone.0291865.g001

PLOS ONE High accurate and explainable multi-pill detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0291865 September 28, 2023 3 / 27

https://doi.org/10.1371/journal.pone.0291865.g001
https://doi.org/10.1371/journal.pone.0291865


challenge of multi-scale handling for conventional Object Detection tasks [8, 9]. Like the origi-

nal problem, there are many kinds of pills with different scales. The proposed relative size

graph can support the detector framework by providing additional sizing information between

those pills, thereby enhancing the representations. Lastly, the visual semantic graph learns

pills’ latent semantic connections embedded in their visual appearance. Unlike previous a pri-

ori graphs, this graph directly models the visual alignments of pills in input images, and this

information is also beneficial in enriching the visual features produced by the detector.

Besides, to leverage the aforementioned a-priori, our proposed framework offers a multi-

modal fusion method for incorporating graph-based inter-pill relational information with

intra-pill visual features to enhance the detection result. The overview of our proposed model

is illustrated in Fig 2. We leverage external knowledge from prescriptions and training datasets

to build the co-occurrence and relative size graph. The visual features of the pills are exploited

to construct the visual semantic graph. Using the graph embedding module, the three graphs

are transformed into the vector space, then fused with the visual features to provide enhanced

feature vectors, which are then utilized to create the final results.

The significance of the proposed framework stems from the fact that this is the first solution

to the challenge of identifying multiple pills in a single image captured under real-world condi-

tions. Notably, the proposed solution gains high accuracy even in hard cases, i.e., the existence

of pills with substantially similar visual appearances.

Our contributions

Our main contributions can be summarized as follows.

• We introduce the first real-world multi-pill image dataset consisting of 9,426 images repre-

senting 96 pill classes. The images were taken with ordinary smartphones in various settings.

The dataset will assist in the advancement of research in the field.

Fig 2. Overview of our proposed solution. The pipeline consists three steps: modeling a priori graphs, transforming them into a vector space, and

fusing them with visual features.

https://doi.org/10.1371/journal.pone.0291865.g002
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• We propose a novel pill detection framework named PGPNet (which stands for a Priori

Graph-assisted Pill Detection Network), which leverages three-fold graph-based a priori,

including co-occurrence likelihood, relative pill size, and visual semantic correlation to

tackle hard pill samples. In addition, we provide a method for constructing these heteroge-

neous a priori graphs from given prescriptions and the training pill image dataset. Further-

more, we offer a multi-modal fusion method for incorporating graph-based inter-pill

relational information with intra-pill visual features to enhance the detection result.

• We conduct thorough experiments to evaluate the efficacy of the proposed solution and

compare it to existing state-of-the-art (SOTA). The experimental findings demonstrated that

our approach enhances object detection accuracy by at least 9.4% for the COCO mAP metric

compared to generic SOTA in object detection.

The remainder of the paper is divided into four sections. We briefly summarize the litera-

ture on pill detection and pill image datasets in Section Related works. In Section Methodol-

ogy, we describe our methodology in detail. Section Dataset and experiment settings evaluates

the performance of our proposed PGPNet and compares it with the other methods. Finally, we

conclude the paper in Section Conclusion.

Related works

Pill classification

Many studies have employed machine learning to tackle the pill recognition challenge [4, 10].

The authors in [4] first utilized the Manifold ranking-based method to filter out the fore-

ground mask from the input pill image and then used an AlexNet-based network to identify

the label. In [11], Ting et al. combined the Enhanced Feature Pyramid Networks and Global

Convolution Networks to improve pill localization accuracy. Ling et al. [6] tackled the few-

shot pill detection problem with a Multi-Stream (MS) deep learning model. In [12], the

authors integrated three handcrafted features, namely shape, color, and imprinted text, to

identify pills.

Recently, a few efforts have leveraged the two-stage object detection approach to solve the

multi-pill detection challenge [7, 13]. In the first stage, object localization techniques are

applied to determine the pills’ bounding boxes. These bounding boxes are then fed into a clas-

sifier in the second stage to identify the pills. Specifically, in [13], an enhanced feature pyramid

network based on the ResNet-50 backbone has been built for pill localization. After that, the

pill bounding boxes are fed into an Inception-ResNet v2 for classification. Authors in [7]

exploited the Mask-RCNN framework to solve the problem.

Multi-pill detection solutions are still in their infancy. All current works only investigate

images acquired in laboratories under optimal lighting and background conditions, with each

pill arranged separately. In fact, existing techniques only use specific object localization models

to crop the pills and then treat the issue as a typical single-pill classification problem.

Pill image datasets

One of the most widely used pill image datasets is the NIH Pill Image Dataset [14], released by

the U.S. National Library of Medicine (NLM). This dataset consists of 4,000 high-quality refer-

ence pills and 133,000 pictures captured by digital cameras on mobile phones. In [6], the

authors provided the CURE pill dataset consisting of 8,973 single-pill images representing 196

classes. Although taken under various backgrounds and lighting conditions, all of these images

are carefully captured from a top-down view and focus on the pills. Authors in [4] contributed
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a pill dataset capturing about 400 commonly used tablets and capsules. Ten to twenty-five pic-

tures were taken for each pill, resulting in 5,284 images.

Unfortunately, all of these datasets provide only single-pill images. Most images were cap-

tured under quite ideal conditions, e.g., pills were put on a clean background, and the images

were taken from the top-down view with the camera focused on the pills.

Existing works’ limitations

The literature suffers from the following three main drawbacks. First, most of the existing solu-

tions only investigated images acquired in laboratories under optimal conditions, treating the

problem as a conventional single-pill classification problem. Moreover, they did not ade-

quately address the challenge of hard samples, where numerous pills have similar shapes, col-

ors, and sizes. Second, existing pill datasets only provide single-pill images captured under

ideal settings and do not account for real-world scenarios in which pills may be disorganized

or partially concealed. Finally, no existing work studied the explainability of the models, thus

lowering their trustworthiness and restricting their practical application.

Our solution

To fill in these gaps, we are the first to thoroughly investigate the problem of detecting multiple

pills taken in the same image under real-world conditions. We propose a detection framework

named PGPNet that employs graph-based a priori information, including co-occurrence like-

lihood, relative pill size, and visual semantic correlation, to tackle the challenge of hard pill

samples. Notably, beside evaluating PGPNet’s accuracy, we utilize explanatory methodologies

to demonstrate its reliability. Finally, we provide the first real-world multi-pill image dataset

taken with ordinary smartphones in various unrestricted environments.

Methodology

In this section, we propose a novel pill detection framework named PGPNet (i.e., a Priori

Graph-assisted Pill Detection Network).

PGPNet overview

We focus on a practical application that recognizes pills in patient intake pictures. Our model

receives a multiple-pill picture as input and generates both the bounding box and the identifi-

cation of each pill. Here, we incur a critical challenge: how to distinguish pills with identical
appearances (i.e., shape, color, and size). We believe that relying solely on the visual features of

pills is insufficient to address this issue. Moreover, employing the correlation between pills

rather than counting on each pill individually may enhance recognition accuracy. In light of

this, we propose introducing two types of a priori, the first indicating the co-occurrence likeli-

hood and the second modeling the relative size of pills. The a priori is extracted from a given

prescription and pill image training dataset and represented as heterogeneous graphs. In par-

ticular, our strategy for handling difficult situations (i.e., distinguishing pills from distinct clas-

ses with similar appearances) is as follows. Our PGPNet first differentiates easy pills (those that

do not have a remarkable resemblance to other pills) based on their visual appearance in the

provided image. Obviously, these easy pills can be determined with high precision. The visual

features of those easy samples will then serve as context vectors to assist with making decisions

regarding the hard ones. In addition, we materialize this idea with a layer called Pseudo Classi-
fier and a mechanism to filter out necessary information from the a priori graphs. In summary,

the proposed model comprises four components: A priori graph modeling, visual feature
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extractor, inter-pill relational feature extractor, and multi-modal data fusion, as illustrated

in Fig 3.

