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Abstract— Open radio access network (ORAN) Alliance offers
a disaggregated RAN functionality built using open interface
specifications between blocks. To efficiently support various
competing services, namely enhanced mobile broadband (eMBB)
and ultra-reliable and low-latency (uRLLC), the ORAN Alliance
has introduced a standard approach toward more virtualized,
open, and intelligent networks. To realize the benefits of ORAN
in optimizing resource utilization, this paper studies an intelligent
traffic steering (TS) scheme within the proposed disaggregated
ORAN architecture. For this purpose, we propose a joint intel-
ligent traffic prediction, flow-split distribution, dynamic user
association, and radio resource management (JIFDR) framework
in the presence of unknown dynamic traffic demands. To adapt
to dynamic environments on different time scales, we decompose
the formulated optimization problem into two long-term and
short-term subproblems, where the optimality of the latter is
strongly dependent on the optimal dynamic traffic demand.
We then apply a long-short-term memory (LSTM) model to
effectively solve the long-term subproblem, aiming to predict
dynamic traffic demands, RAN slicing, and flow-split decisions.
The resulting non-convex short-term subproblem is converted to
a more computationally tractable form by exploiting successive
convex approximations. Finally, simulation results are provided
to demonstrate the effectiveness of the proposed algorithms
compared to several well-known benchmark schemes.

Index Terms— Beyond 5G networks, open radio access net-
works, intelligent resource management, traffic prediction, traffic
steering, long short-term memory, network slicing.

I. INTRODUCTION

NEXT-GENERATION (“NextG”) mobile communication
networks (e.g., beyond fifth-generation (5G) and sixth-

generation (6G)) are designed to accommodate a wide range
of service types with their own specific demands, such as
throughput, reliability, and delay. The mentioned services
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are basically categorized into three principal cases, enhanced
mobile broadband (eMBB), massive machine-type communi-
cations (mMTC), and ultra-reliability low-latency communi-
cation (uRLLC) [1]. Efficiently supporting the coexistence of
these heterogeneous services is challenging in the “NextG”
wireless networks due to their competing demands. The exist-
ing “one-size-fits-all” 5G architecture makes it very difficult if
not impossible to enable the coexistence of heterogeneous ser-
vices since the present 5G wireless networks are aggregated,
closed, and inflexible. Despite the cost-effectiveness of central-
ized/cloud radio access networks (CRAN) and virtual radio
access networks (vRAN), open interfaces, non-proprietary
hardware, and software are still lacking in these systems. Open
RAN (ORAN) is an emerging solution to enable flexible, vir-
tualized, disaggregated, intelligent, and open “NextG” wireless
networks to support the heterogeneity of wireless services
[2]. The openness of RAN components not only increases
the interoperability between vendors but also speeds up the
delivery of new services, which can be dynamically nominated
to users. Due to the increasing complexity of “NextG” wireless
networks, a self-organizing network’s optimization, deploy-
ment, and operation are increasingly becoming impossible
without intelligence [3], [4].

Accommodating heterogeneous services (uRLLc, eMBB,
and mMTC) with competing demands on the identical RAN
infrastructure is exceedingly challenging, such that building
numerous physical networks to accommodate distinct services
is not practical. Hence, it is difficult to efficiently route
heterogeneous traffics to enhance user experience and network
efficiency [5]. To this end, the concept of RAN slicing has
been suggested as a potential remedy to constantly assign
the accessible storage, compute, and communication resources
across multiple services whilst guaranteeing their isolation [6].
In this study, we concentrate on the RAN slicing mechanism’s
optimization, which entails the effective allocation of the
physical radio resources such as transmit power and the time-
frequency unit. Meeting the multi-traffic coexistence to handle
nonuniform requirements is not possible only by allocating
the transmit power and time-frequency unit. Traffic steering
(TS), one of the most efficient approaches, enables network
software to steer the traffics in the most proper paths by
routing user traffics through the most suitable radio resources.
Nevertheless, the available research on TS in 5G is still limited
and uncompleted. While most existing works of literature have
studied typical TS which treats all users similarly, regardless
of users’ demands and network conditions, meaning that a
network operator may even be wasted its resources if a
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simple strategy is implemented. To address this issue, this
paper proposes a novel TS based on the traffic demands to
achieve multi-traffic coexistence. To enhance throughput and
reliability in wireless networks with limited bandwidth, the
multi-connectivity (MC) technique can be used to aggregate
multiple links and allow a user to connect to more than two
nodes. In practice, MC has the potential to dramatically reduce
interference and latency of mobility methods, especially at the
cell edge [7]. The multi-link capability makes MC the most
practical method for achieving uRLLC and eMBB coexistence,
whereas the recent proposals for the 5G air interface in 3GPP
Release 15 utilize flexible mixed numerologies [8].

Another great challenge of 5G is achieving low latency in
latency-critical applications. To meet this, 5G NR defines a
new concept of mini-slot which composes of at most 4 OFDM
symbols to support small packet transmission size. Signifi-
cantly this short slot duration reduces the transmission time.
Furthermore, the single numerology which is used in 4G LTE
is not suitable for expected multi services in 5G wireless
networks. Hence, flexible mixed numerologies have been
recently proposed for such wireless networks in 3GPP Release
15 which enhances flexibility. To this end, this paper considers
mixed numerologies in a frequency domain such that the
assigned services to each slice can select a proper numerology
to allocate its data transmission while guaranteeing each
service’s requirements. It should be mentioned that this new
concept introduces new challenges related to RAN slicing that
need to be studied. For instance, the dynamic allocation of the
mixed numerology-based time-frequency units and transmit
power is a vital challenge.

Inspired by [9] and [10], this paper introduces a joint intel-
ligent traffic steering and slice-isolation radio resource alloca-
tion framework for allocating the RAN resources with mixed
numerologies, taking into account the ORAN architectural
requirements, various service requirements, and queue status.
To present the role of intelligence in ORAN architecture,
this paper benefits from the long short-term memory (LSTM)
recurrent neural network (RNN) to learn the network traffic
pattern and predict the unknown incoming traffic packets of the
network. LSTM has been introduced as an undeniable state-
of-the-art method within the deep neural networks to over-
come the exploding/vanishing gradient problem, especially in
learning long-term dependencies [11]. We outline the com-
pliance of the overall scheme with the ORAN requirements
later.

A. Related Works

To improve services for network providers, the work in
[12] focused on providing an efficient scheduling scheme to
dynamically allocate radio resources in LTE networks. In [13],
the authors proposed a joint resource allocation and dynamic
link adaptation scheme for multiplexing eMBB and uRLLC
on a shared channel, which dynamically tunes the block
error probability of URLLC small payload transmissions in
each cell. A control channel and packet size aware resource
allocation approach was introduced in [14] to enable the
packet scheduling and resource allocation for uRLLC and

eMBB traffics coexistence in 5G NR networks. Although
the heuristic algorithm proposed in [14] meets the uRLLC’s
requirements by preserving a large number of resources to
uRLLC, this method has failed to isolate the slice, resulting
in a reduction of the eMBB throughput compared to high
uRLLC traffic. Wu et al. [15] developed the puncturing method
to eliminate the uRLLC queuing delay for multiplexing of
uRLLC and eMBB services. The authors in [16] studied a
joint scheduling scheme to maximize the eMBB throughput
while minimizing the utility of uRLLC to meet the quality
of service (QoS) requirements. Since uRLLC services are
prioritized in the puncturing-based schemes and scheduled
on the assigned eMBB’s resources, the eMBB performance
(throughput and reliability) significantly decreases when the
uRLLC traffic increases. Moreover, the fixed numerology over
frequency-time resources for the scheduling scheme is often
considered.

There is significant attention from academia and industry
to TS in the literature. In [17], a TS framework was studied
in unlicensed bands on the LTE network in order to distribute
traffic among radio access technologies, heterogeneous cells,
and spectrum bands. To overcome the puncturing difficulties in
multiple services, Korrai et al. in [18] proposed a slice-isolated
RAN slicing scheme with orthogonal frequency-division mul-
tiple access (OFDMA) for the coexistence of uRLLC and
eMBB. A joint scheduling and TS scheme based on dynamic
MC and RAN slicing in 5G networks were analyzed in [19],
in which an effective capacity model to evaluate the frame-
works’ performance is proposed. To integrate the LTE into 5G
networks, Prasad et al. [20] investigated an energy-efficient
RAN moderation and dynamic TS based on the connectivity
by multiple radio links.

