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Abstract— In this paper, we study joint communication and
computation offloading (JCCO) for hierarchical edge-cloud
systems with ultra-reliable and low latency communications
(URLLC). We aim to minimize the end-to-end (e2e) latency of
computational tasks among multiple industrial Internet of Things
(IIoT) devices by jointly optimizing offloading probabilities,
processing rates, user association policies and power control sub-
ject to their service delay and energy consumption requirements
as well as queueing stability conditions. The formulated JCCO
problem belongs to a difficult class of mixed-integer non-convex
optimization problem, making it computationally intractable.
In addition, a strong coupling between binary and continuous
variables and the large size of hierarchical edge-cloud systems
make the problem even more challenging to solve optimally.
To address these challenges, we first decompose the original
problem into two subproblems based on the unique structure of
the underlying problem and leverage the alternating optimization
(AO) approach to solve them in an iterative fashion by developing
newly convex approximate functions. To speed up optimal user
association searching, we incorporate a penalty function into the
objective function to resolve uncertainties of a binary nature.
Two sub-optimal designs for given user association policies based
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on channel conditions and random user associations are also
investigated to serve as state-of-the-art benchmarks. Numerical
results are provided to demonstrate the effectiveness of the
proposed algorithms in terms of the e2e latency and convergence
speed.

Index Terms— Alternating optimization, multi-tier computing,
ultra-reliable and low latency communications.

I. INTRODUCTION

RECENT advances in wireless communications and pow-
erful computing platforms open new opportunities to

enable various emerging and delay-sensitive applications that
require low latency and energy consumption. Real-time mon-
itoring and control is considered to be one of core pillars
specified for the fifth generation (5G) networks, which allows
implementing holographic communications, tactile Internet
applications and telehealth applications. In order to guarantee
real-time control and manage complex systems of autonomous
devices in the industrial Internet of Things (IIoT), low latency
communications and processing plays a vital role for holistic
facilitation of such wireless networked systems. Ultra-reliable
and low latency communications (URLLC) is defined in 3GPP
Release 15, where the reliability requirement for transmitting
a packet is 1−10−5 for 32 bytes with the user plane latency of
1 ms [1]. Recently, mobile-edge computing (MEC) with com-
puting resources deployed at the network edge is considered as
a promising solution to provide powerful computational ability
and improved energy efficiency for battery-powered mobile
devices [2].

Task offloading is the key enabler in hierarchical edge-cloud
systems, allowing computation tasks to be partially executed
at both IIoT devices (or user equipments (UEs) for short)
and edge servers (ESs), thus minimizing the overall execution
time [3]. In addition, resource-intensive computational tasks of
edge servers can be offloaded and processed at the edge and
remote cloud servers (CSs) with the more powerful computing
capability. However, IIoT devices with emerging applications
and services generate a very large amount of data at the net-
work edge, which creates serious delay bottlenecks in sending
data between users and edge/cloud servers. The limited radio
spectrum may also create an unstable and intermittent network
connectivity to offload data from a massive number of UEs to
ESs, resulting high end-to-end (e2e) latency communication
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and potentially high energy consumption. To overcome these
challenges, an intelligent joint design of task offloading and
resource allocation decisions is required to reap full advantage
of edge and cloud computing to ultimately attain the optimal
e2e latency while meeting URLLC requirements and other
system constraints such as low energy consumption at edge
devices [4], [5], [6].

A. Review of Related Literature

Task offloading designs for MEC have been widely inves-
tigated in the literature (see [7] and the references therein).
In most existing works, energy-efficiency and delay-efficiency
are considered as major figure-of-merit in designing task
offloading schemes for MEC systems [8], [9], [10], [11], [12],
[13], [14]. In particular, a novel offload forwarding scheme
was proposed in [8], where fog servers (FSs) cooperate with
each other to tackle their heterogeneousness in terms of com-
putation capacity and resources, improving the efficiency of
power usage. In [9], a reformulation-linearization-technique-
based Branch-and-Bound (BnB) method was developed to
minimize the energy consumption of end devices by jointly
optimizing the offloading selection, radio and computation
resource allocation. The results in [10] showed that joint
transmission energy allocation and task allocation design can
significantly reduce the total energy consumption. The authors
in [11] developed novel BnB and heuristic algorithms to solve
the mixed-integer non-convex problems. Focusing on delay-
efficiency, a distributed BnB approach to minimize the long-
term average of the response time delay was proposed in [12].
From the economic point of view, Duong et al. [13] developed
a new market-based framework to optimize heterogeneous net-
work resources at the edge by dynamically pricing distributed
MEC servers. In [14], the authors proposed a distributed task
offloading scheme to maximize the expected offloading rates,
where the impacts of queueing dynamics and wireless network
interference are taken into account.

To guarantee low-latency wireless communication, short
packets to convey a small amount of data must be used [1].
This however will pose several challenges to design and
optimize the performance of short packet-enabled networks
since it demands for more resources (e.g., parity, redundancy)
and ultrahigh reliability. In addition, the performance analysis
of throughput and decoding error probability under the short
packet communication is more complex than the traditional
Shannon capacity under the long block-length regime. For-
tunately, the approximated achievable rate in the short block-
length regime was derived in [15], which is a simple function
of the traditional Shannon channel capacity, channel dispersion
and complementary Gaussian cumulative distribution function
for a given blocklength and error probability. Since then,
resource allocation in the URLLC-based short block-length
regime has recently studied to reduce the required bandwidth,
the packet dropping [16] and maximize the energy efficiency
(EE) [17]. Focusing on designing URLLC-aware optimization
for task offloading, Zhou et al. [18] proposed the exponential-
weight algorithm to balance URLLC constraints and energy
consumption through online learning. The authors in [4]

proposed a user-server association policy to reduce users’
power consumption while trading off the resource allocations
for local computation and task offloading.

The current literature on resource allocation in hybrid edge-
and fog-cloud computing systems is still sparse and isolated.
For example, the authors in [19] developed an efficient offload-
ing scheme to minimize the average task duration. However,
the radio resource allocation to support task offloading was not
considered in this work. Wang et al. [20] proposed a modified
BnB approach to solve the problem of power control and
task allocation, aiming to minimize the total delay, where the
energy consumption and delay requirements for each user are
taken into consideration. The work in [21] jointly optimized
the task assignment and throughput to minimize the compu-
tation latency for a single user. A non-orthogonal multiple-
access (NOMA)-aided cooperative computing scheme was
proposed in [22] that allows a single user can simultaneously
offload computation tasks to a helper and a base station. The
collaboration amongst fog/edge servers and cloud to achieve
the energy and delay trade-off was studied in [23]. In these
works, a network with small size (i.e., a single user or single
MEC server) is considered or the impact of radio resource
allocation and URLLC is not jointly analyzed and optimized.

B. Motivation and Main Contributions

To fully exploit the potential benefits offered by a hierar-
chical edge-cloud system, there are still several formidable
challenges that need to be tackled, including communication
costs, heterogeneous computational capabilities of ESs as well
as limited radio resources. Although ESs and FSs are often
equipped with more powerful computing capability than end
users, they are still limited compared to large-scale cloud
data centers at the cloud server. The straggler effect is a
major bottleneck in implementing computation offload in
hierarchical edge-cloud systems. For example, an ES with
limited computation capability admitting tasks from many
users with high arrival rate may increase processing latency,
leading to higher e2e latency. All these challenges have not yet
been fully addressed in the aforementioned works. In addition,
a comprehensive analysis for the e2e latency model consider-
ing all factors of mission-critical communications (including
URLLC) and queuing-aware computation is not presented
in [2] and [23].

Moving beyond the above background, this work proposes
a novel joint communication and computation for URLLC-
enabled hierarchical edge-cloud system, taking into account all
the above issues. The main goal is to minimize the e2e latency
of computational tasks among multiple UEs (IIoT devices).
Our main contributions are summarized as follows:

• We first develop efficient offloading decisions amongst
three layers of user, edge, and cloud by introducing new
binary variables to establish UE-ES association policies.
This design helps decide which ES is most suitable
to handle computation tasks from UEs under available
computation and communication resources. To mitigate
the straggler effect caused by URLLC-aided uplink trans-
mission, we adopt the matched filtering and successive
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interference cancellation (MF-SIC) receiver at ESs, and
the rigorous closed-form expression of the total e2e
latency is then provided. We formulate a generalized
minimization problem for the e2e latency by incorpo-
rating various aspects of joint communication and com-
putation offloading (called JCCO), such as offloading
probabilities, processing rates, user association policies
and power control subject to their service delay and
energy consumption requirements, which is a mixed-
integer non-convex optimization problem.

• We propose a simple yet efficient iterative algorithm by
leveraging the alternating optimization (AO) approach
and inner approximation (IA) framework [24], which
solves the JCCO problem sub-optimally. To develop this
algorithm, we first decompose the original problem into
two subproblems to bypass the strong coupling among the
optimization variables. For each subproblem, we provide
newly approximate convex functions to convexify non-
convex parts, and the AO-based iterative algorithm is then
developed. To speed up the convergence of the proposed
AO algorithm, we penalize relaxed binary variables by
introducing a parameterized relaxed JCCO problem while
still guaranteeing the satisfaction of binary nature.

