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Abstract
The convergence of mobile edge computing 

(MEC) and blockchain is transforming the current 
computing services in wireless Internet-of-Things 
(IoT) networks, enabling task offloading with secu-
rity enhancement based on blockchain mining. 
Yet the existing approaches for these enabling 
technologies are isolated, providing only tailored 
solutions for specific services and scenarios. To fill 
this gap, we propose a novel cooperative task off-
loading and blockchain mining (TOBM) scheme 
for a blockchain-based MEC system, where each 
edge device not only handles computation tasks 
but also conducts block mining for improving sys-
tem utility. To address the latency issues caused 
by the blockchain operation in MEC, we develop 
a new Proof-of-Reputation consensus mechanism 
based on a lightweight block verification strategy. 
To accommodate the highly dynamic environ-
ment and high-dimensional system state space, 
we apply a novel distributed deep reinforcement 
learning-based approach by using a multi-agent 
deep deterministic policy gradient algorithm. 
Experimental results demonstrate the superior 
performance of the proposed TOBM scheme 
in terms of enhanced system reward, improved 
offloading utility with lower blockchain mining 
latency, and better system utility, compared to 
the existing cooperative and non-cooperative 
schemes. The article concludes with key techni-
cal challenges and possible directions for future 
blockchain-based MEC research.

Introduction
Recent advances in wireless Internet-of-Things 
(IoT) have promoted the proliferation of mis-
sion-critical applications, for example, augment-
ed reality and autonomous driving, which rely 
heavily on edge devices (EDs) to collect data 
from IoT sensors to serve end users. To meet 
the ever-growing computation demands of EDs, 
mobile edge computing (MEC) has been pro-
posed as a promising technique to improve the 
computation experience of EDs, by offloading 
computationally-intensive IoT tasks to a nearby 
MEC server located at a base station (BS) [1]. 
Multiple EDs can share computation and commu-
nication resources of the BS to handle data tasks 
without device’s battery depletion. Task offload-

ing with MEC thus becomes a viable solution to 
satisfy various EDs’ computation demands, thus 
enhancing the quality-of-experience (QoE) of end 
users. Furthermore, to provide security in MEC 
systems, blockchain [2] has emerged as a strong 
candidate due to its decentralization, immutabili-
ty, and traceability, which forms blockchain-based 
MEC (B-MEC) paradigms [3]. Also, blockchain 
can build trusted B-MEC schemes by employing 
community verification among network entities 
(e.g., EDs) via mining mechanisms such as Dele-
gated Proof of Stake (DPoS) [4] without requiring 
a central authority.

In this context, how to ensure high perfor-
mance, for example, system utility, for the B-MEC 
system is a critical challenge. The task offload-
ing process between EDs and the MEC server 
consumes much energy and latency, while the 
operation of blockchain results in delays in the 
offloading due to mining task execution, which 
would degrade the overall system utility. Hence, 
it is paramount to simultaneously consider both 
task offloading and blockchain mining via a 
joint design and optimization solution, aiming to 
enhance the system utility of the B-MEC system.

Existing Solutions for Intelligent Performance 
Optimization in B-MEC

To achieve intelligent performance optimization 
in B-MEC systems, different solutions have been 
proposed in the open literature. The authors in 
[3] considered a blockchain-empowered compu-
tation offloading scheme where smart devices can 
offload their computing tasks to the MEC server 
under the control of blockchain mining for data 
integrity. Another work in [5] suggested an online 
computation offloading approach for both data 
processing and mining tasks in blockchain-em-
powered MEC with a deep reinforcement 
learning (DRL) algorithm [6, 7]. An intelligent off-
loading framework with actor-critic DRL was also 
proposed in [8], while the study in [9] focused on 
joint optimization of computation offloading and 
resource allocation using a double-dueling deep 
Q-network (DQN) for blockchain-enabled MEC 
systems. [10] developed a computation offload-
ing framework for blockchain-based IoT networks 
with a multi-agent DRL algorithm [11].
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Despite these research efforts, there are still 
several urgent issues to be addressed.

Non-cooperative Off loading: Most of the exist-
ing B-MEC schemes use traditional single-agent 
DRL algorithms [3, 5, 8] which exhibit critical 
design challenges caused by diversifi ed learning 
environments. Indeed, each agent only observes 
its local information in the training without updat-
ing the policies of other agents, which makes the 
learning environment nonstationary [12]. More-
over, non-cooperative multi-agent DRL solutions 

High Blockchain Latency: The integration of 
blockchain in MEC potentially results in unneces-
sary network latency due to block mining [8, 9] (i.e., 
block verifi cation and consensus) which can degrade 
the overall performance of the B-MEC system.