The overall flow is as follows.

• Step 1—A priori graph modeling. We construct two generic graphs, namely Prescription-
based Medical Co-occurrence Graph (or Co-graph for short) and Relative Size Graph (Size-

graph for short), that represent the relationship between all the pills in terms of co-occur-

rence and relative size, respectively. Concerning the former, we leverage a given set of pre-

scriptions from which we can model the interaction between pills (i.e., which pills are likely

to be used to treat the same diseases). Based on this information, we developed the Co-

graph, whose nodes represent the pill classes and whose edge weights reflect the co-occur-

rence likelihood between the two vertices. In the meantime, using the coordinates of the

bounding boxes from our training dataset for the pill detection task, we determine the area

of each box and model the relative size ratios of all the pill classes in the given images. This

information is then aggregated to formulate the Size-graph. Section A priori graph modeling

covers the details of this algorithm.

• Step 2—Visual feature extraction. The original image containing multiple pills is passed

through a Convolutional Network (ConvNet) for extracting visual features and a Region

Proposal Network (RPN) for detecting potential Regions of Interest (RoI). The outputs of

the two modules are fed into an RoI pooling layer to filter out all visual presentations of pills

(i.e., RoIs). It is worth noting that the Visual Feature Extractor described here follows the

architecture of the two-step object detection architecture (e.g., Faster RCNN [15]). However,

PGPNet can also be implemented with one-step detection architecture.

• Step 3—Inter-pill relational feature extraction. The two a priori graphs are aggregated

with the pills’ visual features to yield condensed versions of the Co-graph and Size-graph

that highlight the relationship between only those pills that are likely to appear in the image.

Besides, the pills’ visual features are leveraged to construct a so-called Visual semantic graph
that captures the pills’ relationships encapsulated under their appearances.

Fig 3. Workflow of PGPNet.

https://doi.org/10.1371/journal.pone.0291865.g003
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• Step 4—Multi-modal data fusion. Now, the inter-pill relational and intra-pill visual features

are fused to obtain enhanced feature vectors, each of which encapsulates the characteristics

of a pill as a standalone and its relationship with other pills. These enhanced feature vectors

are used to offer the final results.

A priori graph modeling

In this section, we describe our method to construct the two generic graphs, namely the co-

occurrence Graph (i.e., Co-graph) and relative size graph (i.e., Size-graph) in Sections Pre-

scription-based co-occurrence graph modeling and Relative size graph modeling,

relatively.

Prescription-based co-occurrence graph modeling. We propose to leverage an external

source, namely prescriptions, to build the co-occurrence graph. The rationale behind our idea

is that, as most pills are intended to cure or alleviate certain diseases or symptoms, there is a

significant likelihood that pills meant to treat the same diseases will appear concurrently.

Thus, the implicit relationship between the pills can be modeled by assessing the direct interac-

tion between medications and diseases derived through prescriptions. Our Co-graph,

Gc ¼ hV;E;Wci, is a weighted graph whose vertices V represent pill classes, and whose edges’

weights Wc reflect the co-occurrence likelihood of the pills. As the association between pills is

not explicitly present in the prescriptions, we model this relationship utilizing the interaction

between medications and diseases using the following criteria.

• There is an edge between two pill classes, Ci and Cj, if and only if they have been prescribed

for at least one shared disease.

• The greater the weight of an edge Eij connecting pill classes Ci and Cj, the more likely that

these two medications will be prescribed simultaneously.

We first define a so-called Diagnose-Pill impact factor, which reflects how important

a pill is to a diagnosis. Inspired by the Term Frequency (tf)—Inverse Dense Frequency (idf)

often used in the Natural Language Processing domain, we define the impact factor of a pill Pj

to a diagnosis Di, denoted as IðPj;DiÞ, as follows

IðPj;DiÞ ¼ tfðDj; PiÞ � idfðPiÞ ¼
jSðDj; PiÞj

jSðDjÞj
� log

jSj
jSðPiÞj

; ð1Þ

where S represents the set of all prescriptions, SðDj; PiÞ depicts the collection of prescrip-

tions containing both Dj and Pi, and SðDjÞ illustrates the set of prescriptions containing Dj.

Intuitively, tf(Dj, Pi) measures how often pill Pi is prescribed for diagnosis Dj; thus it

reflects the significance of Pi regarding treating Dj. However, in practice, some pills are

more popular among prescriptions (e.g., Sustenance, Dorogyne, Betaserc, etc.), which may

cause negative bias when applying only the tf term. That effect can be mitigated by the

term idf(Pi).

Once finished formulating the impact factors of the pills and diagnoses, we transform

each term IðPj;DiÞ into a probabilistic view by a simple normalization over all diagnoses as

follows:

pðPj;DiÞ ¼
IðPj;DiÞ

P
D2DIðPj;DÞ

; ð2Þ
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where D denotes the set of all diagnoses. Given p(Pj, Di), we define the weight Wc(Pi, Pj) of

the edge Eij connecting vertices Pi and Pj as the probability p(Pi, Pj) that Pi and Pj are pre-

scribed for the same diseases. Wc(Pi, Pj) can be formulated as follows.

WcðPi; PjÞ≔ pðPi; PjÞ �
X

D2D

pðPi;DÞ � pðPj;DÞ: ð3Þ

Relative size graph modeling. The Size-graph is represented by a directed graph

Gs ¼ hV;E;Wsi. The edge weight Ws is modeled so that the weight of an edge ~Eij connecting

from Pi to Pj is proportional to the size ratio of Pi to Pj. The primary source for constructing

the Size-graph is the annotations of the training dataset’s bounding boxes. As the camera

locations for multiple pictures are different, the exact size of each bounding box cannot be

utilized directly. Therefore, we instead define a so-called size indicator, a normalized repre-

sentation of pill size, which is determined as follows.

• Step 1: We begin with an arbitrary pill class by initializing its size indicator to 1, while those

of other pill classes are initialized to 0.

• Step 2: From the current node Pi, we traverse through all its 1-hop neighbors Pj, and calcu-

late Pj’s size indicator sj as sj≔si �
jBjj

jBi j
, where Bi, Bj are the two bounding boxes of Pi and Pj in

a particular image in the training set. Step 2 is repeated until all the vertices of Gs are

traversed.

Given the size indicators of all vertices, we now define the weight of edge ~Eij as the ratio of si

to sj.

Visual feature extractor

This block is responsible for localizing and extracting the features of Regions of Interest

(RoIs). For this purpose, we adopt components from Faster RCNN [15], a conventional two-

step object detector architecture. Nevertheless, our proposed framework is compatible with

any alternative object detection architecture. The Visual Feature Extractor consists of three

components: a Convolutional Network, a Region Proposal Network, and an RoI Pooling

Layer, as depicted in Fig 3. RPN is a fully convolutional network that takes the visual feature

vector from the previous module and generates proposals with various scales and aspect ratios.

The RoI Pooling layer works simply by splitting each region proposal into a grid of cells and

then applying the max pooling operation to each cell in the grid. The combination of the grids’

values forms the visual feature vectors of the RoIs.