• Towards appealing applications, two sub-optimal designs
based on given user association policies are proposed,
namely best channel selection (BCS) and random user
association (RUA). The BCS scheme selects the strongest
wireless link between a UE and ESs, while the RUA
randomly assigns a UE to an ES. The corresponding
problems are special cases of the JCCO problem that can
be easily solved by the AO-based iterative algorithm after
some slight modifications.

• Extensive numerical results are provided to evaluate the
effectiveness of the proposed algorithms in terms of the
convergence speed, e2e latency, and offloading portion,
compared with existing benchmark schemes. They also
reveal the excellent performance gain achieved by joint
optimization of offloading probabilities, processing rates,
user association policies and power control in a hierar-
chical edge-cloud system.

C. Paper Structure and Notations

The rest of this paper is organised as follows. Section II
describes the system model and problem formulation.
In Section III, we provide the AO-based iterative algorithms
for solving the JCCO and parameterized JCCO problems. Two
sub-optimal designs are presented in Section IV. Numerical
results are provided in Sections V, while Section VI concludes
the paper.

Notation: Throughout the paper, numbers and vectors are
denoted by lower-case and bold-face lower-case letters, respec-
tively. (·)T and (·)H indicate the transpose and conjugate
transpose of a matrix or vector, respectively. |·| and �·�2 denote
the absolute value of a scalar and the l2-norm operator of a
vector, respectively. E[·] represents the expectation operation.
CN (μ, σ2) is circularly symmetric complex Gaussian random
variable with mean μ and variance σ2.

Fig. 1. An URLLC-enabled hierarchical edge-cloud system model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a hierarchical edge-cloud system
illustrated in Fig. 1. There are the set M = {1, 2, · · ·M} of M
UEs, i.e., IIoT devices including actuators, robots and sensors
randomly distributed in a factory automation scenario, and the
set K = {1, 2, · · · , K} of K ESs at the edge layer. Each
ES is co-located with an access point (AP) to communicate
with UEs over URLLC wireless links. The ESs connect with
the cloud server via wired fronthaul links. The description of
three-layer of the edge-cloud computing system is given as:

• User layer includes multiple UEs, which can be robots,
actuators or sensors, etc. A task of UE m ∈ M can
be executed locally with processing rate f lo

m (cycles/s)
or offloaded to a ES with probability of αm ∈ [0, 1].
We use the indicator vector π � [πmk]∀m,k to denote the
association between UEs and ESs. In particular, πmk = 1
means ES k ∈ K admits tasks from UE m ∈ M;
otherwise, πmk = 0. We assume that the tasks of a
UE is only offloaded a portion of αm to one ES, i.e.,∑

k∈K πmk = 1, ∀m.
• Edge layer consists of K ESs placed close to UEs,

where the processing rate of ES k is denoted as f es
k

(cycles/s). To minimize the processing latency while
admitting computation tasks from multiple UEs, ES k
can offload a portion of βmk ∈ [0, 1] of tasks of UE m
to the cloud server through the fronthaul link.

• Cloud layer contains large-scale cloud data centers
equipped with powerful processing units, which can
process complex computational tasks with very high
processing rate f cs (cycles/s).

Suppose a task of UE m is characterised by a tuple Im �
(Dm, Cm, T max

m ), in which Dm, Cm and T max
m are the input

task size, the required computation resource (number of CPU
cycles) and the maximum delay requirement of this task,
respectively. For transmission in URLLC-based links, the tasks
can be split into multiple short packets to guarantee low-
latency communications. The mean task arrival rate of UE
m is denoted as λlo

m (tasks/s).
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B. Communication and Computation Models

1) Communication Model: Each AP is equipped with L > 1
antennas while each UE has single antenna. The channel vector
between UE m and AP k, denoted by hmk ∈ CL×1, can
be modeled as hmk =

√
gmkh̄mk, where gmk is the large-

scale channel coefficient including the pathloss and shadowing
which is normalized by the noise power, and h̄mk is the
small-scale fading following the Rayleigh fading model as
h̄mk ∼ CN (0, IL). Under a shared wireless medium, the
L × 1 received signal vector at AP k can be expressed as
yk =

∑
m∈M hmk

√
pmsm + zk , where pm and sm are

the transmit power and unit-power data symbol of UE m,
respectively; zk ∼ CN (0, IL) is the additive white Gaussian
noise (AWGN) with zero mean and unit variance.

Uplink Channel Estimation: We adopt the time-division
duplex (TDD) operation, where all the UEs send their pilot
sequences to APs to perform channel estimation [25]. The
number of pilot symbols for uplink channel estimation should
be at least equal to the number of UEs. We consider that
each coherence interval of all UEs is divided into two main
phases, including uplink training with np symbols and nd

symbols for data transmission. The time duration for channel
estimation and data transmission in one coherence interval can
be expressed as tp = np/B and td = nd/B, respectively,
where B is the system bandwidth.

We assume that all the pilot sequences are mutually orthog-
onal. The MMSE channel estimate of hmk is given by [25]:

ĥmk =
gmkMpp

m

gmkMpp
m + 1

yp
mk (1)

which follows the distribution of CN (
0, σ2

mkI
)
, where σ2

mk

is given as σ2
mk = g2

mkMpp
m/(gmkMpp

m + 1) and pp
m is the

pilot transmit power of UE m. According to the minimum
mean square error (MMSE) estimation property, the channel
estimation error h̃mk = hmk − ĥmk is independent of ĥmk

that follows the distribution of CN (
0, δ2

mkIL

)
, where δ2

mk is
given by δ2

mk = gmk/(gmkMpp
m + 1).

URLLC Uplink Transmission Rate: all M UEs simultane-
ously send their data to APs. To reduce information exchange
between APs and the cloud server via fronthaul links, we adopt
the matched filtering (i.e., ĥH

mk) and successive interference
cancellation, called the MF-SIC receiver for signal detection
in the uplink [26], which only requires the local CSI of all UEs
at each AP. To guarantee fairness among all UEs, we assume
that the decoding order follows UEs’ index by arranging the
channel vectors as �ĥ1k�2 ≥ �ĥ2k�2 ≥, · · · ,≥ �ĥMk�2, ∀k.
In other words, AP k decodes the signals of UEs with better
channel condition first and then remove them before decoding
the signals of UEs with poorer channel conditions. Under
MF-SIC receiver and definition of π in Section II-A, the
instantaneous signal-to-interference-plus-noise (SINR) of UE
m can be expressed as

γm(p, πm) =

∑
k∈K

πmkpm�ĥmk�4

Φm(p, πm)
(2)

where

Φm(p, πm) �
∑
i>m

∑
k∈K

πmkpi|ĥH
mkĥik|2

+
∑
i∈M

∑
k∈K

(1 − πmk)pi|ĥH
mkĥik|2

+
∑
i∈M

∑
k∈K

πmkpi|ĥH
mkh̃ik|2 + �ĥmk�2 (3)

with p = {pm}∀m and πm = {πmk}∀k. In this paper,
we focus the ergodic achievable rate of UE m, where
γ̄m(p, πm) = E{γm(p, πm)} can be approximated by

γ̄m(p, πm) =

∑
k∈K

πmk (L − 1) pmσ2
mk

Φ̄m(p, πm)
(4)

with Φ̄m(p, πm) �
∑

i>m

∑
k∈K

πmkpiσ
2
i,k +∑

i∈M\m

∑
k∈K

(1 − πmk) piσ
2
i,k +

∑
i∈M

∑
k∈K

πmkpiδ
2
i,k + 1,

whose derivation is given in Appendix A.
The uplink achievable data rate of UE m (in bits/s)

under URLLC finite blocklength can be approximated as
[15] and [27]:

Rm (p, πm) = (1 − ω)B log2 [1 + γ̄m (p, πm)]

−B

√
(1 − ω)Vm (p, πm)

N

Q−1 (εm)
ln 2

(5)

where N = ΔtB denotes the blocklength with Δt being the
transmission time interval and ω � M/N ; εm is the decoding
error probability, Q−1(·) is the inverse function defined by

Q(x) = 1√
2π

∫∞
x exp

�
−t2
2

�
dt, and V (p, πm) is the channel

dispersion given by Vm (p, πm) = 1 − [1 + γ̄m (p, πm)]−2.
When the blocklength N goes to infinity, the data rate will
approach to Rm (p, πm) → (1 − ω)B log2 [1 + γ̄m (p, πm)],
which is the traditional Shannon rate function.