The RAN slicing framework over multiple services net-
works has been recently developed under frequency-time
resources thanks to the flexibility of mixed-numerologies. The
authors in [21] studied a resource allocation optimization prob-
lem by considering the flexible numerology in both frequency
and time domains. The work in [22] analyzed the wireless
scheduling optimization problem over the mixed-numerologies
to support the heterogeneous services with different QoS
requirements, assuming that mapping the radio resources (time
and frequency) is decoupled from service scheduling. A joint
optimization of RAN slicing, resource block, and power allo-
cation problem for eMBB, mMTC, and uRLLC in 5G wireless
networks was considered in [23] under imperfect channel state
information (CSI).

However, the aforementioned works have investigated TS
with flexible numerology in the “one-size-fits-all” network
architecture, which is not adaptable enough to support het-
erogeneous services. Despite the huge benefit of intelligence
of ORAN, there are only a few attempts on the TS in the
literature. Niknam et al. in [10] proposed an intelligent traffic
prediction and radio resource management framework to con-
trol the congested cell based on cell-splitting in ORAN archi-
tecture for multiplexing uRLLC and eMBB services. In [24],
a systematic analysis for implementing the intelligence in each
layer of ORAN architecture for data-driven “NexG” wireless
networks was provided by considering the closed-control loops
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between ORAN components. Furthermore, in our previous
study [9], we have proposed a TS scheme based on MC
and RAN slicing technologies to effectively allocate diverse
network resources in ORAN architecture by assuming fixed-
numerology (i.e., 0.25ms mini-slots) tailored with 5G NR.
However, the works mentioned earlier have not designed a
traffic steering and RAN resource slicing scheme for hetero-
geneous traffic applicable to the beyond 5G wireless networks
on ORAN architecture. The most of works have investigated
the resource allocation scheme for various services with fixed
numerology in the monolithic and inflexible architecture of 4G
LTE networks. Hence, this is the first attempt to investigate
the performance efficiency of mixed numerologies considering
the RAN slicing, MC, and mini-slot to achieve multi-traffic
coexistence in ORAN architecture, while guaranteeing the
users’ QoS requirements.

B. Contributions

In this paper, we develop an intelligent TS framework in
the presence of unknown dynamic traffic demand to meet the
requirements of both uRLLC and eMBB services in beyond
5G based on dynamic MC. Learning an optimal traffic steer-
ing policy in dynamic environments is challenging because
fluctuations in traffic demand over time are non-stationary
and unknown, hindering the computation of cost-efficient
associations. This study proposes an intelligent framework
by locating rAPPs and xAPP at the non-real-time RAN
intelligent controller (non-RT RIC) and near-real-time RIC
(near-RT RIC) of the ORAN architecture. The existing rAPPs
at non-RT RIC include the traffic prediction, dynamic RAN
slicing decision, and flow-split distribution, while the xAPP
at near-RT RIC is radio resource management to schedule
the joint resource block and transmission power with mixed
numerologies based on standardization in 5G NR. To the best
of our knowledge, this is the first work to model intelligent TS
in ORAN architecture and study TS in-depth detail in ORAN
layers considering the mixed-numerology in the presence of
unknown traffic demands.

To achieve the maximum throughput for eMBB traffic while
guaranteeing the minimum uRLLC latency requirement and
vice versa, we propose a joint intelligent traffic prediction,
flow-split distribution, dynamic user association, and radio
resource management scheme befitting the ORAN architec-
ture. Then, we identify the location of the ML training,
AI server, and inference modules to provide a high-level archi-
tecture of deployment scenarios and end-to-end flow to prove
compatibility with ORAN standards. Our main contributions
are summarized as follows:
• We develop a general optimization framework to jointly

optimize the intelligent traffic prediction, flow-split dis-
tribution, dynamic user association, and radio resource
management, called “JIFDR”. To maximize the eMBB’s
throughput while guaranteeing the uRLLC latency
requirement, or vice versa, we formulate two optimization
problems with different objective designs while satisfying
QoS requirements, slice isolation, power budget, and
maximum fronthaul (FH) capacity.

• To effectively solve the formulated problems, we divide
each problem into long-term and short-term subprob-
lems, which are executed on different time scales. The
long-term subproblem is mapped into three dependent
rAPPs: traffic prediction, dynamic RAN slicing decision,
and flow-split distribution at the non-RT RIC. In contrast,
the short-term sub-problem is deployed as the radio
resource management xAPP at the near-RT RIC, which
is linked to the upper layer through the A1 interface.

• The long-term subproblem benefits from the LSTM RNN
to learn and predict traffic patterns and demands. This
model is trained offline at the non-RT RIC in the ser-
vice management and orchestration (SMO) through the
long-term collected data from the RAN layer via the O1
interface. RNN is utilized to learn the temporal pattern of
the traffic demand from current values in order to forecast
future values. Upon the inference result, two heuristic
methods are proposed to optimize the RAN slicing and
flow-split distribution.

• Next, given rAPPs’ outcomes sent from the non-RT RIC
via the A1 interface, we propose a successive convex
approximation (SCA)-based iterative algorithm to solve
the short-term subproblem, which belongs to a class
of mixed-integer non-convex programming (MINCP)
problem.

• Finally, numerical results are presented to demonstrate
the proposed algorithm’s quick convergence behavior
and to confirm its efficacy in comparison to benchmark
schemes. Furthermore, by using a mathematical analysis
convergence and complexity analysis are studied. The
average mean square error MSE) of the prediction is
relatively low at 0.0033.

The rest of this paper is organized as follows. Section II
introduces the ORAN architecture and system model.
In Section III, we present the problem formulation and
overall intelligent TS deployment architecture and algorithm.
Section IV first proposes the LSTM model and heuristic
methods to solve the long-term subproblem and then develops
an SCA-based iterative algorithm to solve the short-term
subproblem. Simulation results and discussions are provided
in Section V, while Section VI concludes the paper.

II. ORAN ARCHITECTURE AND SYSTEM MODEL

A. ORAN Architecture

The ORAN architecture based on the ORAN Alliance is
illustrated in Fig. 1, including three main layers (the man-
agement, control, and function layers). To further reduce the
RAN expenditure, ORAN fosters self-organizing networks by
adding two unique modules of near-RT and non-RT RICs
to enable a centralized network abstraction which improves
efficiency by cost-reducing the human-machine interaction.
Following the disaggregation concept, BS functionalities are
virtualized as network functions based on the 3GPP functional
split and are distributed among various network nodes, namely
central unit (CU), distributed unit (DU), and radio unit (RU)
[10]. Hence, open interfaces (FH, A1, O1, E2, F1) are intro-
duced to enable efficient multi-vendor interoperability, where
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Fig. 1. ORAN architecture based on ORAN Alliance [25].

a network operator can select RAN components from different
vendors individually.

The unique feature of RICs is to create closed-control
loops (i.e., autonomous action and feedback loops) between
RAN components and their controllers. In order to control
traffic prediction, network slicing, and hand-over management,
ORAN defines three control loops, namely non-RT, near-RT,
and RT running at different timescales ranging from 1 ms to
thousands of ms, enabling real-time control of transmission
methods and beamforming. Following ORAN Alliance speci-
fications, each loop that works on a timescale of at least one
second is called a non-RT control loop, which involves the
coordination between both RICs through the A1 interface. The
near-RT control loop operates on a timescale between 10 ms
and 1 s while it runs between the near-RT RIC and DU and CU
components. The third loop working on sub-10 ms is labeled
as the RT control loop, which is largely relevant to interactions
between elements of DU and cell site.

In particular, the non-RT RIC carries out tasks with a
temporal granularity greater than one second, like service
provisioning and training AI/ML models, which rAPPs can
be implemented in this controller. On the other hand, the
near-RT RIC manages operations with timescales of more than
10 ms, hosts external applications (referred to as xApps), and
incorporates intelligence in the RAN by data-driven control
loops. RICs may execute applications created by independent
third-party specialized software suppliers as a platform for
hosting software. These applications are known as “rAPPs”
and “xAPPs”, and act as key enablers to run on non-RT
and near-RT RICs, respectively. rAPPs handle the non-RT
functions that require more than 1 second to be executed
which may take minutes or hours. While xAPPs are external
applications specific to handle radio functions that run between
10 ms and 1 s that interact with RAN elements and the
upper layer by open interfaces to reconfigure some exposed
functionality. To this end, ORAN Alliance strives to steer the
industry toward the development of AI/ML-enabled RICs.

Fig. 2. System model with the traffic-steering scheme.