Inter-pill relational feature extractor

To enhance the efficacy of this a priori, we observed that rather than the whole graphs repre-

senting the interaction between all pills, we should utilize sub-graphs concentrating on the

ones most likely to appear in the image. Motivated by this observation, we employ the Inter-

Pill Relational Feature Extractor, responsible for extracting condensed sub-graphs from

generic Co-graph and Size-graph. Moreover, previous studies have pointed out that the

appearance of pills conveys implications about their efficacy or ingredients [16]. In light of

this, utilizing pills’ visual feature vectors, we develop a visual-based graph that models the

implicit relationship between medications indicated by their visual appearance.

Condensed co-graph and size-graph. Our main idea is to employ a so-called Pseudo Classi-
fier, which provides approximate classification results using solely visual features of RoIs.
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Effectively, the pills could be divided into two categories: simple samples and difficult samples.

Pseudo Classifier can readily recognize the former group since they possess distinguishable

visual characteristics. However, the latter require extra information about nearby tablets to

help in their recognition. These temporary identification results produced by our Pseudo Clas-

sifier are then utilized as a filter layer to eliminate redundant information from the original

Co-graph and Size-graph, leaving only relevant contextual information about pill classes prob-

able to appear in the input image.

In our current implementation, the pseudo classifier is straightforwardly implemented as a

fully connected layer. Let N be the number of pill classes and M be the number of pill bounding

boxes (i.e., RoIs) in the input image. Suppose P = [pij]M×N is the matrix whose row vectors rep-

resent the logits produced by the pseudo classifier, and Ac ¼ ½ac
kl�N�N , As ¼ ½as

kl�N�N denote the

weighted adjacency matrices of the Co-graph Gc and Size-graph Gs, respectively. The con-

densed adjacency matrices, denoted as ~Ac and ~As are matrices of size M × M; each row depicts

the condensed relational information of a pill, i.e., a specific RoI, with others in the input

image. ~Ac and ~As are obtained by performing a composition of matrix multiplications as fol-

lows.

~Ac ¼ sðPÞ �Ac � sðPÞ
T

ð4Þ

~As ¼ sðPÞ �As � sðPÞ
T
; ð5Þ

where σ denotes the Softmax activation function. Intuitively, the item in the i-th row and j-
th column of ~Ac and ~As highlights the relationship between the i- and j-th RoIs.

Visual semantic graph. As mentioned above, the visual semantic graph ~Gv ¼ h
~V ; ~Ev;

~Wvi

is in charge of capturing the visually semantic correlation among pills in the input image. The

detailed algorithm to construct this graph is as follows. All visual feature vectors are first passed

through a non-linear function F : Rh
! Rh0

to transform from the original h-dimensional

space into a h0-dimensional latent one, where their relationship can be best presented. The

latent output vectors are then directly used for calculating the correlations between RoIs. Let

Ri, Rj be two RoIs in the input image, and zi, zj are their feature vectors created by the Visual

Feature Extractor block, the weight of the edge connecting Ri and Rj is defined as

~WvðRi;RjÞ ¼ zi � zj.

Multi-modal data fusion

After going through the second and third blocks, we get the visual features of the RoIs and

three relational graphs representing the relationships between the RoIs. This information is

now fed into the Multi-modal Data Fusion to generate the final feature vectors, each of which

encapsulates both the intra-Pill visual characteristic of an RoI and the inter-Pill interaction of

that RoI with the others. The Multi-modal Data Fusion comprises two steps: graph embed-

ding and data concatenation. The former obtains the heterogeneous relational graph G and

transforms it into context features in the vector space, while the latter concatenates the con-

text feature vectors with visual features to generate the final enhanced features. We utilize the

Graph Transformer Network (GTN) [17] for graph embedding. The reason for choosing the

GTN is due to its ability to handle heterogeneous input and adaptive graph structures. Before

going into the details of the GTN, it is crucial to define the node attribute of graph ~G . As each

node of ~G represents an RoI, the node attribute should be the most representative characteris-

tic of the ROIs. Using the retrieved RoI visual features to depict the relevant ROIs is the most
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natural solution but is not advantageous due to several factors, including the unreliability in

dealing with ambiguous samples or the intra−variance in visual features of one class [18]. To

this end, classifier weights have been introduced as a simple yet effective alternative. Accord-

ing to [19], the classifier weights connected to the i-th neuron in the last layer (which is

denoted as ωi = [ω1i, . . ., ωHi]
T in Fig 4(a)) correspond to the i-th pill class, encapsulating the

representative characteristics of this class. Let pk = [pk1, . . ., pkN] be the logit vector of the k-th

RoI, where pki depicts the likelihood for the k-th RoI to be classified into the i-th class; we

define
PH

i¼1
pku � oi the attribute of the k-th RoI. Intuitively, this attribute can be considered

a decomposition of the RoI’s characteristic in the space of the classes’ features.

Fig 4(b) depicts the GTN’s architecture, which consists of two phases. The former can be

seen as a meta-path generator that fuses information from multiple input adjacency matrices

to generate a composite graph structure. This newly generated graph serves as the second

stage’s input, which comprises a Graph Convolutional Network (GCN) and is responsible for

producing a representation for each node.

Specifically, the GTN consists of l Graph Transformer (GT) layer; the l-th layer applies the

C-channel 1D convolution operation on the input graph ~G to obtain a stack of new graph

structureQðlÞ
1
2 RM�M�C

as follows.

QðlÞ
1
¼ Fð~G ; WðlÞ

� Þ ¼ �ð
~G; sðWðlÞ

� ÞÞ; ð6Þ

where ϕ indicates the convolution layer, WðlÞ
� 2 R

C�1�1�K represents the parameter of ϕ, and K
implies the number of relations contained in the original graph ~G . The stacked graphQðlÞ

1

serves as the first component in creating length l meta-paths, whileQðlÞ
2

is taken as ~G ðl� 1Þ, i.e.,

~G ðlÞ ¼ QðlÞ
2
�QðlÞ

2
. To balance computational overheads and model performances, with

PGPNet, we fix l = 2.

The resulting graph ~G ð2Þ, together with RoIs’ representative features XRoI, are then utilized

as the input for the Graph Convolution Network (GCN) to generate the final node presenta-

tions. These vectors are directly concatenated with their corresponding RoIs’ visual features

before getting fed into the Bounding Box Regressor and Classifier to produce the final detec-

tion results.

Fig 4. Illustration of Graph Transformer Network. (a) Node attribute modeling. The classifier weights

corresponding to each pill class capture the representative features of this class. (b) Graph Transformer Network

(GTN) architecture [17]. GTN selects adjacency matrices from a set of matrices for a heterogeneous graph and learns

new meta-path graphs by multiplying two selected adjacency tensors.

https://doi.org/10.1371/journal.pone.0291865.g004
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PGPNet’s losses

This section presents details about our model’s objectives and the corresponding losses to

achieve those goals. We employ two types of losses. The former is the conventional two-step

object detector’s loss, which determines pills’ bounding boxes and produces the final pill classi-

fication result. While the latter is our proposed auxiliary loss that utilizes the co-occurrence

graph to enhance the accuracy of the Pseudo Classifier.

Two-step object detectors’ losses. The region proposal network’s losses. The loss for

Region Proposal Network consists of two components: classification loss combined and

bounding box regression loss. Let pi; p∗i be the predicted probability of anchor i being an object

and the ground truth label whether anchor i is the object, respectively; ti and t∗i depict the dif-

ferences of four predicted coordinates, and the ground truth coordinates with the coordinates

of the anchor boxes, respectively. The classification loss Lcls and bounding box regression loss

Lbox are defined as follows.

