
Optimal Auction for Effective Energy Management for

UAV-assisted Metaverse Synchronization System

Nguyen Cong Luong1, Le Khac Chau1, Nguyen Do Duy Anh1, Nguyen Huu Sang1, Shaohan Feng2,

Van-Dinh Nguyen3, Dusit Niyato4, and Dong In Kim5

1Faculty of Computer Science, PHENIKAA University, Hanoi 12116, Vietnam
2Institute for Infocomm Research, Singapore.

3College of Engineering and Computer Science, VinUniversity, Hanoi 100000, Vietnam.
4School of Computer Science and Engineering, Nanyang Technological University, Singapore.

5Department of Electrical and Computer Engineering, Sungkyunkwan University, Korea.

Abstract—In this paper, we investigate an effective energy
management in a UAV-assisted Metaverse synchronization sys-
tem. The UAVs perform the data collection for a virtual service
provider (VSP) for the synchronization between the physical
objects and digital twins (DTs). The UAVs buy energy resources
from an energy service provider (ESP). The key issue is to
motivate both the ESP and the UAVs to participate in the
energy trading market. For this, we design a deep learning
(DL)-based auction scheme that maximizes the revenue of the
ESP while guaranteeing individual rationality (IR) and incentive
compatibility (IC). We provide numerical results to demonstrate
the improvement of the DL-based auction scheme compared to
the baseline scheme in terms of revenue, IC, and IR.

Index Terms—Digital twin, energy trading, Metaverse, optimal
auction, deep learning

I. INTRODUCTION

To provide Metaverse services to users with high quality

of experience (QoE), air-assisted Internet of Vehicles (IoVs)

such as unmanned aerial vehicles (UAVs) have been recently

proposed for the data synchronization between physical ob-

jects in the real world and digital twins (DTS) [1]. UAVs

operating in a high altitude is able to provide line-of-sight

(LoS) for the data sensing and communication to the physical

objects and to ground base stations (GBS) of virtual service

providers (VSPs). Therefore, the use of UAVs helps to reduce

time of the data sensing and data communication, which

allows the VSP to have fresh data and provide the Metaverse

services with high QoE. As a result, recent works, e.g., [1]

and [2] have investigated the use of UAVs for the Metaverse

synchronization.

However, UAVs are constrained by their energy supply, and

thus they need to be charged during their long-term opera-

tion. In general, they can be replenished from surrounding

environments [3] or electrical sources [4] which are deployed

by an energy service provider (ESP). In particular for the

electrical sources, mobile charging stations (MCSs) can be

deployed to serve UAVs conveniently. However, for the ease

of mobility, MCS typically has a smaller size and lower energy

capacity, and thus only a limited number of UAVs is served

by MCS. Therefore, the key issue is how the ESP efficiently

and effectively allocates the energy resources to the UAVs.

Another key issue is to motivate the ESP to provide the energy

resources to the UAVs as well as to motivate the UAVs to

participate in the energy trading market.

Auction is known as an appropriate solution which guar-

antees that the energy resources are allocated to the UAVs

that value the resources most. In a classical auction, buyers or

bidders compete for items (commodities) by submitting their

prices, i.e., bids, to a seller or an auctioneer. The seller then

determines the winning bidders and the prices that they need to

pay. There are three classical auction mechanisms such as the

first price auction, second-price auction (SPA), and Vickrey-

Clarke-Groves (VCG) auction [5]. In particular, the first price

auction scheme enables the ESP to achieve high revenue,

but it does not guarantee desirable economic properties such

as incentive compatibility (IC) (truthfulness) and individual

rationality (IR). Note that IC and IR are very important

properties in resource allocation mechanisms. Specifically,

IC motivates the UAVs to reveal their true values on the

resource and hence maintains the system stability. Meanwhile,

IR guarantees the non-negative utility (payoff) for the UAVs

that motivates them to participate in the energy market. To

guarantee IC and IR, the SPA and VCG auction schemes are

used. However, the SPA and VCG auction schemes do not

achieve a high revenue, which discourage the ESP to provide

the energy resources. Therefore, the problem of designing an

optimal auction to maximize the revenue for the ESP while

ensuring both IC and IR is considerably challenging [6].

Deep learning (DL) has been recently shown to find global

optimal solutions, and it was proposed for designing the

optimal auctions [6]. As presented in [6], the DL-based auction

mechanism designed for the multi-item scenario is able to

achieve the optimal revenue while guaranteeing IC and IR.