Lack of Joint Off loading and Mining Design: In 
most current B-MEC schemes [8, 9, 10], the design 
and optimization of task off loading and blockchain 
mining are done separately, leading to a subopti-
mal performance. To improve the overall perfor-
mance of the B-MEC system, a joint design of task 
off loading and blockchain mining is highly needed.

our KEy contrIbutIons
Motivated by the aforementioned limitations, 
we propose a novel cooperative DRL solution 
for joint task offloading and blockchain mining 
(TOBM), aiming to maximize the overall B-MEC 
system utility as a sum of the offloading utility 
and the mining utility. Our main contributions are 
highlighted as follows:
• We propose a novel cooperative TOBM 

scheme for B-MEC to enable a joint design 
of task off loading and blockchain mining. To 
reduce the blockchain network latency, we 
develop a new Proof-of-Reputation (PoR) 
mining mechanism via a lightweight block 
verifi cation solution.

• We propose a novel cooperative DRL solu-
tion using a multi-agent deep deterministic 
policy gradient (MA-DDPG) approach [13] 
to optimize the system utility.

• We implement simulations to verify the eff ec-
tiveness of our proposal. We highlight the 
technical challenges in B-MEC research and 
discuss several directions for future works. 

blocKchAIn-EmPoWErEd mEc systEm

ovErvIEW of nEtWorK ArchItEcturE
We consider a cooperative TOBM architecture in 
a B-MEC system, as illustrated in Fig. 1. An MEC 
server co-located at a BS provides computation 
services for EDs. We assume that each ED has an 
IoT data task to be executed locally or off loaded 
to the MEC server. Furthermore, each ED partici-
pates in the block mining by using a PoR consen-
sus mechanism. The key network components of 
the B-MEC system are described as follows.

IoT Sensors: IoT sensors such as cameras, 
smart meters, and wearables are responsible for 
sensing physical environments and generating 
data which need to be processed to serve end 
users. IoT sensors also act as lightweight block-
chain nodes to transmit data to EDs.

Edge Devices: Each ED such as a laptop or 
a powerful smartphone manages a group of IoT 
sensors under its coverage. Based on the QoE 
requirements, EDs can use their computational 

capability to process data tasks locally or off load 
to a nearby MEC server via wireless links. EDs 
also work as miners to perform block consensus 
where IoT sensors’ users vote to select represen-
tative EDs for mining.

MEC Server: In our considered B-MEC system, 
there is a single MEC sever to handle computa-
tionally extensive data tasks off loaded from EDs. 
By analyzing the task profile such as task sizes, 
channel conditions, and available resources, EDs 
can make offloading decisions so that the MEC 
server allocates its resources to execute data tasks 
under QoE requirements.

Blockchain: A blockchain network is deployed 
over the MEC system where each ED acts as a 
blockchain miner [9]. In this article, we pay atten-
tion to a PoR mining design to solve blockchain 
latency issues. The proposed PoR scheme allows 
EDs to join the block mining with mining utility 
enhancement which helps improve the overall 
performance of the B-MEC system. 

tAsK offloAdIng modEl
We consider a B-MEC system with the set of EDs 
and the available sub-channels of the BS denoted 
by N and , respectively. It is assumed that each 
ED n  N has an IoT data task including input data 
and required CPU workload to be executed local-
ly or offloaded to the BS via one of the sub-chan-
nels k  . Here, the off loading policy is scheduled 
by a binary variable, which equals 1 (off loading to 
the MEC server) or 0 (local execution). Each ED n
makes off loading decisions based on three main fac-
tors: task data size, channel condition, and transmit 
power level. Moreover, each ED needs to allocate 
portion of its computation resource to execute the 
task locally. Accordingly, we defi ne four policies to 
schedule the off loading process of each ED, includ-
ing off loading decision, channel allocation, transmit 
power, and computation resource allocation.