B. Network Model

We consider a downlink OFDMA multi-user multiple-input
single-output (MU-MISO) system in the ORAN architecture,
consisting of one CU, the set N ≜ {1, 2, . . . , N} of N
DUs and the set M ≜ {1, 2, . . . ,M} of M RUs. For cost-
effective deployment, each DU serves a cluster of RUs. Let
denote by Mn ≜ {(n, 1), . . . , (n,Mn)} with |Mn| = Mn

and
∑

n∈N Mn = M the set of RUs served by DU n. The
m-th RU served by n-th DU is referred to as RU(n,m), which
is equipped with K antennas while users are equipped with a
single antenna. Let us denote by U ≜ {1, . . . , U} the set of
users served by DUs, which can be further divided into two
disjoint sets Uur of Uur uRLLC users and Uem of U em eMBB
users. The eMBB users generate the traffic with a large packet
of size Zem bytes, while uRLLC users generate a sequence of
small and identical packets of Zur bytes. In addition, as shown
in Fig. 2, we assume that all data arriving from upper layers
are stored in the user-specific transmission buffers of the RUs
till it is time to serve it. The RUs serve the users in the cell
by allocating the frequency-time radio resource blocks (RBs)
and transmission power to each RB. The parameters used in
this study are summarized in Table I.

To meet the demands of exigent latency services, we inves-
tigate a mini-slot-based framework, where each time slot is
broken into two mini-slots. Each mini-slot has a duration of
δ = 1/2γ+1 ms and comprises 7 OFDM symbols, where
γ ∈ {0, 1, 2} is the subcarrier spacing (SCS) index. Hereon,
we suppose that several RUs operating in MC configuration
are simultaneously providing eMBB and uRLLC services.
Following [26], numerology with index i = 1 (i.e. SCS index
γ = 1) is appropriate for eMBB to meet the requirement of
high data rate, while numerology with index i = 2 (i.e. SCS
index γ = 2) is more suitable for the uRLLC service’s
applications with the latency-critical and small data packet of
uRLLC. From the mixed-numerologies point of view, eMBB
service sorts the numerology i = 1 with RB’s bandwidth (BW)
of βi|i=1 = 360 kHz and δi|i=1 = 0.25 ms of transmission
time interval (TTI) duration as the highest priority and uRLLC
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TABLE I
SUMMARY OF MAIN NOTATIONS AND VARIABLES

Fig. 3. Time-frequency grid with different numerologies.

service would prioritize numerology i = 2 with RB’s BW of
βi|i=2 = 720 kHz and δi|i=2 = 0.125 ms of TTI duration.

The multiplexing of mixed numerologies in the frequency
domain is considered in this work, where the carrier BW that
is accessible for the downlink transmissions is divided into
several bandwidth parts (BWPs). According to this, each user
is able to alter its RF bandwidth based on its required data
rate by switching between numerous BWPs. As illustrated
in Fig. 3, the desirable BWP design to serve two types of

services with different requirements is established based on
the expected queue length of each service by introducing
the BW-split variable α[t] ∈ [0, 1]. Whereas this method
does not call for tight time synchronization techniques, using
various numerologies in the adjacent sub-bands causes inter-
numerology interference (INI). Hence, to reduce INI, a fixed
guard band BG equal to one RB’s BW (i.e., 180 kHz) is
configured between the two neighbor numerologies (i.e., sub-
bands). The scheduled BWP assigned to the uRLLC slice
with numerology i = 2 is denoted by Bi[t]|i=2 = α[t]B,
to unload the existing packets in the uRLLC slice’s queues
at frame t, where B is the total carrier BW. In contrast,
Bi[t]|i=1 = (1 − α[t])B − BG the scheduled BWP assigned
to eMBB slice with numerology i = 1.

Assume the proposed system model works in a discrete
time-frame indexed by t ∈ [1, 2, . . . , T ], which corresponds
to one large-scale coherence time of ∆ = 10 ms duration for
each frame, as shown in Fig. 3. Depending on the selected
numerology i by each service, each frame in the time domain
is divided into Si TTIs where the duration of each TTI
denoted by ts = (t − 1)Si + s with s = {1, . . . , Si} is δi.
Thus, based on the selected numerology i, each BWP is
partitioned into Fi number of sub-bands of frequency set
Fi = {1, . . . , fi, . . . , Fi} in the frequency-domain and Si

number of TTIs in each frame, indexed by ts = {(t −
1)Si + 1, . . . , (t− 1)Si + s, . . . , (t− 1)Si + Si} in the time-
domain. Such that, Fi[t] = ⌊Bi[t]/βi⌋ and Si = ∆/δi.
Therefore, a total Fi[t] × Si number of RBs are accessible
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for the services using the i-th numerology at each frame t via
each RU.

As depicted in Fig. 2, the U independent data traffics with
different demands at the CU layer are subsequently routed
to VNFs in the DUs layer for parallel processing, referred
to as data flows. We adopt the M/M/1 processing queue
model on a first-come-first-serve basis to serve each user’s
packets. As it is clear from Fig. 2, the maximum number
of paths for each user is M . According to the principle
of the TS technique, the CU splits the data flow of the
u-th user into several sub-flows, which are possibly trans-
mitted via the maximum of M paths and then aggregated
at this user. Because of the non-overlapped DUs’ coverage,
the resource optimization design at one DU is similar to
that of other DUs. Thus, for ease of presentation, we drop
the subscript index of DUs hereafter. To this end, we define
au[t] ≜

[
am,u[t]

]
as the flow-split selection vector for the

u-th data flow in time-frame t. In particular, if am,u[t] = 1,
the m-th RU is selected to transmit data of u-th data flow;
otherwise, am,u[t] = 0. In addition, let us denote by φ[t] ≜
{φu[t], ∀u|

∑
m φm,u[t] = 1, φm,u[t] ∈ [0, 1]} the global

flow-split decision, in which φu[t] ≜
[
φm,u[t]

]T

represents
the flow-split portion vector of user u while

∑
m φm,u[t] = 1,

where φm,u[t] ∈ [0, 1] indicates a portion of data flow routed
to user u via RU m in time t by selecting action am,u[t].

1) Achievable Throughput: The channel vector between RU
m and the u-th user at the sub-band fi in TTI ts is denoted
by hm,u,fi

[ts] ∈ CK×1, which follows the Rician fading
model with the Rician factor ϱm,u,fi

[t]. Within each frame,
we assume that the channel remains temporally invariant,
while it may be different across each short-time scale TTI.
We model hm,u,fi [ts] as:

hm,u,fi
[ts] =

√
ζm,u,fi

[t]
(√

ϱm,u,fi
[t]/(ϱm,u,fi

[t] + 1)

× h̄m,u,fi
[t] +

√
1/(ϱm,u,fi

[t] + 1)h̃m,u,fi
[ts]

)
(1)

where ζm,u,fi
[t] is the large-scale fading; h̄m,u,fi

[t] and
h̃m,u,fi

[ts] are the line-of-sight (LoS) and non-LoS (NLoS)
components, which follow a deterministic channel and
Rayleigh fading model, respectively. Given the orthogo-
nality constraint, this work considers that each RB of
a RU is assigned to only one single user during one
TTI, such as πem

m,u,fi
[ts] ∈ {0, 1} and πur

m,u,fi
[ts] ∈

{0, 1} for eMBB and uRLLC traffics, respectively. Here,
πem

m,u,fi
[ts] = 1 if the RB(ts, fi) associated with sub-band

fi in TTI ts of RU m assigned to the u-th eMBB user, and
πem

m,u,fi
[ts] = 0, otherwise; a similar definition is given for

uRLLC users. Let defineΠ[ts] ≜ {πem
m,u,fi

[ts], πur
m,u,fi

[ts] ∈
{0, 1}|

∑
m,u

(
πem

m,u,fi
[ts] + πur

m,u,fi
[ts]

)
≤ 1} as the RB allo-

cation constraint. This is to ensure the orthogonality constraint
and QoS constraint for uRLLC service.