LRPNðfpig; ftigÞ ¼
1

Ncls

X

i

Lcls pi; p
∗
i

� �

þ
l

Nbox

X

i

p∗i � L
smooth
1

ti � t∗i
� �

;

ð7Þ

where

Lsmooth
1

ðxÞ ¼
0:5x2 if jxj < 1

jxj � 0:5 otherwise
:

(

ð8Þ

Here Lcls is a binary classification log loss, Ncls and Nbox are two normalization terms, where

Ncls is set to the mini-batch size, while Nbox is the number of anchor boxes. λ is a hyper-param-

eter, which is responsible for balancing between Lcls and Lbox.

Output’s losses. The PGPNet’s final results consist of the coordinates of the RoIs’ bounding

boxes and predicted labels for the RoIs. We employ two distinct losses to accomplish this

objective. While the loss for a bounding box regressor is equal to that of the RPN network, the

classification loss Lout
cls is instead the cross entropy loss for the multilabel classification task,

which is represented as follows Lout
cls ¼ �

PN
i¼0

p∗i logðpiÞ.

Triplet co-occurrence enhancement loss. In this section, we propose an auxiliary loss

named Triplet Co-occurrence Enhancement Loss which leverages the co-occurrence graph to

boost the accuracy of the Pseudo Classifier. The idea behind the auxiliary loss is that it encour-

ages the co-occurrence likelihood of pills that are close together on the co-occurrence graph.

To this end, we construct our auxiliary loss as a contrastive loss that maximizes the co-occur-

rence probability of positive pairings (i.e., pills joined by edges with the most significant

weights in the co-occurrence graphs) while minimizing the co-occurrence probability of nega-

tive pairs (i.e., pills that are not connected or connected by edges with the smallest weights). In

action, for each training mini-batch, PGPNet would treat all the ground truth pills in given

images as the set of anchors and build up their corresponding positive as well as negative sets.

After that, Triplet Co-occurrence Enhancement Loss would do its job of enhancing the robust-

ness of the Pseudo Classifier. The detail of the auxiliary loss is as follows.

Let’s denote the i-th Region of Interest as Ri with its corresponding label of li. Moreover, let

Ni
pos and Ni

neg be the positive and negative samples of Ri, where Ni
pos comprises k + 1 nearest

neighbors and Ni
neg consists of k + 1 furthest neighbors of Ri. We suppose that the groundtruth

labels of Ni
pos and Ni

neg are Lpos ¼ fl0pos; l
1
pos; . . . ; lkposg, and Lneg ¼ fl0neg; l

1
neg; . . . ; lknegg, respectively.

PLOS ONE High accurate and explainable multi-pill detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0291865 September 28, 2023 12 / 27

https://doi.org/10.1371/journal.pone.0291865


The auxiliary loss concerning the i-th RoI is defined by

Li
aux ¼ piðliÞpðNi

posÞ � ð1 � piðliÞÞpðNi
negÞ

¼ piðliÞ
Xk

j¼0

½1 �
YM

m¼0

ð1 � pmðl
j
posÞÞ�

� ð1 � piðliÞÞ
Xk

q¼0

½1 �
YM

n¼0

ð1 � pnðl
q
negÞÞ�;

ð9Þ

and those for RoI is Laux ¼
PM

i¼0
Li

aux. In Formula (9), M is the total number of RoIs in the

image, p is the output after going through softmax activation of logits produced by the

Pseudo Classifier. The objective during the training process is to maximize Laux, which in turn

maximizes each positive term piðliÞpðNi
posÞ while minimizing the negative opposition

ð1 � piðliÞÞpðNi
negÞ.

Dataset and experiment settings

We conduct extensive experiments to validate the effectiveness of the proposed approach. In

the following, we first introduce our in-house pill identification dataset, called VAIPE, which

will be used to evaluate the proposed approach, and then explain our evaluation metrics and

experimental settings. To assess the effectiveness of the proposed method, we conducted com-

parative assessments against a number of established models, including the detection back-

bones we selected, such as Faster R-CNN [15] and YOLOv5 [20], as well as other related

frameworks such as SGRN [21] and the Mask RCNN-based approach described in [7]. We

also perform ablation studies to investigate the efficiency of key components in our

framework.

Dataset and pre-processing

Motivation. To the best of our knowledge, previous studies on the pill identification prob-

lem [6, 22, 23] only focus on datasets collected in constrained environments. For instance,

existing datasets such as NIH Dataset [14] are constructed under ideal conditions in lighting,

backgrounds, and equipment or devices. The CURE dataset [6] provides only one pill per

image. Hence, these datasets do not reflect the real-world scenarios in which patients take an

arbitrary number of drugs, and their environmental conditions (e.g., backgrounds, lighting

conditions, mobile devices, etc.) are greatly varied. Additionally, many pills have nearly identi-

cal visual appearances. The fact that they appear alone in the images of these datasets will inevi-

tably confuse the detection frameworks. Consequently, none of the existing datasets can be

directly applied to the real-world pill detection problem or can only be applied with low reli-

ability. There is no publicly available dataset of these pills images in which the pills follow the

intakes of actual patients. This limits the development of machine learning algorithms for the

detection of pills from images as well as for building real-world medicine inspection applica-

tions. To address this challenge, we build and introduce a new, large-scale open dataset of pill

images, which we called VAIPE.

Data descriptor. The VAIPE is a large-scale and open pill image dataset for visual-based

medicine inspection. The dataset contains approximately 10,000 pill images that were manu-

ally collected in unconstrained environments. In this study, no hypotheses or new interven-

tional procedures were generated. Also, no investigational products or clinical trials were used

on patients. In addition, there were no changes in treatment plans for any patients involved.
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Pill images were retrospectively collected, and all identifiable information about patients was

de-identified. Therefore, there was no requirement for ethics approval [24].

Pill images are collected in many different contexts (e.g., various backgrounds, lighting con-

ditions, in-hand or out-of-hand, etc.) using smartphones. These images are then manually

labeled using the information from the relevant prescriptions. In summary, the number of

pills per image is about 5 − 10, and the total number of pill images collected was 9, 426 pill

images with 96 independent pill labels. To train the proposed deep learning system, the pill

images from the VAIPE dataset are resized so that the shortest edges have a size of 800, with a

limit of 1, 333 on the longer edge. The ratios are kept the same as the original images if the

max size is reached, then downscaled so that the longer edge does not exceed 1, 333.

Data validation. Patient privacy was controlled and protected. In particular, all images

were manually reviewed to ensure that all individually identifiable health information of the

patients has been removed to meet the General Data Protection Regulation (GDPR) [25].

Annotations of pill images were also carefully examined. Specifically, all images were manually

reviewed case-by-case by a team of 20 human readers to improve the quality of the

annotations.

Comparison with existing datasets. Table 1 provides a summary of the aforementioned

datasets (including NIH, CURE, and VAIPE) together with other ones of moderate sizes,

meta-data, and other properties. Compared to the two previous datasets, the VAIPE dataset is

constructed under a much more flexible procedure that reflects the characteristic real-world

data distributions. Hence, the introduced dataset can serve as a reliable data source for training

generic pill detectors.

Evaluation metrics

We evaluate the proposed method and other related works by the COCO APs metrics [26].

This set of metrics is widely accepted and used for evaluating state-of-the-art object detectors.

Mean Average Precision (mAP), as its name suggests, is the mean of Average Precision (AP)

overall C classes and all the targeted IoU thresholds in the threshold set T calculated by

mAP ¼ 1

CjTj

PC
i

P
t2T APi;t, where Average Precision (APi,t) is the area under the Precision-

Recall curve, calculated for the class i at a given IoU threshold t.