2) Computation Model: We now model the overall e2e
latency of the considered hierarchical edge-cloud system,
including the latency of the local processing, uplink wireless
transmission through URLLC links, ESs’ processing, fron-
thaul transmission and cloud processing. We note that the
data size of the computation results is typically very small
(e.g. control packets) while the APs can transmit with high
power, and therefore, the downlink transmission latency can
be ignored [28].

a) Local processing latency: UE m can partially offload
with the portion αm of its task to the ES. The latency to
process the remaining task at UE m with the processing rate
f lo

m is given as

tlom(αm, f lo
m) =

(1 − αm)Cm

f lo
m

. (6)

b) Wireless transmission latency: Given the uplink data
rate in (5), the latency to transmit the portion αm of UE m’s
task is caculated as

tcom (αm,p, πm) =
αmDm

Rm (p, πm)
. (7)
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c) ES processing latency: Let λes
k and λlo

m be the mean
arrival rates of tasks at ES k and UE m, respectively. We have
λes

k =
∑

m∈M
πmkαmλlo

m [29]. We denote by βmk ∈ [0, 1]

the offloading portion of task m from ES k to CS. As a
result, the task processing rate to execute the remaining tasks
offloaded from all UEs at ES k can be computed as μk =
f es

k /
∑

m∈M
πmkαm (1 − βmk)Cm. By following the standard

queuing model M/M/1 [29], we can compute the worst-case
processing latency among ESs as

tes (α, β, π)

= max
∀k∈K

{
1

μk − λes
k

}
= max

∀k∈K

×
{

1
f es

k∑
m∈M

πmkαm (1 − βmk)Cm

−
∑

m∈M
πmkαmλlo

m

}

(8)

where α � {αm}∀m and β � {βmk}∀m,k.
d) Fronthaul transmission latency: Each ES k transmits

the portion βmk of the offloaded task πmkαm of all UEs
m ∈ M to CS for further processing. The worst-case trans-
mission latency to offload tasks from ESs to CS via fronthaul
links can be expressed as

tfh (α, β, π) = max
∀k∈K

{ ∑
m∈M

πmkαmβmk
Dm

Rfh
k

}
(9)

where Rfh
k is the fronthaul capacity between ES k and CS.

e) Cloud processing latency: Given the processing rate
f cs, the latency for the CS to process offloaded tasks ESs can
be expressed as

tcs (α, β, π) =

⎛
⎝ f cs∑

m∈M

∑
k∈K

πmkαmβmkCm

−
∑

m∈M

∑
k∈K

πmkαmβmkλlo
m

)−1

(10)

where f cs/
∑

m∈M

∑
k∈K

πmkαmβmkCm and
∑

m∈M

∑
k∈K

πmkαmβmkλlo
m are considered as the task processing

rate and the mean task arrival rate at CS, respectively.

C. Problem Formulation

From (6)–(10), the overall e2e latency of UE m including
processing latency of UEs, ESs, CS, transmission latency from
UEs to ESs and ESs to CS is given by

tm(f lo
m,p, α, β, π)

= tlom(αm, f lo
m) + tcom (αm,p, πm)

+ tes (α, β, π) + tfh (α, β, π) + tcs (α, β, π) . (11)

There are five parts of the overall e2e latency that can
be classified into two categories, including communication
latency and computation latency. Typically, the wireless trans-
mission latency is the major source of the overall e2e latency.

This reflects practical scenarios, where the wireless transmis-
sion is affected by many factors, e.g., channel conditions,
transmit power and locations of devices, while the computation
capacity of UEs, ESs and CS are large enough to execute tasks
rapidly.

The total energy of UE m consumed for the local processing
and uplink transmission can be computed as [3], [30]

Em(αm, f lo
m,p, π) = (1 − αm)

θm

2
Cm(f lo

m)2

+ pm
αmDm

Rm (p, πm)
(12)

where the constant θm/2 denotes the average switched capac-
itance and the average activity factor of UE m [4].

In this paper, we address a JCCO problem that aims to min-
imize the worst-case e2e latency among computational tasks
under their service delay and energy consumption require-
ments. The JCCO problem is mathematically formulated as
follows

JCCO :
minimize
α,β,π,p,f

max
∀m∈M

{
tm
(
f lo

m,p, α, β, π
)}

(13a)

s.t. tm
(
f lo

m,p, α, β, π
) ≤ T max

m , ∀m (13b)

Em(αm, f lo
m,p, π) ≤ Emax

m , ∀m (13c)

Rm (p, πm) ≥
∑
k∈K

πmkRmin
m , ∀m (13d)

∑
m∈M

πmkαmλlo
m ≤ f es

k∑
m∈M

πmkαm (1 − βmk)Cm
, ∀k

(13e)
M∑

m=1

K∑
k=1

πmkαmβmkλlo
m ≤ f cs

M∑
m=1

K∑
k=1

πmkαmβmkCm

(13f)

α, β ∈ D , π ∈ Π, p ∈ P, f ∈ F (13g)

where D � {αm, βmk, ∀m, k|0 ≤ αm ≤ 1, 0 ≤ βmk ≤
1, ∀m, k}, P � {pm, ∀m|0 ≤ pm ≤ Pmax

m , ∀m},
F � {f lo

m, ∀m|0 ≤ f lo
m ≤ Fmax

m , ∀m}, and Π �
{πmk, ∀m, k|πmk ∈ {0, 1}&

∑
k∈K πmk = 1, ∀m, k} are the

set constraints of offloading decisions, uplink transmission
power, processing rates and association policies, respectively;
Herein, Pmax

m and Fmax
m are the maximum power budget and

processing rate of UE m ∈ M, respectively. Constraints
(13b) and (13c) are imposed to ensure that the overall e2e
latency and energy consumption of UE m are limited by
the predetermined thresholds T max

m and Emax
m , respectively.

Constraint (13d) guarantees the minimum rate requirement
Rmin

m for all UEs. Finally, constraints (13e) and (13f) are added
to ensure the queue stability at ESs and CS, respectively.

III. PROPOSED AO-BASED ALGORITHMS FOR

SOLVING PROBLEM JCCO

A. Challenges of Solving Problem JCCO (13)

We can see that the objective (13a) is nonconcave and
nonsmooth, and the feasible set is also non-convex due to
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the non-convexity of constraints (13b)–(13f). Due to binary
variables π, the JCCO problem (13) is a mixed-integer non-
convex optimization program, which is generally NP-hard.
The main barrier in solving problem (13) is due to the
binary constraint π ∈ Π in (13g). We note that it is not
practical to apply a direct application of the well-known brute-
force search (BFS) method by searching over all possible
association policies, even for networks of small-to-medium
size. In addition, the improved branch-and-bound algorithm
(IBBA) method presented in [2] is also inapplicable as the
relaxed problem of JCCO is still non-convex due the strong
coupling between continuous variables and binary variables.

In what follows, we first transform the original problem (13)
into a more computational tractable form by bypassing the
nonsmooth of the objective function. By exploiting the unique
structure of the underlying problem, we decompose it into two
subproblems, which are optimized in an iterative fashion over
(α, β, π) and (p, f). We then leverage the combination of AO
method and IA framework to solve subproblems efficiently,
which converge to at least a local optimal solution.

B. Approximate Convex Problems

Let us start by rewriting the JCCO problem (13) equiva-
lently as

minimize
α,β,π,p,f ,τ

max
∀m∈M

{
tm(f lo

m, τ )
}

(14a)

s.t. (13c), (13d), (13e), (13f), (13g) (14b)

tm
(
f lo

m, τ
) ≤ T max

m , ∀m (14c)

τ co ≥ tcom (αm,p, πm) , ∀m (14d)

τ es ≥ tes (α, β, π) (14e)

τ fh ≥ tfh (α, β, π) (14f)

τ cs ≥ tcs (α, β, π) (14g)

where tm(f lo
m, τ ) � (1 − αm)Cm

f lo
m

+ τ co + τ es + τ fh + τ cs,

and τ � {τ co, τ es, τ fh, τ cs} are newly introduced variables
to simplify the objective function. Constraint (14c) is derived
from (13b). We introduce the following lemma to verify the
equivalence between problems (13) and (14).

Lemma 1: There exists a set (α�, β�, π�,p�, f�) which
is the optimal solution to both problems (13) and (14),
resulting in the same objective value. In other words,
if (α�, β�, π�,p�, f�, τ �) is the optimal solution to problem
(13), then (α�, β�, π�,p�, f�) is also the optimal solution to
problem (14) and vice versa.

Proof: The proof is straightforward by showing that
constraints (14d)-(14g) must hold with equality at optimum.
We now prove for constraint (14d) and other ones follow
immediately. Assume that the equality of (14d) does not hold
at the optimum for some m, i.e., τ co,� > tcom (α�

m,p�, π�
m).