Thanks to the MC technique, the main interference
of eMBB is eliminated and the rest of the interference
can be supposed as noise, which is also constant [27].
Hence, the instantaneous achievable rate in [bits/s] for a
given set of channel realizations at the u-th eMBB user at

TTI ts is given by:

rem
m,u(pem[ts]) =

Fi∑
fi=1

βi log2

(
1 +

pem
m,u,fi

[ts]gm,u,fi [ts]
N0

)
(2)

where βi, N0 and pem
m,u,fi

[ts] are the bandwidth of each
RB in numerology index i, power of the Additive White
Gaussian Noise (AWGN), and transmit power from RU m
to user u for eMBB traffic at sub-band fi at the TTI ts,
respectively; gm,u,fi [ts] denotes the effective channel gain,
given as gm,u,fi [ts] ≜ ∥hm,u,fi [ts]∥22. Let us define pem[ts] ≜
[pem

m,u,fi
[ts]], ∀fi, u,m. The transmit power must satisfy

pem
m,u,fi

[ts] ≤ πem
m,u,fi

[ts]Pmax
m with Pmax

m being the power
budget at RU m, which guarantees that RU m allocates power
to user u on RB(ts, fi) only if πem

m,u,fi
[ts] = 1; otherwise

πem
m,u,fi

[ts] = 0 and pem
m,u,fi

[ts] = 0. As a result, the throughput
of eMBB user u ∈ Uem in TTI ts is given as rem

u (pem[ts]) =∑
m rem

m,u(pem[ts]). The minimum QoS requirement for eMBB
users is guaranteed by the constraint

∑
ts
rem
u (pem[ts]) ≥ Rth,

where Rth is a given QoS threshold.
In contrast, owing to the finite block-length in uRLLC

traffics, the instantaneous achievable rate of u-th uRLLC user
from RU m in TTI ts using the short block-length can be
expressed as [28]:

rur
m,u(pur[ts],πur[ts])

=
Fi∑

fi=1

βi

[
log2

(
1 + pur

m,u,fi
[ts]

gm,u,fi [ts]
N0

)
−
πur

m,u,fi
[ts]
√
V Q−1(Pe)√

δiβi

]
, ∀u ∈ Uur (3)

where V , Pe and Q−1: {0, 1} → R denote the channel
dispersion, error probability, and inverse of the Gaussian
Q-function, respectively. Let us define pur[ts] ≜ [pur

m,u,fi
[ts]]

and πur[ts] ≜ [πur
m,u,fi

[ts]], ∀fi, u,m. It is observed that
V = 1 − 1

(Γ[ts])2 ≈ 1 when the received Γ[ts] =
pur

m,u,fi
[ts]gm,u,fi

[ts]

N0
≥ Γ0 with Γ0 ≥ 5 dB. This can be

easily achieved in cellular networks, by arranging the uRLLC
decoding vector into one possible null space of the refer-
ence subspace, the scheduler can eliminate inter-user inter-
ference of uRLLC [29]. Hence, we consider the constraint

N0Γ0
gm,u,fi

[ts]π
ur
m,u,fi

[ts] ≤ pur
m,u,fi

[ts] ≤ πur
m,u,fi

[ts]Pmax
m to guar-

antee the approximation V ≈ 1 as well as the big-M formula-
tion theory to avoid non-convexity of (2). Similar to the eMBB
service, the throughput of uRLLC user u ∈ Uur in TTI ts
is given as rur

u (pur[ts],πur[ts]) =
∑

m rur
m,u(pur[ts],πur[ts]).

We have the following power constraint:

P[ts] =
{

0 ≤ pem
m,u,fi

[ts] ≤ πem
m,u,fi

[ts]Pmax
m ,

×
N0Γ0π

ur
m,u,fi

[ts]
gm,u,fi

[ts]
≤ pur

m,u,fi
[ts] ≤ πur

m,u,fi
[ts]Pmax

m |

×
∑

i

∑
fi,u

(pem
m,u,fi

[ts] + pur
m,u,fi

[ts]) ≤ Pmax
m

}
. (4)

We denote λu[t] in [packets/s] as the unknown traffic
demand of user u in time-frame t with the length of Zx bytes
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with x ∈ {ur, em}, which is i.i.d. over time and upper bounded
by a finite constant λmax, such as λu[t] ≤ λmax ≤ ∞. We con-
sider that the retained independent queue at each RU for the
u-th user, which is denoted by {φm,u[t]λu[t]Zx} as the arrival
processes of sub-flows, is controlled by a congestion scheduler.
Thus, the queue-length of data flow u at RU m in TTI
(ts+1) is qm,u[ts+1] = max{

[
qm,u[ts] + φm,u[t]λu[t]Zx∆ −

rx
m,u[ts+1]δi

]
, 0}. In order to avoid the packet loss due to

buffer overflow in each RU, the constraint
∑

u qm,u[ts] ≤
Qmax,∀m is imposed to ensure that the available packets in
the buffer of RU shouldn’t exceed the maximum queue-length
of Qmax for each RU. Let q[ts] ≜

[
qm,u[ts]

]T
, ∀m,u.

2) The E2E Traffic Latency for uRLLC: Denote by fcu and
fdu the computation capacities of CU and DU [cycles/sec],
respectively. Considering the identical packet size, the required
computation resource to process one packet of size Z is C
(number of cycles). As result, µcu = fcu/C and µdu = fdu/C
are the task rates [1/sec] at CU and DU, respectively. As a
result, 1/µcu and 1/µdu represent the mean service time of
CU and DU layers, respectively. The processing latency of
all data flows at the CU layer (τpro

cu ) and DU layer (τpro
du ) is

computed as:

τpro
cu [t] =

Λ[t]
µcu

, and τpro
du [t] =

Λ[t]
µdu

, ∀n ∈ N (5)

where Λ[t] =
∑

u λu[t]. Next, the arrival packets λu[t] for the
u-th user is transported to the DU layer via the midhaul (MH)
link with the maximum capacity CMH [bits/sec] between CU
and DU. By Burke’s theorem, the mean arrival data rate of
the second layer, which is processed in the first layer, is still
the same rate [30]. Hence, the data transmission latency of the
traffic flow for user u under the MH limited capacity is:

τ tx
cu,du[t] =

Λ[t]Z
CMH

. (6)

As mentioned previously, the maximum number of paths
from DU n to each user is Mn. Since the packets for
user u can be transmitted by multiple RUs, the effective
response time τ tx

du,ru to transport all packets in the DUs
layer should be computed by the worst average response
time among its connected FH links with maximum capacity
CFH

m [bits/sec], i.e.,

τ tx
du,ru[t] = max

m

{∑
u∈Uur φm,u[t]λu[t]Zur

CFH
m

}
, ∀m ∈ Mn.

(7)

The transmission latency from RU m to user u is then
calculated as:

τ tx
ru,u[ts] = max

m

{φm,u[t]λu[t]Zur

rur
m,u[ts]

}
, ∀u ∈ Uur. (8)

Simply put, the e2e latency of each uRLLC user u ∈ Uur per
each TTI is computed as:

τur
u [t] = τpro

cu [t] + τ tx
cu,du[t] + τpro

du [t] + τ tx
du,ru[t]

+
∑
ts

(
τ tx
ru,u[ts]

+ τpro
ru [ts]

)
, ∀u ∈ Uur (9)

where τpro
ru is the process latency at RU m, which is bounded

by three OFDM symbols duration that is typically very small.
To ensure a minimum latency requirement for uRLLC user u,
the e2e latency is bound by a predetermined threshold Dur

u ,
i.e., τur

u [t] ≤ Dur
u .

III. PROBLEM FORMULATION AND OVERALL
INTELLIGENT TRAFFIC STEERING ALGORITHM

A. Problem Formulation

1) Utility Function: The ultimate goal is to optimize
the joint intelligent traffic prediction, flow-split distribution,
dynamic user association, and radio resource management in
the presence of unknown dynamic traffic demand to serve
eMBB and uRLLC users, subject to various resources con-
straints and diverse QoS requirements. Due to the conflict of
objective functions in both services (i.e. eMBB and uRLLC),
the utility function should capture the eMBB throughput and
worst-user e2e uRLLC latency separately such as Rem =∑

u∈Uem rem
u (pem[ts]) and maxu∈Uur{τur

u } on two indepen-
dent optimization problems. Based on the above definitions
and discussions, the JIFDR problem is mathematically formu-
lated as two independent optimization problems with common
constraints as follows:

P1 : max
λ,φ,π,p,α

Rem(pem[ts]) (10a)

s.t. π[ts] ∈ Π[ts], ∀ts (10b)
p[ts] ∈P[ts], ∀ts (10c)
φu[t] ∈ φ[t], ∀t, u ∈ U (10d)∑

ts

rem
u (pem[ts]) ≥ Rth, ∀u ∈ Uem (10e)

∑
u

[
rem
m,u(pem[ts]) + rur

m,u(pur[ts],πur[ts])
]

≤ CFH
m ,∀m ∈ Mn (10f)∑

ts

rur
m,u(pur[ts],πur[ts]) ≥

φm,u[t]λu[t]Zur

∆
,

∀m ∈ Mn, u ∈ Uur (10g)
τur
u (λ[t],φ[t],π[ts],p[ts]) ≤ Dur

u , ∀u ∈ Uur

(10h)∑
u

qm,u[ts] ≤ Qmax, ∀ts,m ∈ Mn (10i)

Fi∑
fi=1

βi ≤ Bi[t], i ∈ {1, 2} (10j)

0 ≤ α[t] ≤ 1 (10k)

and

P2 : min
λ,φ,π,p,α

max
u∈Uur

{τur
u } (11a)

s.t. (10b)-(10k) (11b)

where φ[t],π[ts] and p[ts] are the vectors encompassing the
flow-split portions, sub-band assignments, and power alloca-
tion variables at frame t and TTI ts, respectively. Recall that,
for each BWP with the given numerology, Bi[t]|i=2 = α[t]B
and Bi[t]|i=1 = (1− α[t])B−BG. Constraint (10f) expresses
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the limited capacity of FH link between DU n and RU
m. Constraint (10g) ensures that each RB assigned to the
u-th uRLLC user should transmit a complete data packet with
the size Zur.