In this paper, we thus propose to use the DL-based auction

for the energy resource allocation in the UAV-assisted Meta-

verse synchronization system. Therein, we formulate valuation

functions of energy resources for the UAVs. The valuation

functions account for Metaverse synchronization parameters

apart from the remaining energy and the total energy consump-

tion of the UAVs. We design two feed-forward neural network

(FNNs) for the allocation and payment rules. The first FNN
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is to determine the winning UAVs, and the second FNN is

to determine the prices that the winning UAVs need to pay.

Based on the dataset including bidding profiles, i.e., valuation

profiles, of the UAVs, the two FNNs are simultaneously trained

to minimize a common loss function. Since the goal of the

designed DL-based auction is to fit the optimal auction that

maximizes the revenue of the ESP and guarantee IC and IR

constraints, the loss function of the two FNNs is formulated

by combining the expected revenue, IR constraints, and IC

constraints together via the augmented Lagrangian method.

We provide numerical results to demonstrate the improvement

of the DL-based auction schemes compared to the classical

auctions in terms of revenue, IC, and IR.

The rest of this paper is organized as follows. Section II

presents the UAV-assisted Metaverse synchronization system,

the energy consumption of the UAVs, and the valuation

function. Section III introduces the energy trading market

and problem formulation. Section IV provides and discusses

simulation results. Section V concludes this paper.

II. SYSTEM MODEL

Mobile charging 

station (MCS)

Real-world

Data collection 

points
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Fig. 1. a) UAV-assisted Metaverse synchronization system and b) DL-based
auction scheme.

We consider a UAV-assisted Metaverse synchronization sys-

tem as shown Fig. 1. The system consists of a set N of N

UAVs that perform sensing tasks for a virtual service provider

(VSP). The VSP has D digital twins (DTs) that are critical to

its virtual business profit. The sensing task of each UAV can

be implemented in multiple time slots. In each time slot, the

UAVs do travelling, data sensing, and data communication. In

particular, the UAVs first travel from their bases to a sensing

region. After performing sensing the physical objects in the

region, the UAVs come back to their bases and transmit the

collected data to the VSP via a ground base station (GBS)

for the DT synchronization. At their bases, the UAVs perform

the wireless charging from a mobile charging station (MCS),

which is owned by an energy service provider (ESP). Each

UAV requests energy units for their battery charging. Due

to the limited energy resources, the auction is adopted to

determine the winners of energy units and the corresponding

payments. Note that as the auction is used, all the UAVs need

to submit their bids to the ESP simultaneously. This means that

the auction does not accept any bid that arrive late. To avoid

this issue and to guarantee the QoS of the DT service, the time

duration of the travelling, data sensing, data communication,

and auction is fixed in every time slot. We denote τ as the

duration of the time slot. Then, τ is expressed as follows:

τ = τT + τS + τC + τA, (1)

where τT, τS, τC, and τA are the travelling duration, sensing

duration, data transmission duration, and auction duration,

respectively. That means all the UAVs need to finish their

travelling, sensing, and data transmission in τT, τS, and τC,

respectively.

A. Energy Modeling

We denote ETot
i as the total energy consumption of UAV

i in the time slot. In particular, ETot
i is determined as fol-

lows [7]:

ETot
i = ET

i + ES
i + EC

i , (2)

where ET
i , ES

i , and EC
i are the travelling energy, sensing

energy, and communication energy, respectively. They are

defined as follows.

1) Traversal energy: ET
i is determined as follows:

ET
i = τTP (Vi), (3)

where Vi is the flying speed of UAV i and P (Vi) is the

propulsion power consumption at speed of Vi. In general,

P (Vi) is a function of the speed of the UAV, the tip speed of

the rotor blade, the mean rotor induced velocity in hover, the

fuselage drag ratio and rotor solidity, and the air density and

rotor disc area. The formulation of P (Vi) can be found in the

literature, e.g., [8]. Without loss of generality, the UAVs have

the same types and the same speed. Thus, the propulsion power

consumption is the same for all the UAVs. As we focus on

energy trading, to minimize P (Vi) by optimizing Vi is hence

out of this paper’s scope.