We here formulate an offloading utility func-
tion from the QoE perspective, which is charac-

FIGURE 1. The proposed cooperative task off loading and block mining architec-
ture in the B-MEC system. 
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terized by the task computation time (including 
local time and offloading time) and energy con-
sumption (including local energy and offloading 
energy). We defi ne a QoE-aware off loading utility 
function Jn

off to provide a trade-off between the 
time and energy consumption of the task off load-
ing compared with the local execution at each 
ED. The off loading utility function refl ects the off -
loading improvement in QoE over the local exe-
cution. If the off loading computation cost is lower 
than the local execution cost, the user utility can 
be positive, implying the user’s QoE improve-
ment. However, if off loading too many tasks, EDs 
may suff er from higher latency due to the traffi  c 
congestion, which reduces the user’s QoE. As a 
result, the user off loading utility can be negative.

blocKchAIn mInIng Protocol
In the B-MEC system, a crucial component is 
blockchain consensus that aims to mine the 
blocks of transactions (i.e., IoT data records) and 
add them to the blockchain. In traditional con-
sensus mechanisms, for example, DPoS [4, 9], 
each miner node must implement a repeated ver-
ifi cation process across the miner network, which 
results in unnecessary blockchain latency. There-
fore, we here propose a new PoR consensus to 
solve mining latency issues, including two main 
parts: miner node formulation and block verifi ca-
tion, as illustrated in Fig. 2.

Miner Node Formulation: In our B-MEC sys-
tem, IoT sensors’ users participate in the delegate 
selection process to vote the mining candidates 

among EDs. In this regard, each IoT user votes for 
its preferred ED with the most reputation based 
on its mining latency. Specifically, an ED that 
exhibits a lower mining latency will have a better 
reputation via a predefined mining utility func-
tion. Based on the calculated reputation score, 
each IoT user votes for ED candidates based on 
their reputation ranking. The top EDs with highest 
reputation scores are selected to become miners 
to perform consensus. During its time slot of the 
consensus process, each miner acts as a block 
manager which is responsible for performing 
block generation, verification, and aggregating 
blocks after being verifi ed.

Lightweight Block Verification: The block 
manager first produces an unverified block that 
contains transactions collected by EDs in a given 
time. Then, the manager broadcasts this block 
to all other miners within the miner network for 
verification. Different from the traditional DPoS 
scheme which relies on a repeated verification 
process among miners, here we implement a 
lightweight verification solution. That is, a miner 
only verifies once with another node during the 
consensus process, which significantly reduces 
the verification latency. Specifically, the block 
manager fi rst divides the block into a set of equal 
transaction parts that are assigned to each miner 
within the miner group along with a unique ran-
dom number. Next, the miner chooses to asso-
ciate with one of the miners within its group to 
implement the verification for its assigned trans-
action part by allocating its CPU resource. If 51 

FIGURE 2. The proposed PoR consensus in our B-MEC system. 

Previous
Hash

Transactions

Nonce

Block D

Time
stamp

Block header
Previous

Hash

Transactions

Nonce

Block A

Time
stamp

Block header
Previous

Hash

Transactions

Nonce

Block B

Time
stamp

Block header
Previous

Hash

Transactions

Nonce

Block C

Time
stamp

Block header

EM 2

Edge Miner
(EM) 1

EM 3

EM 4

EM 5

EM m

1
Miner node

selectionVoting Voting Voting Voting Voting

2

Block 
verification

Adding block 
to the chain

IoT Sensor
Users

E

E
Transaction 
exchange

Transaction 
exchangeMining

Mining

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2024 at 08:32:05 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 2022 15

percent of miners respond with positive verifica-
tion, and the sum of random numbers calculated 
by all miners is equal to a pre-defined number, 
the block manager accepts the verified block and 
adds it to blockchain. In summary, the mining pro-
cedure includes four stages:
•	 Transmitting unverified block from the block 

manager to the EMs
•	 Verifying the local block at each EM
•	 Sharing the verification result among two EMs
•	 Transmitting the verification result back to 

the manager. 
To this end, we build a mining utility function 

to characterize the mining efficiency of the pro-
posed scheme. Motivated by [14], we charac-
terize the mining utility Jnmine of each ED n via 
an exponential function where the mining utility 
is inversely proportional to the mining latency. 
Accordingly, an ED that exhibits a lower mining 
latency has a better mining utility with respect to 
a CPU resource allocation policy. 