B. Challenges of Solving JIFDR Problem

The main challenges in solving problems (P1) and (P2) lie in
the non-convexity of τur

u and constraints (10f), (10g) and (10i)
with respect to flow-split portions and transmit power vari-
ables. Furthermore, the binary nature of sub-band allocation
variables in constraint (10b) makes these problems more
difficult to solve directly, which is generally MINCP. Once
may employ the MINCP solvers (e.g. Gurobi) to directly solve
binary π. However, we argue that the exponential computation
complexity of such a MINCP formulation limits its practical
feasibility, especially when the number of variables exceeds
few thousand in large-scale scenarios. Besides, the traffic
demand λ[t] for the next time (frame) is unknown in practice.
Such that the BW-split α[t] and flow-split vectors φ[t] for
frame t will be decided based on the previous states updated by
the RAN layer and knowledge of the previous traffic demands
{λ[t − 1]}∀t. In order to attain high QoE for all users in
each TTI, an efficient and adaptable solution to the long-term
subproblem of (10) and (11) is required.

C. Sub-Optimization Problems

It is clear, both problems (10) and (11) must be solved
on separate time scales, i.e. on the long-term scale t and the
short-term scale ts. To reduce the computational complexity
and information sharing as well as to provide a stable queuing
system, the traffic demand vector λ[t], the flow-split decision
vector φ[t] and BW-splitting variable α[t] are only solved
and updated once per time-frame t. In contrast, the power
allocation vector p[ts] and the RB allocation vector π[ts] are
optimized in every TTI ts, adapting to dynamic environments.

Although having different objective functions, we observe
that P1 and P2 can share the solution development. In particu-
lar, the P2’s objective function can be equivalently transformed
to the maximization of the worst rate of the uRLLC services.
By approximating the channel dispersion V in (2) as 1 for
proper SNR ranges, the uRLLC rate has the same concavity
as the eMBB rate in (1). Since both problems P1 and P2
have the same set of constraints, hereafter we propose solution
development for only P1 to avoid redundancy.

1) Long-Term Subproblem (L-SP): The joint optimization
subproblem of the traffic demand, flow-split distribution, and
dynamic RAN slicing at time-scale t is re-expressed as:

clL-SP : max
λ,φ,α

Rem(pem[ts]) (12a)

s.t. φu[t] ∈ φ[t],∀t, u (12b)∑
ts

rur
m,u(pur[ts],πur[ts]) ≥

φm,u[t]λu[t]Zur

∆
(12c)

τur
u (λ[t],φ[t],π[ts],p[ts]) ≤ Dur

u , ∀u (12d)
Fi∑

fi=1

βi ≤ Bi[t], i ∈ {1, 2} (12e)

0 ≤ α[t] ≤ 1. (12f)

Although the L-SP (12) is non-convex due to the
non-convexity of constraints (12c) and (12d), it cannot be
solved directly by standard optimization techniques because
λ[t] is completely unknown at the beginning of each frame.
In the next section, three successive methods are proposed for
solving this problem, that predict traffic demand, dynamic BW-
split distribution, and dynamic flow-split variables as λ∗[t],
α∗[t] and φ∗[t] at the beginning of each frame t, respectively.

2) Short-Term Subproblem (S-SP): Given λ∗[t], α∗[t], and
φ∗[t] forwarded from the non-RT RIC through the A1 inter-
face, the resource allocation problem at time slot ts in the
near-RT RIC is expressed as:

S-SP : max
π,p

Rem(pem[ts]) (13a)

s.t. s.t. π[ts] ∈ Π[ts], ∀ts (13b)
p[ts] ∈P[ts],∀ts (13c)∑

ts

rem
u (pem[ts]) ≥ Rth,∀u (13d)

∑
u

[
rem
m,u(pem[ts]) + rur

m,u(pur[ts],πur[ts])
]

≤ CFH
m ,∀m (13e)∑

ts

rur
m,u(pur[ts],πur[ts]) ≥ ψ,∀m,u (13f)

τur
u (π[ts],p[ts]) ≤ Dur

u ,∀u (13g)∑
u

qm,u[ts] ≤ Qmax,∀ts,m ∈ Mn (13h)

where ψ = φ∗
m,u[t]λ∗u[t]Zur

∆ . The S-SP (13) involves both binary
(π) and continuous (p) optimization variables with nonlinear
objective function and non-convex constraint (13e) at time slot
ts, which is still remained a MINCP problem. Since MINCP
problems incorporate the optimizing challenges under integer
variables with managing nonlinear functions, such problems
comprise an immense class of difficult optimization problems.

D. Overall Intelligent Traffic Steering Deployment
Architecture and Algorithm

In Fig. 4, we show the high-level organization of deploy-
ment scenarios and the end-to-end flow of the proposed
algorithm within the ORAN architecture. This is inspired by
the second set of deployment scenarios listed in the technical
report [31] by the ORAN Alliance.

1 The collected data, including performances/observations
and resource updates from RAN components and near-
RT RIC, are collected into a data collector located at
the SMO. This process is done via the O1 interface.
Based on these collected data in SMO, three rAPPs
for solving L-SP are carried out at non-RT RIC. For
t = 1, we assume a random traffic demand with a Poisson
process and equal flow-split decision for all paths.

2 Utilizing a data bus like Kafka, the collected data at the
SMO is routed to non-RT RIC in the SMO.

3 The non-RT RIC queries the relevant ML/AI model,
which is hosted in the AI server within the SMO. Once
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Fig. 4. High-level structure of deploying the proposed intelligent traffic
prediction and JIFDR management scheme within the ORAN architecture.

the model has been well-trained on the AI server, non-RT
RIC is notified of the inference.

4 The scheduling xAPP in near-RT RIC is then loaded with
inference results and policies via the A1 interface. Appli-
cations, that are designed specifically for radio functions
or xAPPs, enable RAN components to be programmed.

5 Given λ∗[t], α∗[t] and φ∗[t], xAPP1 deployed in near-RT
RIC controls congestion through MC technique and opti-
mizes RAN resources and functions in each time-slot
ts by solving S-SP to obtain optimal solutions of RB
allocation π∗[ts] and power allocation p∗[ts].

6 Subsequently, the RAN Data Analytic component in
near-RT RIC updates queue lengths.

7 Through the E2 interface, the relevant solution is trans-
ferred to CU or DU layers.

8 After Si TTI (i.e. one frame), the performance and
observations (e.g. q[t− 1], λ[t− 1]) are updated to SMO
through the O1 interface to re-estimate the traffic demand
λ∗[t+ 1] and flow-split decision φ∗[t+ 1].

The overall intelligent TS algorithm to solve the JIFDR
problem (10) is summarized in Algorithm 1, where the
solutions for subproblems will be detailed in Section IV.
It is straightforward to develop a similar procedure to solve
problem (11).

IV. PROPOSED FRAMEWORKS FOR
SOLVING SUBPROBLEMS

We are now in a position to solve the L-SP and S-SP on
different time scales. The optimal solutions for all optimization
variables (α φ, π and p) strongly depend on the predicted
traffic demand vector λ, which often require prior knowledge
of the actual traffic of all services stored at data collector in
SMO. Moreover, due to the dynamic environment and data
collected from the RAN components being only updated to
non-RT RIC on a long-term scale (i.e., frame), the assumption
of complete information is unrealistic. In this paper, we aim to

Algorithm 1 Proposed Intelligent Traffic Steering Algorithm
to Solve JIFDR Problem (10)
Initialization: Set t = 1, ts = 1, φu[1] = 1

M [1, . . . , 1] and
α[1] = 1

2 ; all initial queues are set to be empty qm,u[1] =
0 and q[1] = 0.