2) Sensing energy: Each UAV collects the sensing data

from one physical object in the region. As performing sensing,

the UAV typically hovers a collection point, i.e., Vi = 0. Thus,

the energy consumption during the sensing stage includes the

hovering energy, i.e., P (Vi = 0), and the data aggregation

energy. We denote ϵ as the energy consumed to collect a data

bit, which is assumed to be the same for all the UAVs. We

further denote λi as the sensing rate of UAV i. Here, λi is

measured in packets per second, and each packet consists of

L bits. Given the sensing duration of τS, the sensing energy

consumption of UVA i is given by [7]

ES
i =

(

ϵSλiL+ P (Vi = 0)
)

τS. (4)

3) Communication energy: In the communication stage,

the UAVs transmit their sensing data to the VSP for the

synchronization during τC. Thus, the communication energy,

i.e., EC
i , is determined as follows.

First, we calculate the data rate achieved by UAV i given

by

Ri = B log2

(

1 +
pCi hi

σ2Γ

)

, (5)
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where B is the bandwidth assigned to UAV i, pCi is the

transmit power of UAV i, σ2 is the variance of noise, and

Γ > 1 accounts for the gap from the channel capacity due to

the practical modulation and coding scheme employed [7],

and hi is the channel gain between UAV i and the GBS

deployed by the VSP. In general, the UAVs can communicate

with the GBS by both LoS and NLoS links. However, due to

the high altitude of UAVs, the LoS communication between

the UAV and GBS dominates the NLoS communication. Thus,

we assume that there exists only the LoS communication

between the UAVs and the GBS. In particular, the channel

gains between the UAVs and the GBS depend only on the

distances between the UAVs and the GBS. Furthermore, there

is no Doppler effect caused by the UAVs’ mobility due to their

hovering. Thus, the channel gain, denoted by hi, from UAV

i to the GBS follows the free-space path loss model and is

given by [9]:

hi = β0d
−2
i , (6)

where β0 denotes the channel power at the reference distance

of d0 = 1 m, and di is the distance between UAV i to the

GBS. Note that the UAV already collects λiLτ
S bits during

the sensing stage. To transmit these bits during τC, the UAV

needs to consume the amount of energy determined by

EC
i =

(

σ2Γ

hi

(

2λiLτS/BτC

− 1
)

+ P (Vi = 0)

)

τC. (7)

As mentioned earlier, the UAVs have the same propulsion

power, and thus the hovering energy consumption of the UAVs

are the same. Therefore, the difference in the total energy

consumption among the UAVs is from the sensing energy and

the data transmission energy [7]. Therefore, we do not include

the travelling energy consumption as well as the hovering

energy consumption in the total energy consumption since they

does not impact the performance evaluation of the proposed

algorithms. Thus, the total energy consumption of UAV i is

ETot
i = ϵSλiLτ

S +
σ2Γ

hi

(

2λiLτS/BτC

− 1
)

τC. (8)

B. Reward Function

After performing the data communication, each UAV re-

ceives an incentive cost, i.e., a reward, from the VSP for its

contribution. The reward should be proportional to the quality

of sensing data that the UAV collects. Furthermore, the reward

should be proportional to the number of DTs of the VSP. We

denote ri as the reward obtained by UAV i. Then, ri can be

defined as follows:

ri =
Dη (1 + θ)λi
∑

k λk
, (9)

where θ denotes the value decay rate, e.g., reliability, of the

DTs to the VSP, and η denotes the intensity or rate at which

the synchronization activities are performed. In particular, if

η = 0, meaning that the VSP decides not to synchronize all the

DTs, then the value of DTs deteriorates a the rate θ. Otherwise,

if η > 0, the VSP can slow down the process of deterioration

of its DTs.

C. Valuation Function

In this section, we formulate valuation functions of energy

resources to the UAVs. The valuation of each UAV to an

energy unit represents how much the UAV is willing to buy the

energy unit. The valuation of each energy unit to the UAV is

proportional to its total energy consumed in the time slot and

inversely proportional to its remaining energy. In particular,

as the remaining energy of the UAV is low, it is more willing

to buy the energy resource. Moreover, the UAV has a higher

valuation to the energy unit if the reward paid by the VSP

for the sensing data collection is higher. We denote vi as the

valuation of the energy unit to UAV i and ER
i as the remaining

energy of UAV i. Then, to represent the valuation function of

UAV i, we use the α-fair function as follows [10]:

vi =

(

1 + ri
ETot

i

ER
i

)1−α

1− α
, (10)

where α ∈ [0, 1) is the scaling factor.