There exists a positive constant Δτ co > 0 which guarantees
τ co,� −Δτ co = tcom (α�

m,p�, π�
m). As a result, τ co,� −Δτ co is

also feasible to problem (14), but leading to a strictly lower
e2e latency. This contracdicts with the original assumption
that the set (α�, β�, π�,p�, f�) is the optimal solution to
problem (14). �

It is clear that the objective (14a) is a convex function
in (f lo

m, τ ). We also note that a direct application of IA
method is still inapplicable due to strong coupling between
variables. Considering the fact that the decision variables
(p, f) and (α, β, π) can be executed from UEs’ and ESs’
sides, respectively. Let us denote by x(i) the feasible point
of x at the i-th iteration of the proposed iterative algorithm,
which is a constant. By leveraging AO method, at iteration i,
we decompose problem (14) into two subproblems (SPs) as
follows:

SP-1: minimize
p,f ,τ |α(i),β(i),π(i)

max
∀m∈M

{
tm(f lo

m, τ )
}

(15a)

s.t. (13c), (13d), (14c), (14d) (15b)

p ∈ P, f ∈ F (15c)

and

SP-2: minimize
α,β,π,τ |p(i+1),f (i+1)

max
∀m∈M

{
tm(f lo,(i+1)

m , τ )
}

(16a)

s.t. (13c) − (13f), (14c) − (14g) (16b)

α, β ∈ D , π ∈ Π. (16c)

In an AO-based iterative algorithm, we first solve SP-
1 for given (α(i), β(i), π(i)) to generate the next optimal
point of (p(i+1), f (i+1)) and then solve SP-2 for updated
value of (p(i+1), f (i+1)) to generate the next feasible point
(α(i+1), β(i+1), π(i+1)). This procedure is repeated until con-
vergence. In what follows, we apply IA framework to con-
vexify non-convex parts of two subproblems. To facilitate
the approximation of non-convex parts, we provide some
fundamental inequalities in Appendix B which satisfy the IA
properties [31], [32].

1) Approximate Convex Program for SP-1: In problem (15),
non-convex parts include (13c), (13d) and (14d). Let us handle
constraint (13d) first by rewriting Rm(p, π

(i)
m ) as

Rm(p, π(i)
m )=

(1 − ω)B

ln 2

[
Gm(p, π(i)

m ) − κmWm(p, π(i)
m )

]
(17)

where κm = Q−1 (εm) /
√

(1 − ω)N and Gm(p, π
(i)
m ) =

ln(1 + γ̄m(p, π
(i)
m )). To convexify constraint (13d), we need

to devise a lower bounding concave function of Rm(p, π
(i)
m ),

which is provided in Lemma 2 of which the derivation is given
Appendix C.

Lemma 2: For qm(p, π
(i)
m ) �

Φ̄m(p, π
(i)
m )/

∑
k∈K

π
(i)
mk (L − 1)σ2

mk, the lower bounding

concave function of Rm(p, π
(i)
m ) at the feasible point p(i) is

given as

Rm(p, π(i)
m ) ≥ R(i)

m (p, π(i)
m )

=
(1 − ω)B

ln 2

[
G(i)

m (p, π(i)
m )−κmW(i)

m (p, π(i)
m )

]
(18)

under the trusted regions

qm(p, π(i)
m ) + pm ≤ 2(qm(p(i), π(i)

m ) + p(i)
m ), ∀m (19)

qm(p, π
(i)
m ) + pm

qm(p(i), π
(i)
m ) + p

(i)
m

≤ 2
qm(p, π

(i)
m )

qm(p(i), π
(i)
m )

, ∀m (20)
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where G(i)
m (p, π(i)

m ) � a(i)
m − b

(i)
m

pm
− c(i)

m qm(p, π(i)
m )

and W(i)
m (p, π(i)

m ) � d(i)
m − 2e

(i)
m

qm(p(i), π
(i)
m ) + p

(i)
m(

2f
(i)
m qm(p, π

(i)
m ) − (f (i)

m )2
(
qm(p, π

(i)
m ) + pm

))
+

(f(i)
m )2

q2
m(p(i),π

(i)
m )

q2
m(p, π

(i)
m ), and the constants a

(i)
m , b

(i)
m , c

(i)
m ,

d
(i)
m , e

(i)
m , f

(i)
m are defined in Appendix C. Herein,

G(i)
m (p, π

(i)
m ) and W(i)

m (p, π
(i)
m ) are the lower bounding

concave function of Gm(p, π
(i)
m ) and the upper

bounding convex function of Wm(p, π
(i)
m ), respectively,

which satisfy G(i)
m (p(i), π

(i)
m ) = Gm(p(i), π

(i)
m ) and

W(i)
m (p(i), π

(i)
m ) = Wm(p(i), π

(i)
m ).

As a result, constraint (13d) is iteratively replaced by the
following convex constraint

R(i)
m (p, π(i)

m ) ≥
∑
k∈K

π
(i)
mkRmin

m , ∀m (21)

under the regions in (19) and (20).
Next, we introduce new variables r � {rm}∀m to express

constraint (13c) equivalently as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − α(i)
m )

θm

2
Cm(f lo

m)2

+ α(i)
m Dmpmrm ≤ Emax

m , ∀m

1
rm

≤ R(i)
m (p, π(i)

m ), ∀m

(22a)

(22b)

where constraint (22a) is non-convex due to the product of
pmrm. We note that pmrm is a concave function which can be
innerly approximated by (B.5) for x = pm, y = rm, x̄ = p

(i)
m ,

ȳ = r
(i)
m , yielding

(1 − α(i)
m )

θm

2
Cm(f lo

m)2

+
1
2
α(i)

m Dm

(r
(i)
m

p
(i)
m

p2
m +

p
(i)
m

r
(i)
m

r2
m

) ≤ Emax
m , ∀m. (23)

Lastly, by (22b), constraint (14d) is iteratively replaced by the
following linear constraint

τ co ≥ α(i)
m Dmrm, ∀m. (24)

As a result, we obtain the following approximate convex
program of SP-1 (15) solved at iteration i:

SP-1 Convex:

minimize
p,f ,τ ,r|α(i),β(i),π(i)

max
∀m∈M

{
tm(f lo

m, τ )
}

(25a)

s.t. (14c), (15c), (19), (20), (21), (22b), (23), (24). (25b)

The complexity of solving the convex program (25) is only
polynomial in the numbers of optimization variables and
constraints. In particular, problem (25) involves 3M +4 scalar
decision variables and 9M linear and quadratic constraints,
resulting in the per-iteration computational complexity of
O(3√M(3M + 4)2

)
[33, Chapter 6].

2) Approximate Convex Program for SP-2: For given
(p(i+1), f (i+1)) obtained by solving (25), we are now in
position to convexify (16). To bypass the binary nature of
(16), we first relax π to be continuous, i.e., π ∈ Π̃ �
{πmk, ∀m, k|0 ≤ πmk ≤ 1 &

∑
k∈K πmk = 1, ∀m, k} and

rewrite it as

SP-2: minimize
α,β,π,τ |p(i+1),f (i+1)

max
∀m∈M

{
tm(f lo,(i+1)

m , τ )
}

(26a)

s.t. (13c) − (13f), (14c) − (14g) (26b)

α, β ∈ D , π ∈ Π̃. (26c)

Constraints (14c) and (26c) are linear while others are
non-convex.

Convexity of (13d) and (13c): We rewrite

γ̄m(p(i+1), πm) =

�
k∈K

πmkσ2
mk

q̃m(p(i+1),πm) where q̃m(p(i+1), πm) is

defined as

q̃m(p(i+1), πm)

�
[∑

i>m

∑
k∈K

πmkp
(i+1)
i σ2

i,k

+
∑

i∈M\m

∑
k∈K

(1 − πmk) p
(i+1)
i σ2

i,k

+
∑
i∈M

∑
k∈K

πikp
(i+1)
i δ2

i,k + 1

]/
p(i+1)

m (L − 1) . (27)

It follows from Lemma 2 that

Rm(p(i+1), πm)

≥ R̃(i)
m (p(i+1), πm) =

(1 − ω)B

ln 2
×
[
G̃(i)

m (p(i+1), πm) − κmW̃(i)
m (p(i+1), πm)

]
(28)

under the trusted regions

q̃m(p(i+1), πm) +
∑
k∈K

πmkσ2
mk

≤ 2
(
q̃m(p(i+1), π(i)

m ) +
∑
k∈K

π
(i)
mkσ2

mk

)
, ∀m (29)

q̃m(p(i+1), πm) +
∑

k∈K
πmkσ2

mk

q̃m(p(i+1), π
(i)
m ) +

∑
k∈K

π
(i)
mkσ2

mk

≤ 2
q̃m(p(i+1), πm)

q̃m(p(i+1), π
(i)
m )

, ∀m (30)

where

G̃(i)
m (p(i+1), πm)

� ã(i)
m − b̃

(i)
m∑

k∈K
πmkσ2

mk

−c̃(i)
m q̃m(p(i+1), πm),

W̃(i)
m (p(i+1), πm)

� d̃(i)
m − 2ẽ

(i)
m

(
2f̃

(i)
m q̃m(p(i+1), πm)

q̃m(p(i+1), π
(i)
m ) +

∑
k∈K

π
(i)
mkσ2

mk
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− (f̃ (i)
m )2

(
q̃m(p(i+1), πm) +

∑
k∈K

πmkσ2
mk

))

+
(f̃ (i)

m )2

q̃2
m(p(i+1), π

(i)
m )

q̃2
m(p(i+1), πm)

and constants ã
(i)
m , b̃

(i)
m , c̃

(i)
m , d̃

(i)
m , ẽ

(i)
m and f̃

(i)
m are defined sim-

ilarly as in Appendix C. As a result, we innerly approximate
constraint (13d) as

R̃(i)
m (p(i+1), πm) ≥

∑
k∈K

πmkRmin
m , ∀m. (31)

The constraint (13c) is equivalent to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

R̃(i)
m

(
p(i+1), πm

) ≤ rm, ∀m

(1 − αm)
θm

2
Cm(f lo,(i+1)

m )2

+ p(i+1)
m Dmαmrm ≤ Emax

m , ∀m

(32a)

(32b)

where r � {rm}∀m were defined (22). We use (B.5) to
approximate αmrm in (32b) as

(1 − αm)
θm

2
Cm(f (i+1)

m )2

+
1
2
p(i+1)

m Dm

(r
(i+1)
m

α
(i)
m

α2
m +

α
(i)
m

r
(i+1)
m

r2
m

)
≤ Emax

m , ∀m.