1: for t = 1, 2, . . . , T do
2: Traffic demand prediction: Given (λ[t− 1], q[t− 1]),

non-RT RIC splits the available of all RUs’ BW and
traffic flows of all users by (14) and (15) based on the
predicted traffic demand (or arrival data rate) λ∗[t] by
solving the L-SP (12)

3: for ts = 1, 2, . . . , Si with s ∈ {1, 2, . . . , Si} do
4: Optimizing scheduling: Given the queue-length

vector q[ts], and all long-term variables such as
(λ∗[t],α∗[t], and φ∗[t]), solve the problem (16) by
Algorithm 2 to obtain the RB assignment (π∗) and
power allocation (p∗)

5: Updating queue-lengths: Queue-lengths are updated
as

qm,u[ts+1] = max{
[
qm,u[ts] + φm,u[t]λu[t]Zxδi

−rx
m,u[ts]δi

]
, 0}

where x ∈ {ur, em}.
6: Set s = s+ 1
7: end for
8: Update {q[t],λ[t]} = {qm,u[t], λu[t]}, ∀u ∈ U,

m ∈ Mn

9: Set t = t+ 1
10: end for

leverage observable historical system knowledge gathered over
previous time slots via the O1 interface to build a smoother
optimal response to maximize the long-term utility.

A. LSTM for Solving L-SP

As mentioned previously, the L-SP cannot be solved directly
by standard optimization techniques since λ[t] and q[ts] are
often unknown at the beginning of each frame. Besides, the
main challenge in optimizing traffic steering is to predict traffic
precisely before the beginning of the next frame. An optimal
policy cannot be implemented with an imprecise prediction
of future traffic. In this section, utilizing a deep learning
approach, we develop a data-driven real-time traffic demand
prediction method. We suppose that the queue length of data
flows u in the next frame will depend on the traffic demand of
data flow u in the current and previous ones. Basically, RNN
models utilize the current input as well as the output of one
layer as the input for the subsequent layer. In such models,
each layer is fed by the very first layer’s input. This allows
the RNN model to learn from the current and former time
steps and then provides more precise predictions for traffic
flows. These standard RNN models suffer from short-term
memory owing to the vanishing and exploding gradient prob-
lems, which appear with longer data sequences. Due to these
difficulties, the gradient either entirely disappears or explodes
to a very high value, which makes them difficult to learn
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some long-period dependencies. To address the long-term
dependency issue, the LSTM model has seen extensive use in
the field of traffic prediction due to its capabilities in dealing
with long time-series flow data. As a result, we utilize the
LSTM RNN to learn and predict the traffic pattern of all users
in the considered ORAN architecture.

The fact that LSTM includes a memory cell to keep
observable data, allows them to handle long-term time series.
As shown in Fig. 5, the structure of standard LSTM cells
learns through four main gates, namely input (ig), forget (fg),
cell state-update (cg) and output (og), that allows the input
data to pass from the previous cells in the learning procedure.
The output calculated by the input gate (ig) and the cell state
update (cg) modify the current cell’s state (c[t]), while the
forget gate enables the current cell to discard or preserve the
previous state value. To determine this, we take into account
the output of the previous hidden state (H[t−1]) and the actual
input data (λ[t − 1]). The new cell state’s value is based on
the actual input and previous output of the cell. In contrast
to other gates that employ the Sigmoid function, the cell
state update benefits the hyperbolic tangent as an activation
function that yields values between −1 and 1. Eventually,
the input, forget, and cell state update gates are combined
to create the current cell state. The current cell’s output is
determined as a function of the previous timestep’s output
(H[t− 1]), the actual input data (λ[t− 1]), and the cell state
(c[t−1]) through the output gate. Lastly, after crossing through
an activation function, the prediction value is calculated. Each
LSTM layer comprises a chain of LSTM cells, in which the
computed operation of each cell is transmitted to the next cell
as an input. As illustrated in Fig. 5, the temporal pattern of
the mentioned parameter is learned through the current and a
window of previous traffic demands value with the length W
{λ[t − W ],λ[t − W + 1], . . . ,λ[t − 1]} to predict future
values.

The LSTM model is trained at non-RT RIC in the ORAN
architecture, using long-term data gathered from RAN via
O1. The near-RT RIC of the ORAN is then given access
via the A1 interface to the trained model for inference. Upon
the inference outcome, the intelligent TS is applied through
the MC technique to enhance the associated key performance
indicators (KPIs). Traffic demand prediction and the corre-
sponding intelligent TS schemes are continually implemented
till the desired KPI values, or the required QoS of traffic are
met. In the following, the network parameter of data arrival
rate λ is continuously monitored across all cells of RUs.
Upon predicting the data arrival rate per frame, the flow-
split distribution, dynamic RAN slicing, and radio resource
management with the MC technique can be applied to steer
data flows. The weights of the RNN model are eventually
updated depending on the actual parameter’s value to reflect
changes and enhance the performance till the goal KPI criteria
are met if the prediction outcome is incorrect.

B. Heuristic Methods for Predicting α[t] and φ[t]

Upon the inference outcome of the LSTM model, the pre-
dicted traffic demands at the next frame λ∗[t] are transmitted

immediately to two other embedded rAPPs in non-RT RIC for
optimizing the dynamic bandwidth separation, α[t] and flow-
split decisions, φ[t]. For efficient deployment, these param-
eters are designed in a longer time scale, i.e., on the frame
basis compared to the time slot basis of power allocation and
resource block assignment. Therefore, at the beginning of each
frame, α[t] and φ[t] should be determined upon getting the
predicted traffic demands. Having optimum values of the band-
width separation and flow split is very difficult if not possible
because of the unknown CSI of future time slots in the current
frame. Therefore, we propose an efficient heuristic algorithm
to determine α[t] and φ[t] based on λ∗[t]. An intuitive way
is to allocate the bandwidth to each service proportionally to
the corresponding traffic demands. However, since the amount
of uRLLC traffics is much smaller than the amount of eMBB
traffic, this method is not efficient in meeting the stringent
latency requirement of uRLLC applications. To tackle this,
we incorporate the maximum tolerable delays of both services
and the total traffic demands. Thus, the bandwidth separation
between eMBB and URLLC services is computed as follows:

α∗[t] =
∑

Uur λ∗u[t]∑
Uem λ∗u[t]

× τ em
th

τur
th

(14)

where τur
th and τ em

th represent the maximum allowed latency
for uRLLC and eMBB services, respectively. To plan the
flow splitting factor φu[t], we consider each DU’s capacity
in delivering user traffic demands u. Because we do not know
the data rate for the user in the next frame, we take the
moving average of the rate in the most recent time slots.
For a generic user u (can be uRLLC or eMBB user), let us
define r̄m,u[t] = 1

W

∑t
l=t−W+1 rm,u[l], where rm,u[l] is the

achievable rate of user u served RU m at time slot l, and
W is the window size. The flow split for user u to RU m is
computed as follows:

φ∗m,u[t] =
r̄m,u[t]∑

m∈Mn
r̄m,u[t]

, ∀m,u. (15)

C. SCA-Based Iterative Algorithm for Solving S-SP

To solve the problem (13) as a MINCP, we first relax binary
variables to continuous ones (i.e. the box constraints between
0 and 1) and transform constraint (13e) into a more traceable
form which the SCA-based iterative algorithm can efficiently
solve.

1) Penalty Function: We bring forward the following
penalty function to accelerate the convergence of the proposed
iterative algorithm that will be detailed shortly P(π) =∑

ts,fi,m,u

[
(πem

m,u,fi
[ts])2 + (πur

m,u,fi
[ts])2 − πem

m,u,fi
[ts] −

πur
m,u,fi

[ts]
]

which is convex in π[ts]. It is clear that P(π) ≤
0 for any πx

m,u,fi
[ts] ∈ [0, 1], which is useful to penalize

the relaxed variables to obtain near-precise binary solutions
at optimum (i.e. satisfying (13b)). By incorporating P(π)
into the objective function of (13b), the parameterized relaxed
problem is expressed as:

S-SP1 : max
π,p

Rem + ωP(π) (16a)

s.t. π[ts] ∈ Π̃[ts], ∀ts,∀u ∈ U (16b)
(13c)-(13h) (16c)
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Fig. 5. Implementing the proposed JIFDR management scheme at time-frame t.

Algorithm 2 The Proposed SCA-Based Iterative Algorithm to
Solve S-SP (16)
Initialization: Set j := 0 and generate initial feasible points

for (π(0)[ts],p(0)[ts]) := (π[ts−1],p[ts−1]) to constraints
in S-SP2 (19)

1: repeat
2: Solve (19) to obtain (π∗[ts],p∗[ts]) and Ξ∗[ts];
3: Update (π(j)[ts],p(j)[ts]) := (π∗[ts],p∗[ts]) and

Ξ(j)[ts] := Ξ∗[ts];
4: Set j := j + 1;
5: until Convergence or |Ξ(j)[ts]−Ξ(j−1)[ts]| ≤ ϵ {/*Satis-

fying a given accuracy level*/}
6: Recover an exact binary by computing π∗[ts] =
⌊π(j)[ts] + 0.5⌋ and repeat step 1 to 5 for given π∗[ts];

7: Output: (π∗[ts],p∗[ts]).

where Π̃[ts] ≜ {πem
m,u,fi

[ts], πur
m,u,fi

[ts] ∈ [0, 1]|
∑

m,u[πem
m,u,fi

[ts] + πur
m,u,fi

[ts]] ≤ 1} and ω > 0 denotes a determined
penalty parameter.