Comparison with state-of-the-art methods

Comparison benchmarks. To show the effectiveness of the proposed method, we con-

ducted a comparison with the state-of-the-art object detectors, including our detection back-

bones: Faster R-CNN [15], YOLOv5 [20], and related works: SGRN [21], Mask RCNN-based

approach [7]. Throughout the literature, the baseline with which PGPNet presently integrates

Table 1. An overview of existing public datasets for the task of image-based pill detection.

NIH CURE VAIPE

Number of pill images 7,000 8,973 9,426

Number of pill categories 1,000 196 96

Number of capture devices 1 1 > 20

Instance per category 7 40-50 > 30

Illumination conditions 1 3 > 50

Backgrounds 1 6 > 50

Number of prescriptions 0 0 1,527

https://doi.org/10.1371/journal.pone.0291865.t001
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is Faster R-CNN [15]; hence, the original framework is utilized for our comparison. We adopt

two different CNNs and one Transformer-based module for visual feature extractor, namely

ResNet-50-C4, ResNet-50-FPN and Swin Transformer V2—SwinV2 [27]. Specifically, for two

ConvNets, we use a single feature map produced by convolution block C4 of the ResNet-50

model in ResNet-50-C4. In ResNet-50-FPN, we replace C4’s feature map with multi-scale fea-

ture maps produced by Feature Pyramid Network (FPN) [28]. As for the Swin Transformer

module, we are currently utilizing the SwinV2-T configuration [27] to ensure that the number

of model parameters is comparable to that of ResNet-50. In addition, we also make adaption

for PGPNet with YOLOv5 [20] detection backbone. Two configurations of YOLOv5s and

YOLOv5n are currently adopted. Also, the most relevant frameworks compared with our

PGPNet are also put into comparison: a representative approach that utilizes an external

knowledge graph for Object Detection task [21]; a Mask RCNN-based baseline that also pro-

posed to solve the same task of multi-pill detection [7]. For a fair comparison, a fixed set of

hyper-parameters is used for PGPNet throughout all experiments.

Implementation details

We conduct all the experiments using Pytorch (version 1.10.1) on an Intel Xeon Silver 4210

2.20GHz system with 2 × NVIDIA GeForce RTX 3090 GPUs. We train and test all targeted

models on the training and testing sub-datasets of the VAIPE dataset provided in Table 2. Spe-

cifically, we initialize all the networks with the weights achieved by pre-training them on

COCO 2017 dataset [29]. We then train the models in 20, 000 iterations with a batch size of 16

without the use of Early Stopping strategy. AdamW [30] optimizer is used with an initial learn-

ing rate of 0.001. We also preprocess the training data by applying simple augmentation tech-

niques: random horizontal and vertical flips; random rotation to prevent overfitting. During

the evaluation process, no augmentation is used. For our PGPNet implementation, we set the

dimensions of node embeddings at 64. We also design the Graph Transformer Module with

only one layer and 10 channel set.

Experimental results

This section reports our experimental results. We evaluate the effectiveness of PGPNet in three

aspects: robustness, reliability, and explainability. The details are described below.

Robustness and reliability of PGPNet

Comparison with Faster R-CNN and YOLOv5. Detection performance. Table 3 shows

the experimental results of PGPNet and the state-of-the-art object detector frameworks

(Vanilla), e.g., Faster R-CNN (two-step detector), and YOLOv5 [20] (one-step detector) on the

VAIPE dataset. As shown, PGPNet obtained better results than Faster R-CNN by large perfor-

mance gaps for all evaluation metrics. Specifically, when using the ResNet-50-C4 model as the

visual feature extractor model, the average precision mAP of Faster R-CNN was 62.6, while

that of PGPNet was 68.3. The proposed method improves the performance over the baseline

Faster R-CNN by 9.2%. Under strict metrics, e.g., AP75, PGPNet also outperforms Faster

Table 2. Details of training and testing datasets.

Training dataset Testing dataset

Prescriptions Images Prescriptions Images

1,527 (100%) 7,514 (78%) 0 (0%) 1,912 (22%)

https://doi.org/10.1371/journal.pone.0291865.t002
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R-CNN 8–9%. In addition, we observed similar behavior when using the ResNet-50-FPN

model. The proposed PGPNet makes an improvement of 9.4% for the mAP metrics. With a

Transformer-based backbone, here a Swin Transformer V2 configuration—SwinV2-T [27],

the results are slightly worse compared to those produced by ResNet-based counterparts, for

both the vanilla and PGPNet alternatives. However, PGPNet still shows its superior when

being installed with this backbone, as the empirical result for AP metrics is improved by 4.8%

compared to the vanilla SwinV2-T Faster R-CNN model.

For YOLOv5, PGPNet outperformed Vanilla by a significant margin across all performance

metrics in both YOLO instances. Specifically, the average precision AP of the vanilla model

with YOLOv5n was 37.9, while that of PGPNet was 43.0 (12% improvement). In the case of a

larger alternative, YOLOv5s, a similar conclusion can be drawn, namely that PGPNet

improves overall mAP metrics by 5.9, e.g., 10.2%.

Fig 5 visualizes the AP for all classes in the dataset when using Faster R-CNN as the back-

bone. The first three bins denote Faster R-CNN alternatives, and the latter three are the corre-

sponding PGPNet configurations. The dots in the figure represent AP values for classes; the

vertical line is the indicator for the mean value, while the rectangle bar is the 95% High-Den-

sity Interval (HDI) band. Apart from the fact that the mean AP over all classes of PGPNet

Table 3. Comparing PGPNet’s detection performance with state-of-the-art vanilla object detectors on VAIPE dataset. Best results are highlighted in bold text.

Method mAP AP50 AP75 APs APm APl

Two-step Faster R-CNN (ResNet-50-C4) Vanilla 62.6 87.0 74.4 75.0 58.3 62.9

PGPNet 68.3 (+9.2%) 92.5 81.7 80.0 64.3 68.7

Faster R-CNN (ResNet-50-FPN) Vanilla 63.7 86.6 76.9 71.2 58.1 64.6

PGPNet 69.7 (+9.4%) 94.4 83.4 90.0 66.4 70.1

Faster R-CNN (SwinV2-T) Vanilla 59.7 84.5 72.3 66.9 54.0 60.1

PGPNet 62.6 (+4.8%) 87.2 75.5 68.6 56.6 62.9

One-step YOLOv5n Vanilla 37.9 50.8 45.4 87.5 49.1 38.3

PGPNet 43.0 (+12.0%) 58.4 51.3 82.5 52.4 43.7

YOLOv5s Vanilla 57.5 75.8 68.3 85.0 58.3 57.0

PGPNet 63.4 (+10.2%) 85.9 76.4 89.9 58.3 64.1

https://doi.org/10.1371/journal.pone.0291865.t003

Fig 5. Comparison of the PGPNet performance with the Faster R-CNN baseline over each individual class.

https://doi.org/10.1371/journal.pone.0291865.g005
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variances is better than those produced by Faster R-CNN, we found that PGPNet also has

more reliable and stable results over all classes. Specifically, PGPNet helps to improve the AP

of classes that Faster R-CNN frequently confuses (the points with low APs in the blue and pink

beans). As a result, the three beans of Faster R-CNN exhibit a large variance, i.e., the AP ranges

from 0 to around 90. In contrast, the beans of PGPNet performance are more condensed and

have shorter tails, i.e., the AP ranged from 40 (or 50) to around 90. By integrating both the

visual data presented in Fig 5 and the numerical results outlined in Table 3, we can observe

that our PGPNet model has effectively enhanced the detection accuracy for hard labels

(through the introduction of reduced variances in the AP scores of different classes as illus-

trated in Fig 5), leading to improved overall AP scores as shown in Table 3.