(33)

Convexity of (13e) and (13f): By introducing new variables
φ̌ �

{
φ̌mk

}
∀m,k

, constraint (13e) is equivalently expressed as⎧⎪⎪⎨
⎪⎪⎩

∑
m∈M

λlo
mπmkαm ≤ f es

k∑
m∈M

Cmφ̌2
mk

, ∀k

φ̌2
mk ≥ πmkαm(1 − βmk), ∀m, k.

(34a)

(34b)

In (34a), the right-hand side (RHS) is a convex function
which can be addressed by (B.2) while the product πmkαm

in the left-hand side (LHS) can be approximated by (B.5).
We iteratively replace (34a) by

∑
m∈M

1
2
λlo

m

(
α

(i)
m

π
(i)
mk

π2
mk +

π
(i)
mk

α
(i)
m

α2
m

)

≤ f es
k

(
2∑

m∈M
Cm(φ̌(i)

mk)2
−

∑
m∈M

Cmφ̌2
mk( ∑

m∈M
Cm(φ̌(i)

mk)2
)2
)

, ∀k

(35)

which is a convex constraint. To handle constraint (34b),

we first rewrite as
φ̌2

mk

1 − βmk
≥ πmkαm, and apply inequalities

(B.3) and (B.5) to approximate both sides as

2φ̌
(i)
mkφ̌mk

1 − β
(i)
mk

− (φ̌(i)
mk)2(1 − βmk)

(1 − β
(i)
mk)2

≥ 1
2

(
α

(i)
m

π
(i)
mk

π2
mk +

π
(i)
mk

α
(i)
m

α2
m

)
, ∀m, k. (36)

Similarly, by introducing new variables φ̂ � {φ̂m}∀m, (13f)
is equivalent to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
m∈M

λlo
mφ̂2

m ≤ f cs∑
m∈M

Cmφ̂2
m

φ̂2
m

αm
≥
∑
k∈K

πmkβmk, ∀m

(37a)

(37b)

which are approximated using (B.2), (B.3) and (B.5) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m∈M

λlo
mφ̂2

m ≤ f cs

(
2∑

m∈M
Cm(φ̂(i)

m )2

−

∑
m∈M

Cmφ̂2
m( ∑

m∈M
Cm(φ̂(i)

m )2
)2
)

2φ̂
(i)
m φ̂m

α
(i)
m

− (φ̂(i)
m )2αm

(α(i)
m )2

≥
∑
k∈K

1
2

×
(β

(i)
mk

π
(i)
mk

π2
mk +

π
(i)
mk

β
(i)
mk

β2
mk

)
, ∀m.

(38a)

(38b)

Convexity of (14d): From (32a), we rewrite (14d) as τ co ≥
Dmαmrm and apply (B.5) to covexify αmrm as

τ co ≥ 1
2
Dm

( r
(i)
m

α
(i)
m

α2
m +

α
(i)
m

r
(i)
m

r2
m

)
, ∀m. (39)

Convexity of (14e): It follows from constraint (14e) that

f es
k∑

m∈M
πmkαm (1 − βmk)Cm

≥
∑

m∈M
λlo

mπmkαm +
1

τ es
, ∀k (40)

which can be transformed equivalently as

f es
k∑

m∈M
Cmφ̌2

mk

≥
∑

m∈M
λlo

mπmkαm +
1

τ es
(41)

by (34b). We apply inequalities (B.3) and (B.5) to lower
bound the LHS and upper bound the function πmkαm, respec-
tively, i.e.,

f es
k

(
2∑

m∈M
Cm(φ̌(i)

mk)2
−

∑
m∈M

Cmφ̌2
mk( ∑

m∈M
Cm(φ̌(i)

mk)2
)2
)

≥
∑

m∈M
λlo

m

1
2

( α
(i)
m

π
(i)
mk

π2
mk +

π
(i)
mk

α
(i)
m

α2
m

)
+

1
τ es

. (42)

Convexify of (14f): We can express constraint (14f) as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ fh ≥
∑

m∈M
ϕ2

mk

Dm

Rfh
k

, ∀k

ϕ2
mk

βmk
≥ πmkαm, ∀m, k

(43a)

(43b)
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where ϕ � {ϕmk}∀m,k are new variables to tackle the product
of πmkαmβmk. Constraint (43b) is non-convex. Similar to
(34b), we have

2ϕ
(i)
mkϕmk

β
(i)
mk

− ϕ
2(i)
mk βmk(
β

(i)
mk

)2
≥ 1

2

( α
(i)
m

π
(i)
mk

π2
mk +

π
(i)
mk

α
(i)
m

α2
m

)
, ∀m, k. (44)

Convexity of (14g): We first rewrite (14g) as

f cs∑
m∈M

∑
k∈K πmkαmβmkCm

≥
∑

m∈M

∑
k∈K

πmkαmβmkλlo
m +

1
τ cs

(45)

which is equivalent to

f cs∑
m∈M Cmφ̂2

m

≥
∑

m∈M
λlo

mφ̂2
m +

1
τ cs

(46)

by using (37b). It follows from (38a) that

f cs

(
2∑

m∈M
Cm(φ̂(i)

m )2
−

∑
m∈M

Cmφ̂2
m( ∑

m∈M
Cm(φ̂(i)

m )2
)2
)

≥
∑

m∈M
λlo

mφ̂2
m +

1
τ cs

. (47)

Summing up, we obtain the following approximate convex
program of SP-2 solved at iteration i:

SP-2: Convex

minimize
α,β,π,τ ,φ̌,φ̂,

r,ϕ|p(i+1),f (i+1)

max
∀m∈M

{
tm(f lo,(i+1)

m , τ )
}

(48a)

s.t. (14c), (26c), (29), (30), (31), (32a), (33), (35),

(36), (38), (39), (42), (43a), (44), (47), (48b)

which requires the per-iteration complexity of
O(√9M + 4MK + 3K(3MK + 3M + 4)2

)
.

C. Proposed AO-IA Based Algorithms

1) Proposed AO-IA Based Algorithm for Solving the JCCO
Problem: Let denote by S(i)

1 � (p(i), f (i), r(i)) and S(i)
2 �

(α(i), β(i), π(i), φ̌
(i)

, φ̂
(i)

, r(i), ϕ(i)) the feasible sets of (25)
and (48) at iteration i, respectively. The overall algorithm for
solving (14) is summarized in Algorithm 1.

The main drawback of solving problem (26) is that the
exact binary solution of π is not guaranteed at optimum,
resulting in an infeasible solution to the original problem (13).
To overcome this issue, we consider Step 6 in Algorithm 1
using ceiling function to recover binary value of π as π�

mk =

π(i)

mk + 0.5�, ∀m, k. In Step 7, we repeat Steps 1-5 for
given π� to minimize the performance loss due to Step 6.
Algorithm 1 requires initial feasible points to start at the
first iteration. The initial feasible points of S(0)

1 and S(0)
2

are generated as follows. Firstly, the transmission power and
the processing rate are randomly generated with respect to

Algorithm 1 Proposed AO-IA Based Algorithm for Solving
the JCCO Problem (14)
Initialization: Set i = 0 and generate initial feasible points

S(0)
1 and S(0)

2 to constraints in (25) and (48), respectively.
Set the tolerance ε = 10−3 and the maximum number of
iterations Imax.

1: repeat
2: Solve problem (25) for given S(i)

2 to obtain the optimal
solution denoted by (p�, f�, r�, τ �) and update S(i+1)

1 :=
(p�, f�, r�);

3: Solve problem (48) for given S(i+1)
1 to obtain the optimal

solution denoted by (α�, β�, π�, φ̌
�
, φ̂

�
, r�, ϕ�, τ �) and

update S(i+1)
2 := (α�, β�, π�, φ̌

�
, φ̂

�
, r�, ϕ�);

4: Set i := i + 1;
5: until Convergence or i > Imax

6: Recover binary values of π�: π�
mk = 
π(i)

mk +0.5�, ∀m, k;
7: Repeat Steps 1-5 with fixed π� to refine the optimal

solution;
8: Output: (α�, β�, π�,p�, f�).

constraint (13g). Secondly, the offloading portions and user
association variables are initiated equally, i.e., αm = 0.5 and
πmk = 0.5, ∀m, k. Finally, we implement a validating function
to guarantee that all constraints in (14) are satisfied before
running the optimisation algorithm.