Proposition 1: Problems (13) and (16) share the same
optimal solution, i.e., (π∗,p∗), considering an suitable positive
value of ω.

The proof is directly followed [32] by showing the fact
that P(π) = 0 at optimum in maximizing of the objective
function (16). It implies that a constant ω always exists to
guarantee that π are binary at optimum, and the relaxation is
tight. Practically, it is acceptable if P(π) ≤ ε for a tiny ε,
which results in a nearly precise optimal solution.

In problem (16), the objective function is non-concave due
to P(π), while constraints (13e) is non-convex. Based on the
SCA method, the first-order Taylor approximation is used to
linearize the function P(π) at the j-th iteration as follows:

P(j)(π)

≜
∑

m,u,fi

[
πem

m,u,fi
[ts](2π

em,(j)
m,u,fi

[ts]− 1)− (πem,(j)
m,u,fi

[ts])2

+ πur
m,u,fi

[ts](2π
ur,(j)
m,u,fi

[ts]− 1)− (πur,(j)
m,u,fi

[ts])2
]

(17)

where P(π) ≥ P(j)(π) and P(π(j)) = P(j)(π(j)).

To address constraint (13e), we indicate its LHS as
rm(p[ts]) ≜

∑
u

[
rem
m,u(pem[ts]) + rur

m,u(pur[ts], πur[ts])
]
,

which is concave in p[ts]. Thus, the function rm(p[ts]) can
be approximated at the feasible point p(j)[ts] as

r(j)m (p[ts])

≜ rm(p(j)[ts])−
∑
u,fi

βi

πur
m,u,fi

[ts]Q−1(Pe)√
δiβi

+
βi

ln 2

∑
u,fi,x

(px
m,u,fi

[ts]− p
x,(j)
m,u,fi

[ts])

×
[ gm,u,fi

[ts]

N0 + p
x,(j)
m,u,fi

gm,u,fi
[ts]

]
. (18)

The convex approximate program of (16) solved at iteration
j is stated as follows, taking into account all the aforemen-
tioned approximations:

S-SP2 : max
π,p

Ξ(j) ≜ Rem + ωP(j)(π) (19a)

s.t. (13c), (13d), (13f)− (13h), (16b) (19b)

r(j)m (p[ts]) ≤ CFH
m ,∀m ∈ Mn. (19c)

Algorithm 2 provides a summary of the SCA-based iterative
algorithm. Step 6 is used to recover an exact binary solution
then Steps 1–5 are repeated to refine the final solution in order
to ensure a feasible solution to the problem (16). The study
gap to the global optimal solution is not considered in this
work and is left for future study.

Convergence and complexity analysis: The development
of the proposed iterative Algorithm 2 is based on the SCA
method [33]. The approximations in (17) and (18) are sat-
isfied the three key inner approximation properties given in
[34], while other constraints are already linear and quadratic.
In particular, the solution of (19) is always feasible to the
parameterized relaxed problem (16) but not vice versa. In addi-
tion, Algorithm 2 generates a sequence of the improved
solutions {π(j),p(j)} in the sense that Ξ(j+1) ≥ Ξ(j),∀j.
By [33, Theorem 1], if the number of iterations is sufficiently
large, the sequence {π(j),p(j)} converges to at least a local
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TABLE II
SIMULATION PARAMETERS

optimal solution of (16), satisfying the Karush-Kuhn-Tucker
(KKT) conditions [33, Theorem 1]. On the other hand, for
each numerology i, the convex approximate program (19) has
2MUFi scalar decision variables and 2MUFi + 4M + 3U
linear and quadratic constraints. As a result, the worst-case
computation complexity of Algorithm 2 in each iteration is
estimated as O

(√
2MUFi + 4M + 3U(2MUFi)3

)
, follow-

ing the interior-point method [35, Chapter 6].

V. PERFORMANCE EVALUATIONS AND
NUMERICAL RESULTS

A. Simulation Setup and Parameters

We consider a scenario where all users are uniformly
distributed in a circular area with a radius of 500 m, while the
locations of RUs are fixed. One RU is located in the central
area, serving three sectors, each of which includes one RU.
The RU-user channels are generated as Rayleigh fading with
the path-loss PLRU−USER = 128.1 + 37.6 log10(d/1000) dB.
The penalty factor is set to decrease after each TTI as ω[ts] =
20+10/(1+ts) to guarantee the convergence of the short-term
subproblem. To estimate the future traffic for the upcoming
frames, an RNN model’s parameters, which include 2 fully
connected hidden layers and 50 LSTM units (neurons), are
trained. The operators can configure these parameters based
on the provided data and its periodicity. In our setup, the
Poisson traffic model has been used to generate traffic for
both eMBB and uRLLC services. The RNN training is carried
out over the traffic dataset of the cellular network following a
Poisson distribution, with the mean arrival rates of 20 and
2.5 for eMBB and uRLLC traffics, respectively [18]. The
mean arrival rate is a configurable parameter of the simulator.
Incoming traffic packets are sorted in a first-come-first-serve
buffer. The dataset contains network measurement in terms
of arrival rate collected from M RUs, over a horizon of T =
10000 traffic observations over a duration of 100 seconds. The
open-source, high-level TensorFlow version 1.13.1 application
programming interface, Keras, is used to implement the RNN
model. All experiments are done on a Dell desktop computer
with an Intel R CPU @ 3.0 GHz. Simulation parameters
including the LSTM model are summarized in Table II.

We put into practice the following five benchmark schemes
for performance comparison:

1) Fixed numerology (FIX-NUM): In this scheme, the TTI is
considered the same for both services as the LTE standard
(i.e. 0.5 ms) with the SCS of 180 kHz. The resource
allocation, flow-split decision, and dynamic BW-split

Fig. 6. Training and validation loss for the LSTM RNN model.

for both traffic follow Algorithm 1 with some slight
modifications.

2) Equal Flow-Split Distribution (EFSD): In order to
demonstrate the importance of optimizing the flow-split
distribution per frame, this scheme considers the equal
flow-split for each traffic to RUs, i.e. φm,u = 1

M , ∀u ∈
U and follows Algorithm 1.

3) Equal Power Allocation (EPA): The RBs’ allocation π is
optimized by Algorithm 1 for an equal power allocated
to all users and subcarriers.

4) Single Connectivity with uRLLC Priority (SCUP): To
reveal the performance improvement of MC in heteroge-
neous wireless networks, this scheme provides the single
connectivity (SC) scheme with uRLLC priority in the
presence of interference. Due to the stringent requirement
of latency, uRLLC will be predominantly guaranteed, and
then the remaining resources will be occupied by eMBB
users. In this regard, this scheme considers M RUs with
disjoint dedicated users while following Algorithm 1.

5) Proposed Problem in Presence of Known Traffic Demand
(PKTD): This scheme investigates the performance of
both traffics in the presence of known traffic demand λ.
In practice, the obtained results of this scheme in the
presence of unknown traffic demands show the accuracy
of the LSTM model of the proposed method.

B. Numerical Results and Discussions

First, in order to investigate the LSTM’s convergence,
we monitor the value of the loss function as MSE and keep
the training process until the training loss is typically identical
to the validation loss after a specific number of epochs. Since
the mean arrival rates of both traffics are not in the same
range, we normalize traffic demands in the pre-processing
phase through the MinMaxScaler normalization method from
Sklearn. We then divide data into two sets, which are 80% for
training and 20% for validation. Fig. 6 plots the training and
validation losses for the LSTM model with the most suitable
turning hyperparameters, which converge after 50 epochs.
It should be mentioned that setting the desirable number of
epochs prevents model overfitting. From Table III, we find
that the activation function of tanh works better than relu
and sigmoid. In the same condition, increasing the number of
LSTM layers and decreasing the number of units per layer do
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Fig. 7. Traffic demand prediction in ORAN.

TABLE III
HYPERPARAMETERS FOR THE DIFFERENT PERFORMING LSTM MODELS

not help reduce the MSE value. Based on the search result, the
adam optimizer converges faster than others, whereas it takes
less time for the model’s training. In our case, the dropout
value is 0.01 for both hidden layers. As a result, Table III
shows the search parameters to find the best parameters for
the final LSTM-RNN model.