Pill classification accuracy. To further investigate the robustness of the proposed PGPNet,

we adopt the visualization techniques presented in [31] to understand the prediction accuracy

(of the pill classification task) better. In this technique, all models’ predictions are categorized

by their confidence scores into different bins, in which the average accuracy can be calculated.

By observing the confidence-accuracy correlation, we can tell whether the models are under or

overconfident with their predictions [31]. Fig 6(a) visualizes those reliability plots of Faster

R-CNN and PGPNet. It implies that both models have a propensity toward overconfidence, as

the average accuracy of each confidence band is lower than the mean confidence score of that

bin. However, that tendency is greatly alleviated in the circumstance of PGPNet, which means

that the bins’ heights are much closer to the perfect Confidence-Accuracy balance line (the red

dashed diagonal line). Fig 6(b) compares PGPNet’s confidence-accuracy correlation with that

of YOLOv5. With this backbone, we observed that the proposed PGPNet could produce pre-

dictions with a high level of reliability. All the heights of bins are much closer to values sug-

gested by the perfectly-balanced line compared to Vanilla’s result.

Comparison with existing relavant frameworks. Our work is the first to leverage an

external graph in dealing with the Pill Detection challenge; thus, none of the preceding works

are genuinely tight-correlated. Indeed, earlier research only shared some common ground

with our approach: (1) About methodology or (2) about the research problem.

For the first group, there are works that utilized external information to solve the Object

Detection problem. We adopt one of the most current studies in this direction—[21] to solve

our targeted problem and serve as a baseline for PGPNet. Spatial-aware Graph Relation Net-

work (SGRN) [21] is a framework that adaptively discovers and incorporates key semantic and

spatial relationships for reasoning over each RoI.

With respect to the research problem, as stated earlier, while there are many works that tar-

get the single-pill detection problem [4–6], only a few directly solve the task of detecting

Fig 6. Reliability investigation for PGPNet and different baseline performances. (a) Faster R-CNN. (b) YOLOv5. (c)

SGRN.

https://doi.org/10.1371/journal.pone.0291865.g006
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multiple pills per image [7, 13]. We attempt to adopt the most recent technique proposed in

[7] as another baseline to compare with PGPNet. In the original work, the authors’ purpose is

somewhat different from ours, since they attempt to develop a framework that is solely trained

on single-pill images since they argue that the multi-pill dataset would scale up exponentially if

the number of pills increased. This argument is not held in our intuition, and we believe, in

reality, that the pills taken together have to be prescribed by pharmacists. We keep the pipeline

as the original work, with some adoptions for working with our VAIPE dataset: (1) Change

Mask R-CNN to Faster R-CNN; (2) The training single-pill dataset is cropped from our

VAIPE dataset with bounding box annotations; (3) The automated data labeling process is

skipped. Since the original work did not name the proposed pipeline, we called it Kwon’s Pipe-
line for short.

Detection performance. Table 4 summarizes the comparison of PGPNet, SGRN and Kwon’s

Pipeline when adopting the visual feature extractor architecture from Faster R-CNN with the

Resnet-50-FPN model.

Clearly, SGRN outperforms the baseline Faster R-CNN in terms of overall performance but

could not outperform our proposed method PGPNet. Specifically, the mAP metrics achieved

by SGRN is 65.9, and PGPNet achieves the better score with a gap of nearly 4. Upon other met-

rics, AP50, AP75, APs, APm, and APl, PGPNet shows its superiority by enhancing the perfor-

mance from 5.1% (e.g., in AP75 metrics) up to 17.1% (e.g., in APs metrics). This is an expected

result because SGRN reveals a major weakness when applying to the challenge of Pill Detec-

tion. The spatial relationships between pills in an image are arbitrary and frequently changed.

Such noisy and unreliable information leads to the performance of SGRN being unstable and

sometimes not producing good enough results. In the case of Kwon’s Pipeline, the situation is

even worse since it cannot even beat the vanilla one-step Faster RCNN trained with the mut-

ple-pill VAIPE training set. The result of this pipeline is 43.1% and 48.2% worse than vanilla

Faster R-CNN and PGPNet, respectively. One reason for this deficiency is owing to the quality

of its training data. There are many circumstances in which overlap or occlusion occurs,

which makes the cropped images also contain parts of other pills.

Pill classification accuracy. Fig 6(c) shows the correlation between the confidence and accu-

racy of PGPNet in comparison with those of SGRN. Both the frameworks are based on the

Faster R-CNN backbone and achieve similar results, e.g., an overconfidence trend in every

bin. All the predictions with confidence scores smaller than 0.2 are totally unreliable (with 0%

accuracies). In addition, PGPNet also shows its superiority over SGRN in some bins, in which

the overconfidence situation is reduced effectively. We do not plot the Confidence-Accuracy

of Kwon’s Pipeline owing to the apparent performance gap compared to our PGPNet.

Ability in dealing with hard samples. In the following, we investigate the ability of

PGPNet to deal with the occlusion phenomenon caused by overlapping pills, which is one of

the most critical issues in dealing with multi-pill detection. To this end, we create a so-call cus-
tom occlusion sub-dataset of VAIPE, which contains images with heavy occlusion phenomena,

i.e., having at least two RoIs with the IoU beyond 30% (Fig 7). We also create a custom non-

Table 4. Performance comparison of PGPNet with SGRN and Kwon’s Pipeline.

Model mAP AP50 AP75 APs APm APl

Faster RCNN [15] 63.7 86.6 76.9 71.2 58.1 64.6

SGRN [21] 65.9 88.8 79.6 76.3 61.6 66.3

Kwon’s Pipeline [7] 36.2 38.5 37.2 30.3 33.1 36.0

PGPNet 69.7 94.4 83.4 90.0 66.4 70.1

https://doi.org/10.1371/journal.pone.0291865.t004
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occlusion sub-dataset which contains samples that are in the same classes that appear in the cus-
tom occlusion sub-dataset but with no occlusion. The quantitative result is summarized in

Table 5. The (-) mark in the table suggests disregarded or unavailable metrics.

As the numbers suggest, even in cases where heavy occlusion occurs, PGPNet still shows its

superiority over Faster R-CNN. Specifically, the mAP over all classes in the custom occlusion
sub-dataset suggests a gap of 8.3% between the two approaches. Interestingly, with the aid of

classifier weight as the distinguishing characteristic for each class, PGPNet, even when dealing

with occlusion cases, still enhances the performance by 1.9% compared to Faster R-CNN han-

dling the non-occlusion case (e.g, 67.5 vs. 65.6, respectively). Fig 8 provides more information

about the AP for each class in the custom occlusion sub-dataset. PGPNet still outperforms

Faster R-CNN in most cases with a large gap and also produces a more reliable result by intro-

ducing a smaller variance over the AP metrics.

PGPNet’s explainability

This section is dedicated to analyzing the results produced by PGPNet through a specific sam-

ple. This example demonstrates that the operation of PGPNet is very congruent with our initial

motivation and that our designed architecture can materialize this motivation.

Experiment settings. In this experiment, we choose a hard sample, namely Hexinvon-
8mg, with a relatively common appearance, for investigation. Fig 9 visualizes Hexinvon-8mg
together with other pills in our dataset with almost identical visual appearance (round shape,

white tint, etc.).