Convergence and complexity analysis: We recall that all
the approximate functions presented in Section III-B satisfy
IA properties listed in [31]. As proved in [24], Algorithm 1
generates sequences of the improved points of {p(i), f

(i)
, r

(i)}
and {α(i), β(i), π(i), φ̌

(i)
, φ̂

(i)
, r(i), ϕ(i)} to SP-1 and SP-2,

respectively, as well as sequences of non-increasing e2e
latency values. In addition, the feasible sets of the convex
programs (25) and (48) are connected and convex. As a result,
the sequences {p(i), f

(i)} and {α(i), β(i), π(i)} are guaranteed
to arrive at least the local optimal solutions of SP-1 and
SP-2, respectively. In term of the complexity analysis, in each
iteration of Algorithm 1, the computational complexity of
solving SP-2 dominates that of SP-1, especially in large-
scale scenarios. Therefore, for a given number of I iterations
that guarantee the convergence of Algorithm 1, its worst-case
complexity is given as O(I√9M + 4MK + 3K(3MK +
3M + 4)2

)
.

2) Proposed AO-IA Based Algorithm for Solving the Para-
meterized JCCO Problem: To improve the convergence speed
of Algorithm 1, we incorporate a penalty function to tackle the
uncertainty of binary variables of the relaxed SP-2 problem
(26), inspired by [34] and [35]. In particular, it is true that
πmk ≥ π2

mk for any πmk ∈ [0, 1], ∀m, k. The equality holds
if only if πmk = {0, 1}. Without loss of optimality, π ∈ Π
can be equivalently expressed as

π ∈ Π ⇔ 0 ≤ πmk ≤ 1 & πmk ≤ π2
mk, ∀m, k. (49)

However, constraint πmk ≤ π2
mk is often infeasible to

the relaxed SP-2 problem (26). Therefore, we remove this
constraint but is spenalized by incorporating the function
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Ψ(π) =
∑

m∈M
∑

k∈K(πmk − π2
mk) into the objective

function of problem (26), which is always non-negative to
guarantee the satisfaction in (49). The parameterized SP-2
(PSP-2) problem is expressed as

PSP-2: minimize
α,β,π,τ |

p(i+1),f (i+1)

max
∀m∈M

{
tm(f lo,(i+1)

m , τ )
}

+ η(i)Ψ(π),

s.t. (26b), (26c) (50)

where η(i) > 0 is the penalty parameter at iteration i. With an
appropriate possible and sufficient large value of η(i), problem
(50) is equivalent to (16) [34]. All the non-convex constraints
in (50) were addressed in Section III-B, while the concave
function Ψ(π) =

∑
m∈M

∑
k∈K(πmk − π2

mk) is directly
convexified by (B.3). In particular, the approximate convex
program of the PSP-2 (50) solved at iteration i is given as

PSP-2: Convex

minimize
α,β,π,τ ,

φ̌,φ̂,r,ϕ|
p(i+1),f (i+1)

max
∀m∈M

{
tm(f lo,(i+1)

m , τ )
}

+ η(i)Ψ(i)(π) (51a)

s.t. (48b) (51b)

where Ψ(i)(π) �
∑

m∈M
∑

k∈K
(
πmk −2πmkπ

(i)
mk +(π(i)

mk)2
)

is the first-order Taylor approximation of Ψ(i)(π). The pro-
posed AO-IA based algorithm for solving the parameterized
JCCO problem (14) is summarized in Algorithm 2.

Algorithm 2 Proposed AO-IA Based Algorithm for Solving
the Parameterized JCCO Problem (14)
Initialization: Set i = 0 and randomly generate initial feasible

points S(0)
1 and S(i)

2 to constraints in (25) and (51),
respectively. Set the tolerance ε = 10−3 and the maximum
number of iterations Imax.

1: repeat
2: Solve problem (25) for given S(i)

2 to obtain the optimal
solution denoted by (p�, f�, r�, τ �) and update S(i+1)

1 :=
(p�, f�, r�);

3: Solve problem (51) for given S(i+1)
1 to obtain the optimal

solution denoted by (α�, β�, π�, φ̌
�
, φ̂

�
, r�, ϕ�, τ �) and

update S(i+1)
2 := (α�, β�, π�, φ̌

�
, φ̂

�
, r�, ϕ�);

4: Set i := i + 1;
5: until Convergence or i > Imax

6: Recover binary values of π�: π�
mk = 
π(i)

mk +0.5�, ∀m, k;
7: Repeat Steps 1-5 with fixed π� to refine the optimal

solution;
8: Output: (α�, β�, π�,p�, f�).

IV. SUB-OPTIMAL DESIGNS

The major complexity of solving the JCCO problem
(13) comes from the optimization of user associations π.
Towards low-complexity solutions, we consider two sub-
optimal designs in which user associations are given in
advance.

A. Optimization Designs

1) Best Channel Selection (BCS)-Based Design: In the
BCS-based design, UE m selects ES k with the best channel
condition (i.e., with the highest channel gain). In particular,
the optimal solution π� is found as:

π� =
{
π�

mk, ∀m, k
∣∣∣π�

mk = 1

if k∗ = arg max{�ĥmk
k∈K

�2}, ∀m;

otherwise π�
mk = 0, ∀k

}
. (52)

The purpose of this design is to reduce the wireless transmis-
sion latency without a complicated optimization over ES-UE
associations, which is the main bottleneck of the considered
system model.

2) Random User Association (RUA)-Based Design: In this
scheme, we randomly associate UE k with any ES subject to
constraint UE policies, such as

π� =
{
π�

mkis randomly generated,∣∣∣s.t. π�
mk ∈ {0, 1}&

∑
k∈K

π�
mk = 1, ∀m, k

}
. (53)

minimize
α,β,p,f |π�

max
∀m∈M

{
tm
(
f lo

m,p, α, β, π�
)}

(54a)

s.t. tm
(
f lo

m,p, α, β, π�
) ≤ T max

m , ∀m (54b)

Em(αm, f lo
m,p, π�) ≤ Emax

m , ∀m (54c)

Rm (p, π�
m) ≥

∑
k∈K

π�
mkRmin

m , ∀m (54d)

∑
m∈M

π�
mkαmλlo

m ≤

f es
k∑

m∈M
π�

mkαm (1 − βmk)Cm
, ∀k (54e)

∑
m∈M

∑
k∈K

π�
mkαmβmkλlo

m ≤

f cs∑
m∈M

∑
k∈K

π�
mkαmβmkCm

(54f)

α, β ∈ D ,p ∈ P, f ∈ F (54g)

Given π� in (52) and (53), we reformulate the JCCO
problem as (54) which will be used to find the optimal
solutions for both BCS and RUA-based designs.

B. Proposed Algorithm for Solving (54)

Similar to Section III-B, problem (54) can be transformed
and decomposed into two sub-problems, one is similar to the
SP-1 (15) and the other is the simplified form of SP-2 (16),
called SSP-2, as follows

SSP-2: minimize
α,β,τ |p(i+1),f (i+1),π�

max
∀m∈M

{
tm(f lo,(i+1)

m , τ )
}
(55a)

s.t. (13c), (13e), (13f), (14c) − (14g) (55b)

α, β ∈ D . (55c)
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The non-convex constraints include (13e), (13f), (14e), (14f)
and (14g), which can be convexified by the developments
presented in Section III-B.

For given (p(i+1), f (i+1), π�), (13e) is directly approxi-
mated by (35) and (36) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m∈M

λlo
mπ�

mkαm ≤ f es
k

(
2∑

m∈M
Cm(φ̌(i)

mk)2

−

∑
m∈M

Cmφ̌2
mk( ∑

m∈M
Cm(φ̌(i)

mk)2
)2
)

, ∀k

2φ̌
(i)
mkφ̌mk

1 − β
(i)
mk

− (φ̌(i)
mk)2(1 − βmk)

(1 − β
(i)
mk)2

≥ π�
mkαm.

(56a)

(56b)

Following (38) and (42), we approximate (13f) and (14e) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m∈M

λlo
mφ̂2

m ≤ f cs

(
2∑

m∈M
Cm(φ̂(i)

m )2

−

∑
m∈M

Cmφ̂2
m( ∑

m∈M
Cm(φ̂(i)

m )2
)2
)

2φ̂
(i)
m φ̂m

α
(i)
m

− (φ̂(i)
m )2αm

(α(i)
m )2

≥
∑
k∈K

π�
mkβmk, ∀m.