III. DEEP LEARNING (DL)-BASED AUCTION FOR ENERGY

TRADING MARKETS

In this section, we consider a general scenario in which the

ESP has multiple energy units to serve the UAVs. The objec-

tive is to achieve the revenue optimality while guaranteeing

IR and IC. We first introduce concepts of expected utility,

expected revenue, IR violation and IC violation as follows:

• Expected utility: We denote M as a set of M energy

units. We denote vij as the valuation of energy unit j

to UAV i. In this work, we assume the additive users,

meaning that the valuation to M energy units of each

user is the sum of individual valuations of the energy

units to the user. Also, each user can wins more energy

units to serve its long-term operation. We denote bij as

the bid that UAV i submits to the ESP for energy unit j,

where bij = 0 means that the UAV does not want to buy

energy unit j. After receiving the bids from the UAVs, the

ESP performs the allocation rule and the payment rule.

The allocation rule is denoted by g = (g1,1, . . . , gN,M ),
where gi,j represents the allocation probability of energy

unit j to UAV i. We have
∑n

i=1 gi,j ≤ 1. The payment

rule is denoted by p = (p1, . . . , pN ), where pi represents

the (total) price that UAV i needs to pay the ESP for

winning the energy units. The utility of each UAV i is

defined as follows:

ui =

M
∑

j

gi,jvi,j − pi. (11)

• Expected revenue: The expected revenue is the total price

that the ESP receives from the UAVs and determined as

R =
∑N

i=1 pi.

• IR violation: IR guarantees that the utility of each UAV

is non-negative, i.e., ui ≥ 0, as participating in the

auction. The IR violation happens if the auction results

in negative utility for any UAV. We want to design the

auction that guarantees IR, meaning that the IR violation
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is the smallest and preferably zero. We denote IRi as the

violation constraint to UAV i, and then IR is guaranteed

if IRi ≤ 0 with IRi ≜ max{0,−ui}.

• IC violation: IC guarantees that each UAV achieves the

highest utility by only submitting its truthful value as

its bid. Then, the IC violation is defined as the maximum

gain in utility that the UAV can receive if it submits an un-

truthful value knowing the bids of others [6]. We denote

ICi as the IC violation to UAV i, then we have ICi =
∑M

j=1 ICi,j , where ICi,j = ( max
v′

i,j
̸=vi,j

ui(v
′
i,j))−ui(vi,j).

As ICi is small, the utility gain that the UAV receives

when it submits a non-truthful bid is small. Ideally, ICi

is zero, meaning that the UAV has no incentive to submit

its untruthful value.

1) DL-based auction architecture and training: The auction

scheme needs to determine the allocation probabilities of the

UAVs and the prices that the UAVs need to pay. Thus, we

use two FNNs for the allocation rule and payment rule. We

denote w as the matrix containing the weights of the FNN

for the allocation rule and w
′ as the matrix containing the

weights of the FNN for the payment rule. The FFNs are used

since they map the input, i.e., the UAVs’ valuations, to the

outputs, i.e., the allocation rules and payment decisions. The

two FNNs (and their weight parameters) are independent with

each other, but they use the same UAVs’ bidding profile as

their inputs. The dataset consists of the UAVs’ bidding profile.

As explained earlier, it is hard to obtain a dataset of historical

bids of the UAVs. However, the ESP can generate and leverage

the valuations of the UAVs according to (10). We denote

vi,j as the valuation of UAV i on the energy unit j. Then,

we can express v
(q) = (v

(q)
1,1, . . . , v

(q)
N,M ) as the q-th bidding

profile in the dataset, where q = 1, . . . , Q with Q being the

size of the dataset. The FNNs designed for the allocation and

FNN for allocation rule

FNN for payment rule

Input 

layer

Output

 layer 

( )t
v

( )( , )t
g v w

( )( , ')t
p v w

( , ', , ')Lossf w w  

Hidden layersInput 

layer

Output

 layer 

Hidden layers

Fig. 2. FNNs for allocation and payment rules.

payment rules are shown in Fig. 2. In particular, the FNN for

the allocation rule consists of an input layer, multiple hidden

layers, and an output layer. The hidden layers use sigmoid

activation functions to transform each bidding profile of the

UAVs to the allocation vector g = (g1,1, . . . , gN,M ), where

gi,j refers to the probability that UAV i wins the energy unit j.