As illustrated, these pills are readily confused with Hexinvon-8mg. Indeed, Fig 10 depicts an

example in which Hexinvon-8mg is miscategorized as Alpha-Chymotrypsine by Faster R-CNN.

Our PGPNet can, however, successfully distinguish Hexinvon-8mg with a high confidence

score.

Fig 7. Images with occlusion phenomena in custom occlusion dataset. The rectangles depict examples of tablets with overlapping boundary boxes.

https://doi.org/10.1371/journal.pone.0291865.g007

Table 5. Impact of heavy occlusion images on testing performance of PGPNet and Faster R-CNN.

Test dataset Custom Occlusion Non-Occlusion

Method Faster R-CNN PGPNet Faster R-CNN PGPNet

mAP 59.2 67.5 65.6 71.7

AP50 76.5 81.1 87.4 92.9

AP75 68.9 76.4 80.8 87.0

APs - - 80.0 90.0

APm 61.6 68.3 56.5 64.7

APl 60.7 70.1 65.1 70.6

https://doi.org/10.1371/journal.pone.0291865.t005
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In the following, we applied several Explainable AI techniques to explain the results inferred

by our PGPNet. The image of interest consists of three pills: LIVOLIN-FORTE, Hapenxin,

and Hexivon, as shown in Fig 10.

Explanation of the prediction results. We adopt the Excitation Backpropagation tech-

nique proposed by Zhang [32] to construct the saliency maps (Fig 11), which indicate what the

classifier has learned to produce the final results.

Firstly, for the easy samples, i.e., LIVOLIN-FORTE and Hapenxin, our model focuses pre-

cisely on those pill regions to make the prediction decision. In contrast, in the case of the hard

sample, i.e., Hexinvon-8mg, however, two regions are highlighted: one at the position of

Fig 8. Comparison of PGPNet performance with Faster R-CNN over each individual class in occlusion dataset.

https://doi.org/10.1371/journal.pone.0291865.g008

Fig 9. Some sample pills with very identical visual appearance with Hexinvon-8mg.

https://doi.org/10.1371/journal.pone.0291865.g009
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Hexinvon-8mg and the other at the location of LIVOLIN-FORTE. It indicates that the classifier

solely requires information about LIVOLIN-FORTE and Hapenxin to identify these pills. Nev-

ertheless, for Hexinvon-8mg, the classifier must additionally incorporate information about its

neighbor, i.e., LIVOLIN-FORTE. This hypothesis is also supported by the Probabilistic score

matrix shown in Fig 12. The probabilistic score matrix represents the prediction results gener-

ated by our Pseudo Classifier, which relies mainly on the pill’s visual characteristics. As dem-

onstrated, Pseudo Classifier can accurately detect the proper labels of two simple samples, with

their prediction scores approaching 1, and boost up their neighbors’ probabilities (label ID 7,

17, etc.). However, in the case of Hexinvon-8mg, the probability scores are relatively low, with

all RoIs being investigated achieving scores of only about 0.3.

Now, we utilize another explainable AI technique named GNNExplainer [33] to investigate

further the reason for identifying the hard sample, Hexinvon-8mg. GNNExplainer is a model-

agnostic architecture that can provide interpretable explanations for predictions of graph-

based models. Specifically, GNNExplainer may identify a subgraph and a subset of node fea-

tures that have a significant role in the prediction outcomes. In our experiment, we treat our

Graph Transformer Network as a module that produces regression output, i.e., the context

vectors corresponding to all RoIs. For a more comprehensible result, we set the number of

RoIs selected from the RPN module to ten, consisting of the five RoIs with the greatest object-
ness scores and the other five with the lowest score. We utilize GNNExplainer to identify the

Fig 10. Predictions for a hard sample made by Faster R-CNN and PGPNet given the same image. (a) Faster

R-CNN. (b) PGPNet.

https://doi.org/10.1371/journal.pone.0291865.g010

Fig 11. The saliency maps for each of the groundtruth labels included in the image instance. (a) Input. (b)

LIVOLIN-FORTE. (c) Hapenxin. (d) Hexinvon-8mg. For simple samples (LIVOLIN-FORTE and Hapenxin), the

classifier focuses on the exact location of the tablets to determine their identity. In contrast, for the hard case (Hexivon-

8mg), information on both Hexivon and LIVOLIN-FORTE served as evidence.

https://doi.org/10.1371/journal.pone.0291865.g011
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sub-graph that contributes the most in recognizing Hexinvon-8mg. The results are demon-

strated in Fig 13. In this figure, the white box depicts the RoI of Hexinvon-8mg, the two orange

boxes and blue boxes represent the RoIs of LIVOLIN-FORTE, and Hapenxin, respectively,

while the five gray boxes indicate the RoIs of noise. The black edges represent the vital connec-

tions, whose weights are proportionate to the width of the edges. First, there are almost no

edges between the nodes representing Hexinvon-8mg and those of the noise RoIs. It implies

that the noise RoIs do not cue the prediction of Hexinvon-8mg. In contrast, there are bolded

linkages between the RoIs of LIVOLIN-FORTE, Hapenxin, and Hexinvon-8mg. These find-

ings, along with the saliency map (Fig 11), interpret that PGPNet has learned both the visual

characteristic of the pill itself and the relationship between that pill and the others to make the

final decision.

Fig 12. Probabilistic scores produced by PGPNet’s Pseudo Classifier.

https://doi.org/10.1371/journal.pone.0291865.g012
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Ablation studies

In this section, we perform extensive ablation studies to investigate the impacts of the main

techniques proposed in our PGPNet and to investigate how each component in the proposed

method helps to improve learning performance. Specifically, we alter the Co-occurrence

Graph and observe how it affects the detection results in Section Effect of co-occurrence

graph’s quality. We then assess the effects of using the relational graphs, the Graph transformer

network, and the proposed auxiliary loss in Sections Effects of the relational graphs, Effects of

the multi-modal data fusion block and auxiliary loss, respectively.

Effect of co-occurrence graph’s quality. In this section, we perform two experiments to

observe how the performance changes when the nodes set and edges set of MCG are modified,

respectively. This can determine whether the noisy graph information can hurt the perfor-

mance of our PGPNet.

Edge set modification. We first observe the behavior of our PGPNet when adding noise

edges and removing actual edges. We set up four scenarios which are the combinations of

removing 25% and 50% of the edges in the set E1, and adding a number of synthesized edges

corresponding to 25% and 50% of the cardinality of E1.

Fig 14(a) illustrates the performance of PGPNet with all Medical Co-occurrence Graph var-

iances when put into comparison with the original one. The performance here is denoted by

the general metrics AP. As indicated by AP density, PGPNet with original MCG generates a

Fig 13. Interpretation of the prediction result for Hexinvon-8mg using GNNExplainer. (a) Bounding boxes of the

RoIs indicate the RoIs in (b) sub-graph identified by GNNExplainer, which are most influential to the prediction of

Hexinvon-8mg.

https://doi.org/10.1371/journal.pone.0291865.g013

Fig 14. Empirical result of node set and edge set modification. (a) Distributions of Average Precision recorded over all

classes produced by PGPNet with different MCG versions. (b) Distributions of Average Precision recorded over the

classes in NA set produced by PGPNet with different MCG versions.

https://doi.org/10.1371/journal.pone.0291865.g014
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more concentrated density with a smaller variance and a higher mean than other variances. In

addition, when 50% of edges are eliminated, the performance is clearly inferior to when 25%

of edges are eliminated. The figure concludes with the intriguing observation that eliminating

edges at random would result in a greater performance decrease than adding noisy edges. This

is because, even with the addition of noisy edges, PGPNet could still filter out unnecessary

information through the training process. When excluding edges, the situation is different

because the framework cannot learn the external knowledge contained in the eliminated

edges.