(57a)

(57b)

and

f es
k

(
2∑

m∈M
Cm(φ̌(i)

mk)2
−

∑
m∈M

Cmφ̌2
mk( ∑

m∈M
Cm(φ̌(i)

mk)2
)2
)

≥
∑

m∈M
λlo

mπ�
mkαm +

1
τ es

, ∀k. (58)

In the same manner as in (43), constraint (14f) is expressed
as (43) where the second constrain (i.e., ϕ2

mk

βmk
≥ πmk) can be

easily approximated as

2ϕ
(i)
mkϕmk

β
(i)
mk

− ϕ
2(i)
mk βmk(
β

(i)
mk

)2 ≥ π�
mkαm, ∀m, k. (59)

Constraint (14g) was addressed in (47). We solve the following
convex program at iteration i:

SSP-2: Convex

minimize
α,β,τ ,φ̌,φ̂,ϕ|p(i+1),

f (i+1),π�

max
∀m∈M

{
tm(f lo,(i+1)

m , τ )
}

(60a)

s.t. (13c), (14c), (14d), (43a),

(47), (56), (57), (58), (59) (60b)

where the per-iteration complexity of solving SSP-2 is
O(√4M + 2MK + 2K + 2(2MK + 2M + 4)2

)
, which is

seen lower than that of the convex program (48). The proposed
algorithm is summarized in Algorithm 3 without the need

Algorithm 3 Proposed AO-IA Based Algorithm for Solving
Problem (54)
Initialization: Set i = 0 and randomly generate initial feasible

points to constraints in (25) and (60), respectively. Set the
tolerance ε = 10−3 and the maximum number of iterations
Imax.

1: repeat
2: Solve problem (25) for given S̃(i)

2 to obtain the optimal
solution denoted by (p�, f�, r�, τ �) and update S(i+1)

1 :=
(p�, f�, r�);

3: Solve problem (60) for given S(i+1)
1 to obtain the optimal

solution denoted by (α�, β�, φ̌
�
, φ̂

�
, ϕ�, τ �) and update

S̃(i+1)
2 := (α�, β�, φ̌

�
, φ̂

�
, ϕ�);

4: Set i := i + 1;
5: until Convergence or i > Imax

6: Output: (α�, β�,p�, f�).

Fig. 2. The optimisation procedure for solving the JCCO problem.

of re-optimization after the exact binary recovery, where

S̃(i)
2 � (α(i), β(i), φ̌

(i)
, φ̂

(i)
, ϕ(i)). Overall, the optimisation

procedure of the proposed algorithms is clearly illustrated
in Fig. 2.

V. NUMERICAL RESULTS

In this section, we provide numerical examples to quantita-
tively evaluate the performance of the proposed algorithms.

A. Simulation Setup and Parameters

We consider a small-cell scenario where all APs (ESs) and
UEs are located within an area of 100 × 100 m [4]. ESs are
located at (50, 33) and (50, 66) for K = 2 and (50, 20),
(50, 40), (50, 60), (50, 80) for K = 4. The large-scale fading
of the channel between UE m and AP k is modeled as gmk =
10PL(dmk)/10, where PL(dmk) = −35.3 − 37.6 log10 dmk

denotes the path loss in dB which is a function of the distance
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TABLE I

SIMULATION PARAMETERS [4], [36], [37]

dmk [32]. The number of antennas at each AP is set to
L = 8. We assume that all UEs have the same power budget,
i.e., Pmax

m = 23 dBm ∀m [3]. The URLLC decoding error
probability is set to εm = 10−9, ∀m [25].

Following [38], we set the CPU cycles of ESs and CS to
25 and 30 Giga cycles/s, respectively. For UE m, the input
task size and the required computation resource are set to
Dm = 100 KB and Cm = 800×106 (cycles) [4], respectively.
The total e2e latency requirement of each UE is given as
T max

m = 2s ∀m [3]. The mean arrival rate of tasks is set
to λlo

m = 10 (task/s), ∀m [29]. Unless specifically stated
otherwise, other parameters are given in Table I. We implement
the proposed algorithms in MATLAB environment and all the
convex programs are solved by SDPT3 solver in the modeling
toolbox CVX.

To demonstrate the effectiveness of joint communication
and computation offloading, we compare the performance
of the proposed algorithms with the following three known
schemes:

• “Fixed Power”: Under the same setup with the JCCO
problem, the transmit power of all UEs is fixed and set
equal to the maximum power budget as pm = Pmax

m , ∀m,
subject to the energy constraint (13c). This scheme is
considered in [30].

• “Fixed Frequency (Fixed Freq.)”: Each UE is
configured with its maximum processing rate, i.e.,
f lo

m = Fmax
m , ∀m [2], [3], subject to the energy

constraint (13c).
• “Without Cloud (W/o Cloud)”: computation tasks are

processed at UEs and ESs only [3].

The formulated problems of the above schemes can be solved
directly by Algorithm 2 after some simple modifications. The
results of two sub-optimal designs obtained by Algorithm 3
are labelled to as Algorithm 3-BCS and Algorithm 3-RUA.

B. Numerical Results and Discussions

1) Algorithm Convergence: In Fig. 3, we illustrate the
convergence behavior of the proposed algorithm over one
random channel realization for M = 10 UEs and K = 2
ESs. As can bee seen from Fig. 3 that all the proposed
algorithms generate sequences of non-increasing e2e latency

Fig. 3. Convergence behavior of the proposed algorithms for M = 10 UEs
and K = 2 ESs.

values and converge within tens of iterations. The e2e latency
of Algorithms 1 and 2 is degraded at iterations 22 and 17,
respectively, due to the recovery binary step (Step 6). This
also confirms the important role of Step 7 to refine the
optimal solutions of (α�, β�,p�, f�), which achieves the same
objective value but guaranteeing the exact binary solution
of π�. Algorithm 3 of the two sub-optimal designs requires
fewer iterations to converge since π� is already known in
advance. Another interesting observation is that Algorithm 2
converges faster than Algorithm 1, which is attributed to the
fact that the incorporation of the penalty function helps speed
up the optimal user association searching. Since Algorithms 1
and 2 offer the same objective value, we only show the
performance for Algorithm 2 in the following numerical
results.

2) Impact of the Energy Consumption and Required Com-
putation Resource: In Fig. 4(a), we investigate the impact
of the maximum energy consumption requirement Emax on
the e2e latency of different resource allocation schemes.
As seen, the higher the energy consumption requirement, the
lower the latency is achieved by the considered schemes,
except the fixed frequency (processing rate). This is because a
large value of Emax allows UEs to allocate higher processing
rate f lo

m and transmit power pm to reduce the worst-case e2e
latency while still meeting the energy constraint (13c). The
proposed algorithms provide significant performance gains
over the baseline schemes in terms of e2e latency. In addition,
Algorithm 2 offers the lowest e2e latency performance which
clearly confirms the effectiveness of jointly optimizing offload-
ing probabilities, processing rates, user association policies
and power control. Fig. 4(b) illustrates the e2e latency versus
the required computation resource Cm, ∀m. Unsurprisingly,
the e2e latency of all the considered schemes increases when
Cm increases. We recall that a higher value of Cm will
not only increase processing latency at UEs, ESs and CS
but also force UEs to scale down their processing rate and
transmit power to satisfy constraint (13c), resulting in higher
total latency. Again, Algorithm 2 still provides the lowest e2e
latency amongst all the considered schemes.
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Fig. 4. The worst-case e2e latency of different resource allocation schemes
versus (a) the maximum energy consumption requirement Emax, and (b) the
required computation resource C ≡ Cm,∀m, with M = 10 UEs and
K = 2 ESs.

3) Impact of Offloading Factor and Processing Rate:
In hierarchical edge-cloud systems, the processing rates of
ESs and CS have a strong impact on the system performance.
In particular, the higher the processing rate, the higher the
offloading portion from UEs to ESs. To verify this, we first
show the e2e latency and average offloading portion from
UEs to ESs versus ESs’ processing rate f es ≡ f es

k , ∀k in
Fig. 5a. The offloading portion of UEs slightly increases
when ESs have larger computation resource, f es. An important
observation is that Algorithm 2 always offloads the higher por-
tion of computation tasks, compared to sub-optimal schemes,
thanks to optimal user association policies, leading to lower
e2e latency.

Fig. 5b studies the impact of the maximum processing rate
at CS f cs, on the e2e latency of Algorithm 2. As can be seen
from the figure that, when the CS’s processing rate increases
from 30 to 34 gigacycles/s, the e2e latency gradually reduces
in both scenarios of K = 2 ESs and K = 4 ESs. In addition,

Fig. 5. The worst-case e2e latency of different resource allocation schemes
versus (a) ESs’ processing rate, and (b) CS’s processing rate C ≡ Cm, ∀m,
with M = 10 UEs and K = {2, 4} ESs.

Fig. 6. The worst-case e2e latency and average offloading portion from UEs
to ESs of Algorithm 2 versus the mean task arrival rate λlo ≡ λlo

m,∀m, with
M = 10 UEs and K = {2, 4} ESs.