Since there may be multiple UAVs competing for the energy

unit, we use the softmax functions at the output layer to

determine the allocation probability of the energy units for

the UAVs. The FNN structure for the payment rule is similar

to that for the allocation rule. However, the output of FNN

is the payment vector of p = (p1, . . . , pN ), where pi is the

price that the UAV needs to pay the ESP for winning energy

energy units. Since the prices are not negative, the output layer

uses the ReLU functions to generate the prices. As such, the

outputs of both the FNNs are functions of the bidding profile

and FNNs’ weights, and thus we can express g(v(b),w) and

p(v(b),w′).

To stabilize the learning algorithm, we use the batch of

samples, each of which is the bidding profile, to train the

FNNs. In particular, we shuffle the whole dataset and take

randomly a batch of B samples. We denote the set of the

batch as B. We calculate the average IC violation to each

UAV i over B samples of the training batch as follows:

ICi(g,p) = −ui(v
(b)
i,j ,v

(b)
−i,−j ,g,p)+

1

B

B
∑

l=1

M
∑

j=1

(

max
v′

i,j
(b)∈B,v′

i,j
(b) ̸=v

(b)
i,j

ui(v
′
i,j

(b),v
(b)
−i,−j ,g,p)

)

,

(12)

where v
(b)
−i,−j is the bidding profile excluding the valuation of

energy unit j to UAV i. The average IR violation is

IRi(g,p) =
1

B

B
∑

b=1

max{0,−ui(v
(b),g,p)}. (13)

The objective is to maximize the revenue of the ESP, and thus

we define an expected negative revenue of the ESP as

R(g,p) = −
1

B

B
∑

t=1

N
∑

i=1

pi(v
(b),g,p). (14)

Then, the training problem over the dataset is as follows:

arg min
w,w′

R (g(w),p(w′)) (15a)

s.t. ICi(g(w), p(w′)) = 0, ∀i ∈ {1, . . . , N}, (15b)

IRi(g(w), p(w′)) = 0, ∀i ∈ {1, . . . , N}. (15c)

The constraints in (15b) are to guarantee the IR properties,

and the constraints in (15c) are to guarantee the IC properties.

The problem given in (15a) still includes the constraints,

which is not in the form of the loss function of the training.

In other words, it needs to be equivalently transferred to

an unscontrained optimization that consists of the expected

negative revenue, N IR constraints, and N IC constraints.

This can be implemented by using the augmented Lagrangian
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optimization. We denote L as the loss function, which can be

formulated as follows [6]:

fLoss(w,w′, ω, ω′) = R (g(w),p(w′))

+

N
∑

i=1

ωiICi(g(w), p(w′)) +

N
∑

i=1

ω′
iIRi(g(w), p(w′))

+
µ

2

(

N
∑

i=1

IC
2

i (g(w), p(w′)) +

N
∑

i=1

IR
2

i (g(w), p(w′))
)

,

(16)

where ω = (ω1, . . . , ωN ) and ω
′ = (ω′

1, . . . , ω
′
N ) are the

vectors of Lagrange multipliers associated with the IC and IR

constraints, respectively, and µ is the weight associated with

the constraints.

IV. PERFORMANCE EVALUATION

In this section, we present experimental results to demon-

strate the effectiveness of the proposed DL-based auction

mechanisms. Simulation parameters for the network model

are listed in TableI. The DL-based auction algorithm is im-

plemented by using the TensorFlow deep learning library.

The FNNs for the allocation and payment rules both have

2 hidden layers, and the number of neural nodes in each

hidden layer is 20. To ensure that the training phase does

not miss local minima, the learning rate is set low, i.e.,

0.001. However, this may slows down the training process.

To achieve the fast and smooth convergence, we use the

Adam optimizer in the training. For ease of presenting the

findings, the number of UAVs is set to 5 and the number

of energy energy units is 3. The training data consists of

104 valuation profiles of the UAVs. Each valuation profile

consists of {vi,j}i∈{1,2,3,4,5},j∈{1,2,3}, where vi,j is randomly

generated according to (10). For the comparison performance,
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Fig. 3. (a) Convergence of the algorithms and (b) IR and IC violations
comparison.

we use VCG-auction [5] scheme and the ENUM scheme [11].