Node set modification. To observe PGPNet’s performance when the Medical Co-occurrence

Graph lacks information on some specific nodes—classes, we design two different scenarios.

In the first one, 25% of nodes are removed from the original graph; this set is denoted as NA.

For the latter, 50% of nodes are eliminated, and the corresponding set NB is ensured to be a

superset of NA. The performances of PGPNet in two circumstances are compared with itself

when having the full MCG, considering only the classes that appeared in the set NA.

Fig 14(b) depicts the outcome of this experiment. The AP across all NA classes is used to

evaluate performance here. As indicated by the graph, node removals also result in a signifi-

cant decrease in model performance. More interestingly, the more nodes eliminated, the

greater drop is captured. Specifically, the AP density in case MCG contains only 50% of

remaining nodes has a great variance, with the mean value only around 60%.

In the following, we study the effectiveness of the relational graphs, Graph Transformer

Network (GTN) block, and auxiliary loss. The detailed configurations are presented in Table 6.

The “+” sign indicates the presence of a component in a specific version, while the “−” denotes

the opposite.

Effects of the relational graphs. In this section, we study the effectiveness of the Size-

graph and visual-based graph. To this end, we implement two simplified versions of PGPNet,

namely PGPNet-v2 and PGPNet-v3, in which we remove the Size-graph and visual-based

graph, respectively. As shown in Table 6, eliminating the Size-graph causes a decrease in per-

formance from 3.9% to 11.1%, while omitting the visual-based graph reduces the accuracy

from 2.8% to 8.3%. An interesting finding is that the deterioration gap when removing the size

graph is more significant than that when eliminating the visual-based graph in terms of all

evaluation metrics. These findings imply the effectiveness of the Size-graph over the visual-

based graph. Moreover, it can be observed that mAP is the most impacted when the relational

graphs are removed, followed by AP50 when comparing mAP, AP50, and AP75. This can be

explained as follows. In AP75, we measure the precision of RoIs with the IoU beyond 75%,

which presumably has a high degree of confidence regarding the objective. In contrast, when

Table 6. Performance of PGPNet with the diferent combination of its components, i.e., when removing (marked as ×) / keeping (marked as ✓) the relational graph,

GTN and auxiliary loss. Numbers inside the (.) represent the gap in percentage compared to the full version of PGPNet.

Component Performance

Gc Gs Gv GTN Laux mAP AP50 AP75 APs APm APl

Faster R-CNN × × × × × 63.7 (-8.6) 86.7 (-8.4) 76.9 (-7.9) 71.3 (-20.8) 58.1 (-10.6) 64.6 (-7.8)

PGPNet-v1 ✓ × × × × 65.9 (-5.5) 91.9 (-2.9) 79.6 (-4.6) 72.5 (-19.4) 62.3 (-4.3) 66.0 (-5.8)

PGPNet-v2 ✓ × ✓ ✓ ✓ 66.9 (-3.9) 92.1 (-2.7) 81.1 (-2.8) 80.0 (-11.1) 61.3 (-5.9) 67.6 (-3.6)

PGPNet-v3 ✓ ✓ × ✓ ✓ 67.8 (-2.8) 92.9 (-1.9) 82.3 (-1.5) 82.5 (-8.3) 62.7 (-3.5) 68.1 (-2.8)

PGPNet-v4 ✓ ✓ ✓ × ✓ 68.4 (-1.9) 92.6 (-2.2) 81.7 (-2.1) 80.0 (-11.1) 64.4 (-1.0) 68.8 (-1.8)

PGPNet-v5 ✓ ✓ ✓ ✓ × 67.2 (-3.6) 91.3 (-3.5) 80.9 (-3.1) 90.0 (+0.0) 62.2 (-4.3) 67.3 (-3.9)

PGPNet ✓ ✓ ✓ ✓ ✓ 69.7 94.7 83.5 90.0 65.0 70.0

https://doi.org/10.1371/journal.pone.0291865.t006
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we reduce the IoU threshold, such as AP50 and mAP, the overlap area of the objective drops,

resulting in a model with a significant degree of uncertainty. In this case, integrating relational

graphs provides additional data that reduces uncertainty, thereby boosting detection accuracy.

Effects of the multi-modal data fusion block and auxiliary loss. To investigate the effec-

tiveness of the GTN, we implement PGPNet-v4, omitting the GTN block and relying solely on

the GCN to learn the node representation. Results in Table 6 reveal that GTN enhances the

model’s accuracy from 1.0% to 11.1%. Comparing mAP, AP50, and AP75, AP50 and AP75 are

slightly more influenced by GTN than mAP, but the gaps are trivial. We employ PGPNet-v5,

which eliminates the proposed auxiliary loss and compare its performance with the original

PGPNet. As illustrated in Table 6, adopting our auxiliary loss may result in a 3 to 4 percent

performance gain for most evaluation metrics. In the final ablation study, we implement

PGPNet-v1, which retains only the co-occurrence graph and removes all the other compo-

nents. As depicted in Table 6, the detection accuracy degrades significantly, with a gap ranging

from 2.9% to 19.4%. However, even with this version, PGPNet is still superior to Faster

RCNN, with a performance margin of up to 7.1%.

In conclusion, the PGPNet version with all components exhibits its superiority in all evalua-

tion metrics. In addition, all versions of PGPNet are superior to the Faster R-CNN backbone,

demonstrating the contribution of each component to the overall performance of PGPNet.

Conclusion

Contributions

We proposed PGPNet, a reliable and explainable pill detection framework in real-world set-

tings. To deal with hard samples, PGPNet leveraged external knowledge, including co-occur-

rence likelihood, relative pill size, and visual semantic correlation during the training process.

We implemented PGPNet into two popular object detectors and evaluated the proposed

method on a real-world multiple pill detection dataset. The experimental results demonstrated

that it could improve these models by considerable margins. Moreover, our comprehensive

ablation studies proved the robustness, reliability, and explainability of the proposed

framework.

Limitations and future works

While our proposed PGPNet framework demonstrates significant improvement in pill detec-

tion accuracy, we are aware of some potential failure cases as follows. Firstly, when pills are

partially or completely obscured by other pills, the network may not be able to detect them

(Fig 7 illustrates some of those cases in our VAIPE dataset). The co-occurrence graph may not

provide sufficient information to detect the pills in these cases; leading to the drop of detection

accuracy. Besides, PGPNet framework relies on the co-occurrence graph and other graph-

based a priori information to enhance the precision of pill detection. If the graph construction

process or a priori knowledge is inaccurate, the detection accuracy may be negatively affected.

Notably, we conducted experiments on changing nodes and edges of a priori graphs to verify

this argument (Section Effect of co-occurrence graph’s quality). The results demonstrated that

when a priori graphs do not include all pill classes, the detection accuracy decreases propor-

tionally to the ratio of missing nodes. In addition, the edge ablation study revealed that we

achieved the highest accuracy by removing 25% of the edges with the lowest weights. This phe-

nomenon occurs because the least essential edges are potentially noisy interactions between

the pills. In addition, we are aware that in practice, new drugs are frequently introduced; thus,

pill detection solutions should be updated regularly to identify these new ones. In the PGPNet,

every time a new pill class appears, we must reconstruct the graphs and retrain the model,
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incurring a substantial computational cost. Thus, we will dedicate our future efforts to devel-

oping a continual learning mechanism that helps update the graphs and shorten the training

time when dealing with the appearance of new pill classes.
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