The effectiveness of the LSTM RNN model in both traffic
demands is represented in Fig. 7 to illustrate the performance
of the ML model prediction. The actual and predicted values
for one of the eMBB and uRLLC traffic demands in the
proposed system model are shown in Fig. 7 (a) and Fig. 7 (b),
respectively. As it is clear from these figures, the trained
LSTM-RNN model performs outstandingly in capturing the
dynamic traffic demand of services over time. The difference
between predicted and actual traffic demands is entirely small.
The MSE value has been calculated as a performance mea-
surement to validate the accuracy of the implemented LSTM
model. For instance, the measured MSE values of the selected
eMBB users in Fig. 7 (a) and uRLLC users in Fig. 7 (b) are
0.00315 and 0.00323, respectively.

To evaluate the eMBB throughput with different resource
allocation schemes, Fig. 8 illustrates the sum throughput of
eMBB users over different maximum RUs’ power budgets
from 10 to 46 dBm. Unsurprisingly, the PKTD provides
the best performance and acts as the upper bound of all
strategies. It can be observed that the gap between our pro-
posed framework and PKTD is less than 2%, which proves
the efficiency of the LSTM RNN model in predicting the
dynamic traffic demand over time. Whereas the proposed
method provides the highest eMBB throughput compared to
other benchmark schemes in Fig. 8. Compared to SCUP, FIX-
NUM, EPA, and EFSD, the proposed method offers 130.89%,

Fig. 8. Average overall eMBB throughput versus Pmax.

Fig. 9. Average worst-user uRLLC latency versus Pmax.

116.32%, 71.92% and 19.21% gains at the typical power
value of Pmax = 30 dBm, respectively. Furthermore, EPA
and FIX-NUM work over Pmax ≥ 25 dBm, while they
are infeasible when the maximum RUs’ power is less than
25 dBm. Hence, this phenomenon shows the advantage of our
proposed method over these schemes, especially at a small
Pmax. Besides, as we mentioned previously, the MC technique
plays a vital role in enhancing the eMBB throughput. The gap
between the JIFDR framework considering the MC technique
and SCUP grows with increasing the maximum power budget
of RUs. While the overall eMBB throughput obtained via
JIFDR, EFSD, and SCUP are close at Pmax = 10 dBm,
by increasing Pmax, the MC-based schemes of JIFDR and
EFSD significantly exceed that of SCUP.

In order to show the performance of the proposed method
on uRLLC latency, Fig. 9 represents the worst-user uRLLC
latency under different maximum power of RUs. Similar to
the first optimization problem (P1), increasing the maximum
power of RUs significantly affects the eMBB throughput
improvement, resulting in an efficient reduction of uRLLC
latency in the second optimization problem (P2). As we can
see from Fig. 9, the uRLLC latency of the proposed method
is almost equal to PKTD, which again confirms the accuracy
of the LSTM RNN model in predicting the dynamic traffic
demand. The performance gain in terms of latency of the
proposed method is 181.32% and 49.47% Compared to SCUP
and EFSD at Pmax = 40 dBm. According to the empty
region of two benchmark schemes, FIX-NUM and EPA in
the range Pmax ≤ 25 dBm, results from Fig. 9 show that
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Fig. 10. Average of queue lengths versus Pmax.

these schemes are infeasible over the mentioned range of Pmax

while having a significant difference in uRLLC latency with
the proposed method. Clearly, the EFSD scheme in Fig. 9
greatly outperforms the SCUP scheme. On the one hand,
the uRLLC and eMBB traffic are sliced in various virtual
slices in SCUP, while the size of the uRLLC traffic packet
is considerably smaller than the eMBB packet size. Hence,
the assigned slice to uRLLC could meet the uRLLC traffics’
requirements alone without waiting in a queue. On the other
hand, the SCUP scheme is not able to aggregate multiple links
and allow users to connect to more than one RU to achieve
the highest throughput.

Fig. 10 depicts the average backlog in the queue under
the maximum power budget of RUs with different benchmark
schemes. As can be seen, the higher the power budget Pmax,
the lower the average queue length. Similar to the two previous
figures, results from the proposed method and PKTD are very
close to each other. As expected, the SCUP scheme yields
the worst performance in terms of the average queue length,
whereas the proposed method yields the best one in Fig. 10.
Two FIX-NUM and EPA schemes are infeasible when Pmax <
25 dBm. Clearly, the EFSD benchmark scheme performs in a
better way rather than FIX-NUM, EPA, and SCUP schemes;
while EFSD and EPA provide a very close performance to
each other for Pmax > 35 dBm. On the other hand, during
the joint scheduling of uRLLC and eMBB traffics, we have
numerically observed that uRLLC users always prefer to have
only one link in various system setups. This issue indicates
that a single connection is generally the best option for traffic
with a small data packet size. In contrast, the MC technique
is typically a nice option for traffic with high data packet size,
i.e. eMBB.

As we mentioned before, the MC is an effective technique
to improve the data rate for eMBB traffic, especially when the
system model faces a limited bandwidth. To demonstrate this,
Fig. 11 shows the impact of the increasing number of RUs
on overall eMBB throughput. All simulation parameters are
assumed unchanged during the simulation of Fig. 11, except
the number of eMBB and uRLLC users which are considered
21 and 14, respectively. It is clear from Fig. 11, the eMBB
throughput rises with the number of RUs which means an
increase in the number of available RBs. As we expected,
the PKTD also works as an upper bound for all schemes,

Fig. 11. Average of eMBB throughput versus number of RUs (M ) with
considering 21 eMBB users and 14 uRLLC users.

Fig. 12. Convergence behaviour of the proposed Algorithm 2.

regardless of the number of RUs. The small gap between our
proposed framework and PKTD (about 2%) shows the high
accuracy of traffic prediction by embedded LSTM in the non-
RT-RIC component. Compared to other existing benchmark
schemes, the proposed method offers the highest throughput.
Due to the crucial role of MC in the network, SCUP has the
worst performance among all the schemes, with increasing
the number of RUs (M ≥ 3) in the network model. For
M = 5, the schemes with MC (i.e. the proposed method,
EFSD, EPA, and FIX-NUM) have the performance gain of
168.2%, 90.67%, 42.68%, and 19.45% relatively compared
to the without MC i.e., SCUP. It should be noted that the
SCUP outperforms FIX-NUM at M ≤ 3, demonstrating
the advantage of mixed numerology over fixed numerology.
However, as the number of RUs increases to M ≥ 3, the
SCUP is no longer able to offset the weak performance of the
single connection scheme. Since all users associate with only
one RU, the performance of all schemes is almost the same,
while the MC brings a large gap between MC and SCUP by
increasing the number of RUs. It is noted that the gap between
the proposed method and other schemes also grows with the
number of RUs.

Finally, we examine the convergence behavior of the pro-
posed Algorithm 1, comparing the optimal value through the
exhaustive search for Pmax = 30 dBm under the different
number of RUs in Fig. 12. It is shown that the proposed
algorithm for both problems (P1) and (P2) converges quickly,
taking less than 10 iterations to reach the optimal value
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within an increment, which is smaller than a given threshold
ϵ = 10−4. As expected, based on Fig. 12(a) and Fig. 12(b),
as the number of RUs increases in such a network, the
eMBB throughput increases, but it does not affect the uRLLC
latency remarkably. As we mentioned before that uRLLC users
frequently tend to link to only one RU because of their small
packet size. There is almost the same convergence speed for
both cases with 3 RUs and 4 RUs. Nevertheless, the case with
4 RUs case needs a little more time for CVXPY to solve the
MINCP in each step due to additional optimization variables.

VI. CONCLUSION

In this work, we have developed a novel intelligent TS
framework in the presence of unknown dynamic traffic to
meet the competing demands of uRLLC and eMBB services
in beyond 5G networks based on dynamic MC. To achieve
the maximum throughput for eMBB traffic while guaranteeing
the minimum uRLLC latency requirement, and vice versa,
we have proposed a joint intelligent traffic prediction, flow-
split distribution, dynamic RAN slicing, and radio resource
management scheme to schedule joint RBs and transmission
power with mixed numerologies based on standardization
in 5G NR. We have carried out a thorough analysis of
E2E uRLLC latency. Due to the execution of the proposed
problems in two different timescales, we have divided them
into two long-term and short-term subproblems. To solve
them, the LSTM method and SCA-based iterative algorithm
have been developed to solve the formulated subproblems
effectively. Thanks to LSTM, which predicts future traffic
with high accuracy, the proposed method based on MC and
mixed numerologies greatly improves resource utilization by
adapting to dynamic traffic demands compared to benchmark
schemes. One of the future works is to deploy more advanced
techniques (e.g. deep reinforcement learning) to better estimate
α[t] and φ[t].
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