The VCG-auction and ENUM schemes are used as baselines

since they are typically applicable in multi-item markets. With

the VCG-auction, the ESP selects the UAVs with highest bids

as winners and then charges each of them so as to maximize

the social welfare. With the aim of maximizing the social

welfare, the VCG-auction scheme as a general scheme of SPA

guarantees the truthfulness, i.e., IC, but the revenue obtained

by this mechanism is not high. With the ENUM scheme, the

ESP (i) lists the UAVs in a descending order of their bids and

(ii) iteratively selects the UAVs with the highest bids as the

winners. Each winner then pays the ESP a price equal to the

bid that it submits. As such, the ENUM scheme is expected

to obtain high revenue.

Figure 3(a) illustrates the convergence of schemes. As

seen, all the schemes are able to converge to stable revenue

values. The revenue obtained by the DL-based auction is much

higher than those obtained by the ENUM and VCG auction

schemes. These results validate the efficiency of the use of

DL in solving the auction problem. Moreover, as expected, the

revenue obtained by the VCG auction scheme is the lowest.

The reason is that the VCG auction scheme aims to maximize

the social welfare, which sacrifices the revenue of the ESP.

Next, we evaluate the performance of the schemes in terms

of IC violation as shown in Fig. 3(b). Note that the VCG

auction scheme is not shown in Fig. 3(b) since it has been

theoretically proved in the literature to guarantee IC [5]. As

seen, the IC violation obtained by the ENUM scheme is around

4.41, while that obtained by the DL-based auction is close to

zero. Clearly, the IC violation of the DL- based auction is

much lower than that of the ENUM scheme. Recall that the

IC violation is close to zero meaning that the truthfulness is

guaranteed, i.e., the UAVs have no incentive to submit their

bids that deviate from their true values.

Figure 3(b) also shows the IR violation obtained by the

ENUM and DL-based auction schemes. As seen, IR violation

obtained by the ENUM scheme is very large, i.e., around

20.2, while that obtained by the DL-based auction is almost

zero. Note that the IR violation is small, the probability that

the utility of each UAV is negative is small, and thus the

UAVs have a high incentive to participate in the energy trading

market.

Figure 4(a) shows the revenue of the ESP as the number

of UAV N varies. As the number of UAV increases, the

revenue obtained by all the schemes increases. This is due

to fact that as the number of UAVs increases, the ESP has

a higher opportunity to receive the high payments from the

UAVs. Thus, the expected revenue of the ESP increases. We

can explain in a different way that the competition among the

UAVs increases as the number of UAV increases. Thus, to

win the energy units, the UAVs need to submit higher bids,

and thus the ESP receives the high revenue. Moreover, the

DL-based auction scheme always outperforms the ENUM and

VCG auction schemes in terms of revenue regardless of N .

Figure 4(b) shows the impact of the remaining energy status of

the UAVs on the revenue of the ESP. As seen, as the remaining
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TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

Travelling time (τT) 10 s Bandwidth (B) 106 Hz

Sensing time (τS) 10 s Number of DTs (D) 5
Transmission time (τC) 10 s Sensing rate (λi) U [960× 540, 1280× 720,

β0 10−6 1920×1080, 2560× 1440] bits/packet

Sensing energy per data bit (ϵS) 50 nJ/bit Synchronization rate (η) [3, 7]
Length of packet (L) 5 packets per second Value decay rate (θ) U [0.5, 1]

Remaining energy (ER
i

) U [2, 6] Watt α [0.3, 0.7]
Noise variance (σ2) 10−11 Watt Γ 1.2

Distance between UAV i to the GBS (di) 200 m
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VCG - (8,10)

Fig. 4. Revenue versus (a) the number of UAVs and (b) the remaining energy.

energy ranges of the UAVs are low, the revenue of the ESP is

high. This is because of that as the remaining energy of the

UAVs decreases, the UAVs are more willing to buy the energy

units, and they submit higher bids.

V. CONCLUSIONS

In this paper, we have investigated the effective energy re-

source allocation in the UAV-assisted Metaverse synchroniza-

tion system. We have considered a system in which multiple

UAVs perform the synchronization between physical objects

and DTs for a VSP. For the long lifetime operation, the UAVs

buy energy resources from an ESP for their wireless charging.

To motivate both the ESP and the UAVs to participate in the

energy trading market, we have proposed a DL-based auction

in which two FNNs are designed for the allocation and pay-

ment rules. The FNNs are trained by using valuation profiles.

We have formulated the valuations of energy energy units that

accounts for Metaverse synchronization parameters. We have

provided simulation results to demonstrate the improvement

of the DL-based auction compared to the baseline schemes in

terms of revenue, IC, and IR.
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