Proposed Cooperative DRL Solution for 
System Utility Optimization

System Utility Formulation
Here, we formulate the system utility for the pro-
posed TOBM scheme by taking both offloading 
utility and mining utility into account. As explained 
previously, the offloading utility Jn

off reflects the 
efficiency of task offloading over local execu-
tion from the QoE perspective. Meanwhile, the 
mining utility Jn

mine reflects the efficiency of min-
ing blocks in the B-MEC network via the mining 
latency metric. Therefore, our key objective is to 
maximize the total system utility, that is, J, as the 
sum of the offloading utility Jn

off and the mining 
utility Jn

mine of all EDs n  N, with respect to the 
offloading policies including offloading decision, 
channel allocation, transmit power, computation 
resource allocation, and the mining policy with 
CPU resource allocation.

To apply DRL to the formulated TOBM prob-
lem, we need to convert the objective function 
from a system utility maximization problem to 
a reward maximization problem. To do this, we 
formulate the proposed problem using a multi-
agent version of the Markov decision process, 
also known as a Markov game. This is represented 
by a tuple of agent set N, state set S, action set 
A, and observation set O of all agents [11]. In 
fact, at each time slot, an MD does not always 
have access to all states of the environment, but 
only observes certain states, which is called obser-
vations. While states are complete and detailed 
information that are relevant to the current task 
(e.g., which specific wireless channel is occupied 
by a certain MD for offloading), observations are 
general information received by an MD (e.g., how 
many wireless channels are occupied).

Each ED n is considered as an intelligent agent 
to learn its optimal policy by observing the local 
environment formed by the cooperation of EDs 
and the MEC server, as shown in Fig. 3a. We 
assume that the considered collaborative task off-
loading and block mining scheme operates on dis-
crete-time horizon with each time slot t equal and 
non-overlapping, and the communication param-
eters remain unchanged during each time slot. 

Now, we define each item in the tuple at each 
time slot t as follows.

State: The environment state S(t) at time slot 
t in the proposed TOBM scheme includes five 
components: task state, channel state, power state, 
resource state, and transaction state. Here, the task 
state is defined as the matrix of input data and 
required CPU workload of all EDs. The channel 
state is defined via a matrix of channel condition 
variables of all BSs at EDs, where each variable 
equals 1 (occupied channel) or 0 (available chan-
nel). The power state consists of transmit power 
levels of EDs in each sub-channel. Moreover, the 
resource state contains the states of available com-
putation resource for data task execution, and 
transaction state includes transaction data size.

Action: By observing the environment states, 
each ED takes an action according to the offload-
ing decision, channel selection, transmit power 
selection, computation resource allocation, and 
CPU resource allocation, to complete task exe-
cution and block mining at each time slot t. 
Therefore, the action space of each ED is the com-
bination of the above action sets. Accordingly, the 
action space A(t) of the cooperative game can be 
defined as a matrix of action sets of all agents.

System Reward Function: The system reward 
at one time slot t is the sum of the rewards of 
all EDs. The objective of our formulated TOBM 
problem is to maximize the overall system utility 
J as the sum of the offloading utility and the min-
ing utility. Therefore, we define J as our system 
reward function.

Proposed Cooperative DRL Algorithm
In the literature, most existing schemes have 
focused on a conventional single-agent [3, 5, 8] or 
an independent multi-agent [11] setting; however, 
these solutions are unable to obtain the coopera-
tive policies of EDs because of nonstationary and 
partially observable environments. Indeed, when 
the policies of other agents change due to com-
putation mode preference, the ED’s observation 
can be changed (nonstationary) Moreover, in inde-
pendent multi-agent learning schemes, an agent 
only has the local information and cannot know 
the updates from other agents due to non-collab-
oration. This makes the agents’ learning algorithm 
hard to ensure stability and convergence [12]. 
Thus, we propose a novel cooperative multi-agent 
DRL scheme using MA-DDPG [13] for our pro-
posed TOBM scheme. The key reason behind the 
adaption of DDPG to optimize the system utility is 
that with this scheme, the actor can directly map 
states to actions instead of outputting the proba-
bility distribution across a discrete action space like 
DQN, which greatly reduces action sampling com-
plexity. Moreover, given the stochasticity of the 
policy, there exists high variance of the obtained 
system reward between different training episodes, 
where DDPG can come as an efficient solution, 
by enabling off-policy learning via the joint use of 
behavior network and target network.