Fig. 5b also indicates that the average offloading portion of
UEs to ESs continuously increases as CS is equipped with
more powerful computing capacity.
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4) Impact of the Arrival Data Rate: Fig. 6 depicts the worst-
case e2e latency and average offloading portion from UEs to
ESs of Algorithm 2 for different values of the task arrival
rate λlo ≡ λlo

m, ∀m, with M = 10 UEs and K = {2, 4}
ESs. As expected, the e2e latency increases slightly when λlo

increases, while the offloading portion decreases gradually to
guarantee queuing stability constraints of ESs and CS. For
instance, for the scenario with M = 10 UEs, K = 4 ESs
and the mean task arrival rate is set to λlo = 14 tasks/s, the
worst-case e2e latency rises above 0.35 s, while the average
offloading portion (α) is adjusted down to 30%.

VI. CONCLUSION

In this paper, we have investigated joint communication
and computation task offloading in URLLC-based hierarchical
edge-cloud systems. To address the practical issues of min-
imizing the worst-case e2e latency amongst UEs, we have
formulated the optimization problem of jointly optimizing
offloading probabilities, processing rates, user association poli-
cies and power control, taking into account UEs’ maximum
delay and energy consumption requirements, and queueing
stability conditions at ESs and CS. To that end, we have
proposed an alternating optimization framework to efficiently
solve the formulated problem in an iterative manner. We have
adopted a judicious approach by resorting to inner approx-
imation method, where new convex approximate functions
are developed to tackle non-convex constraints. In addition,
two sub-optimal designs under given user association poli-
cies are proposed to obtain low-complexity solutions. Our
proposed algorithms made evident the highly complex rela-
tionship between the communication and computation para-
meters. Finally, we provided extensive numerical results to
demonstrate the fast convergence of the proposed algorithms
as well as the significant performance gain achieved by joint
optimization of the communication and computation variables
in hierarchical edge-cloud systems.

APPENDIX A
DERIVATION OF SINR IN (4)

We follow steps similar to those in [25] to derive the average

SINR in (4). For xm,i,k � ĥH
mkĥik

�ĥmk� , ym,i,k � ĥH
mkh̃ik

�ĥmk� , and

Φm(p, πm) defined in (3), it is true that

E

{ 1
γm(p, πm)

}
= E

{
Φm(p, πm)∑

k∈K
πmkpm�ĥmk�2

}
. (A.1)

Conditioned on ĥmk, we have that xm,i,k, and ym,i,k are
Gaussian random variables with zeros mean and variance
σ2

mk and δ2
mk, respectively. In addition, xm,i,k, and ym,i,k are

independent of ĥmk. Thus, it follows that

E

{
γm(p, πm)−1

}
= Φ̄m(p, πm)E

{(∑
k∈K

πmkpm�ĥmk�2
)−1}

(A.2)

where Φ̄m(p, πm) is defined in (4). By using the identity
E
{

tr(W−1)
}

= m
n−m , where W ∼ Wm(n, In) is an m × m

central complex Wishart matrix n(n−m) degrees of freedom,
we have

E

{(∑
k∈K

πmkpm�ĥmk�2
)−1}

= 1
/(∑

k∈K
πmkpm(L − 1)σ2

mk

)
, for L ≥ 2. (A.3)

By substituting (A.3) into (A.2), we obtain the approximated
SINR γ̄m(p, πm) in (4).

APPENDIX B
INNER APPROXIMATE INEQUALITIES

We now provide some fundamental inequalities studied in
[32] and [39] based on the IA properties [31], which are used
to approximate non-convex parts.

1) For all x > 0, y > 0, x̄ > 0 and ȳ > 0, the
function ln(1+x/y) is innerly approximated around the point
(x̄ > 0, ȳ > 0) as [32]

ln
(
1 + x/y

) ≥ a − b/x − cy (B.1)

where a � ln
(
1 + x̄

ȳ

)
+ 2 x̄

x̄+ȳ > 0, b � x̄2

x̄+ȳ > 0, and

c � x̄
(x̄+ȳ)ȳ > 0.

2) For the convex function f(x) = 1/x on the domain
x > 0, its lower bounding concave function around the point
x̄ is

f(x) ≥ f(x̄) +
∂f(x)
∂(x)

∣∣∣
x=x̄

(x − x̄)

=
1
x̄
− 1

x̄2
(x − x̄) =

2
x̄
− x

x̄2
. (B.2)

3) For the square-over-linear function f(x, y) = x2/y that is
convex on x ∈ R, y > 0, its lower bounding concave function
around the point (x̄, ȳ) is given as

f(x, y) ≥ f(x̄, ȳ) +
∂f(x, y)

∂(x)

∣∣∣
x=x̄

(x − x̄)

+
∂f(x, y)

∂(y)

∣∣∣
y=ȳ

(y − ȳ) =
2x̄

ȳ
x − x̄2

ȳ2
y. (B.3)

4) The convex function g(x) = 1/x2 with x ∈ R is innerly
approximated around the point x̄ ∈ R as

g(x) ≥ g(x̄) +
∂g(x)
∂(x)

∣∣∣
x=x̄

(x − x̄)

=
1
x̄2

− 2
x̄3

(x − x̄) =
3
x̄2

− 2x

x̄3
. (B.4)

5) The upper bounding convex function of the product
xy with x > 0 and y > 0 around the point (x̄, ȳ) is
[40, Eq. (B1)]:

xy ≤ 1
2

( ȳ

x̄
x2 +

x̄

ȳ
y2
)
. (B.5)

6) Finally, for the concave function h(x) =
√

x over x > 0,
its upper bounding convex function at the point x̄ is

h(x) ≤ h(x̄) +
∂h(x)
∂(x)

∣∣∣
x=x̄

(x − x̄) =
√

x̄

2
+

x

2
√

x̄
. (B.6)
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APPENDIX C
DERIVATION OF LEMMA 2

We first rewrite the SINR of UE m as γm(p, π(i)
m ) =

pm/qm(p, π(i)
m ). By applying the inequality (B.1) for x = pm,

y = qm(p, π
(i)
m ), x̄ = p

(i)
m , and ȳ = qm(p(i), π

(i)
m ), we have

Gm(p, π(i)
m ) ≥ a(i)

m − b(i)
m /pm − c(i)

m qm(p, π(i)
m )

� G(i)
m (p, π(i)

m ) (C.1)

where a
(i)
m = ln

(
1 + p(i)

m

q
(i)
m (p,π

(i)
m )

)
+ 2 p(i)

m

p
(i)
m +q

(i)
m (p,π

(i)
m )

, b
(i)
m =

(p(i)
m )2

p
(i)
m +q

(i)
m (p,π

(i)
m )

and c
(i)
m = p(i)

m�
q
(i)
m

�
p,π

(i)
m

�
+p

(i)
m

�
q
(i)
m (p,π

(i)
m )

.

To find an upper bounding convex function approximation
of Wm(p, π

(i)
m ), we apply the inequality (B.6) for x = 1 −

1/
(
1 + γ̄m(p, π

(i)
m )

)2
and x̄ = 1 − 1/

(
1 + γ̄m(p(i), π

(i)
m )

)2
,

yielding

Wm(p, π(i)
m ) ≤ d(i)

m − e
(i)
m

γ̄2
m(p, π

(i)
m )

= d(i)
m − e(i)

m

q2
m(p, π

(i)
m )(

qm(p, π
(i)
m ) + pm

)2 (C.2)

where

d(i)
m = 0.5

√
Vm(p(i), π

(i)
m ) + 0.5/

√
Vm(p(i), π

(i)
m ),

and e(i)
m = 0.5/

√
Vm(p(i), π

(i)
m ). (C.3)

The function q2
m(p,π(i)

m )(
qm(p,π

(i)
m )+pm

)2 in (C.2) is still not convex [32],

which can be further approximated by using inequalities (B.2)
and (B.3) as

q2
m(p, π

(i)
m )

qm(p, π
(i)
m ) + pm

1

qm(p, π
(i)
m ) + pm

≥ 2

qm(p(i), π
(i)
m ) + p

(i)
m

×
(
2 f (i)

m qm(p, π(i)
m − q2

m(p(i)
m )(qm(p, π

(i)
m ) + pm)

(qm(p(i)
m ) + p

(i)
m )2

)

− q2
m(p, π

(i)
m )

(q(i)
m (p, π

(i)
m ) + p

(i)
m )2

(C.4)

where f (i)
m � qm(p(i), π

(i)
m )

qm(p(i), π
(i)
m ) + p

(i)
m

, over the trusted regions

defined in (19) and (20). By substituting (C.4) to (C.2) yields

Wm(p, π(i)
m )

≤ W(i)
m (p, π(i)

m )

� d(i)
m − 2e

(i)
m

qm(p(i), π
(i)
m ) + p

(i)
m

×
(
2f (i)

m qm(p, π(i)
m ) − (f (i)

m )2
(
qm(p, π(i)

m ) + pm

))

+
(f (i)

m )2

q2
m(p(i), π

(i)
m )

q2
m(p, π(i)

m ) (C.5)
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