To apply DRL to the formulated TOBM problem, we need to convert the objective function from a system 
utility maximization problem to a reward maximization problem. To do this, we formulate the proposed 

problem using a multi-agent version of the Markov decision process, also known as a Markov game.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2024 at 08:32:05 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 202216

The MA-DDPG algorithm employs a deep neu-
ral network (DNN) as the non-linear approximator 
to obtain the optimal policies for agents. Each 
agent updates its parameters to obtain a opti-
mal policy for maximizing its utility. MA-DDPG 
is a policy gradient-based off-policy actor-critic
method where each agent comprises the actor 
to make decisions over time slots with a behavior 
network and the critic to evaluate the behavior of 
the actor, which helps improve its performance. 
Specifically, given an episode sample from the 
memory buff er, the actor at each agent updates 
the behavior network by computing its gradient 
based on a centralized action-value Q-function. 
Moreover, the critic updates the behavior Q-func-
tion for the state-action pair of the actor network 
by minimizing the loss function with the inputs 
including both local agent’s observation and the 
observations of all other agents. The cooperation 
of multi-agents helps improve robustness against 
malicious attacks since this allows multiple agents 
to monitor the shared policy update via observa-
tions [15]. 

To reduce the computational complexity 
caused by online training at EDs and solve the 
nonstationary issues from the concurrently learn-
ing process of all EDs, we adopt a centralized 
learning and decentralized execution solution. 
In the centralized training step, the informa-
tion of state-action of all EDs is aggregated by 
the MEC server to train the DRL model, where 
each agent can achieve the global view of the 
learning environment to obtain the observations 
of other agents for building the collaborative off -
loading policy. After training at the MEC server, 
the learned parameters (i.e., neural weights of 
DNNs of the actor and critic) are downloaded 
to each ED to execute the model for decision 
making based on its own locally observed infor-
mation. Specifi cally, given the downloaded neu-
ral weights, each agent can easily compute the 
policy via its DNN with system utility used as the 
objective function, and then sample an action. 
Subsequently, each agent executes the sampled 
action, that is, making decision to off load the data 
or not, in the defi ned TOBM environment given 
its states to obtain a reward. The proposed algo-
rithm is illustrated in Fig. 3b.

PErformAncE EvAluAtIon
In this section, we conduct numerical simulations 
to evaluate the performance of the proposed 
TOBM scheme in a B-MEC system, employ-
ing the widely used Shanghai Telecom dataset 
(http://www.sguangwang.com/dataset/telecom.
zip). Here, we consider an MEC network with 
an MEC server and a maximum of 500 mobile 
phones as EDs distributed over a 1 km  1 km 
area in Shanghai city. The number of channel sub-
bands of the BS is set to 30, and each ED has task 
CPU workloads of [0.8–1.5] Gcyles and transmit 
power range of [0–24] dBm. A DNN structure 
with three hidden layers (64, 32 and 32 neurons) 
[9] is employed with the Adam optimizer for 
learning simulation. To prove the advantages of 
the proposed cooperative MA-DDPG scheme, 
we compare its performance with the state-of-the-
art non-cooperative schemes, including DDPG, 
actor-critic [8] and DQN [11].

Evaluation of Training Performance: Fig. 4a 
shows the learning curves of the average system 
reward with the increase of learning episodes 
for the B-MEC system with 50 EDs. It is clear 
that our MA-DDPG scheme is more robust and 
yields the best performance in terms of average 
system reward, compared to baseline schemes. 
This is because the proposed scheme allows EDs 
to learn mutually the cooperative off loading pol-
icy which helps reduce the channel congestion 
and user interference, and enhance computa-
tion resource effi  ciency. Meanwhile, in the DQN 
and actor-critic schemes, EDs greedily access the 
wireless channel spectrum to maximize their own 
utility without collaboration, which increases the 
possibility of channel collision and thus results in 
higher offloading latency. Also, DDPG scheme 
still remains a non-stationary learning issue and 
its average reward is lower than that of the 
MA-DDPG scheme.

Evaluation of Task Offloading and Block-
chain Performance: Figure 4b indicates the per-
formance of the average off loading utility versus 
different numbers of EDs. As can be seen when 
the number of EDs is small, the average off loading 
utility increases with the number of EDs because 
in this case, the MEC system can support suffi-

FIGURE 3. The design of learning framework for the TOBM system: a) the proposed MA-DDPG architecture; b) the MA-DDPG training 
procedure. 
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cient spectrum and computing resources for han-
dling all tasks of EDs. However, when exceeding 
a certain threshold (i.e., 60 EDs), the offloading 
utility decreases because the higher the number 
of offloaded EDs, the higher the competition of 
resource usage (i.e., channel spectrum). This in 
turn increases the offloading latency, and thus 
degrades the overall off loading utility. Neverthe-
less, our MA-DDPG scheme still achieves the best 
utility performance due to its collaborative off-
loading policies among EDs compared to other 
schemes with selfi sh learning.

Next, we evaluate our proposed PoR consen-
sus scheme and compare it with the traditional 
DPoS scheme [9] via the verifi cation block laten-
cy metric. We set up 10 transactions per block 
and vary the numbers of mining nodes from 2 
to 200. As shown in Fig. 4c, our proposed PoR 
scheme requires signifi cantly less time for mining 
blocks compared to DPoS, due to the optimized 
block verifi cation procedure. Although the block 
verifi cation latency increases with increasing the 
number of miners, our scheme still achieves much 
better performance than DPoS, which verifi es the 
effectiveness of our lightweight blockchain con-
sensus design.

Evaluation of the Overall System Utility Per-
formance: We evaluate the performance of our 
proposed TOBM scheme in terms of the overall 
system utility as the sum of off loading utility and 
mining utility. The performances of our coopera-
tive TOBM scheme with our PoR mining design 
and other non-cooperative schemes with PoR and 
DPoS mining are illustrated in Fig. 5a. Unsurpris-
ingly, our cooperative scheme with a PoR mining 
design achieves the best overall system utility. The 
reasons for this observation are two-fold. First, our 
off loading scheme with a cooperative MA-DDPG 
algorithm outperforms other non-cooperative off -
loading schemes in terms of a better offloading 
utility, as evidenced in Fig. 4a. Second, our PoR 
design yields a lower mining latency which con-
sequently improves the mining utility. Moreover, 
due to better mining utility, our PoR design con-
tributes to better overall system utilities in each 
non-cooperative off loading scheme, compared to 
the use of DPoS design.

We compare the system utility performance 
of our proposed TOBM scheme with the cooper-
ative scheme without mining design [8] and the 
cooperative scheme with DPoS design [9]. As 
shown in Fig. 5b, our TOBM scheme with PoR 
design achieves higher system utility than the 
cooperative scheme with DPoS design, thanks 
to the better mining utility of our proposed 
PoR framework. Moreover, compared with our 
approach, the cooperative scheme in [8] has the 
lowest system utility due to the lack of mining 
design. This simulation result also reveals that a 
joint design of offloading and mining is of para-
mount importance to improving the overall sys-
tem performance in B-MEC systems.

We compare the mining utility of our scheme 
with other cooperative schemes in Fig. 6a. Due 
to a lower mining latency achieved by the pro-
posed consensus design, our scheme yields a 
better utility compared with its counterparts. The 
traditional approach without mining design has 
the highest mining latency, resulting in the low-
est utility. Moreover, we investigate the through-

put in Fig. 6b which is defined as the number 
of successful transactions per second. We set 
five transactions per block and make offloading 
requests ranging from 10 to 200. Compared with 
DPoS and Proof-of-Work (PoW) schemes, the fast 
block verifi cation rate of our scheme signifi cantly 
enhances the throughput, before its performance 
decreases when the number of requests is higher 
than 120 since the system cannot handle exces-
sive requests under this confi guration.

rEsEArch chAllEngEs And futurE PErsPEctIvEs

usEr mobIlIty
In realistic B-MEC systems, EDs can move with 
high speed in wireless networks (e.g., in on-vehi-
cle applications). This makes their location highly 
dynamic which has direct impacts on offloading 
decision making. For example, an ED is likely to 
execute locally if it moves out of BS coverage, 
which makes the offloading design ineffective. 

FIGURE 4. Evaluation of system reward, task off load-
ing, and blockchain performance: a) average sys-
tem rewards with diff erent algorithms; b) average 
off loading utility with diff erent numbers of EDs; 
c) comparison of block verifi cation latency.
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Therefore, the user mobility needs to be consid-
ered in the off loading formulation in future B-MEC 
systems, where dynamic characteristics such as 
velocity and channel conditions should be taken 
into account to come up with a robust mobili-
ty-aware off loading policy.

dAtA PrIvAcy
In this work, the DRL training performed at the 
MEC server potentially raises data privacy leak-
age due to the data exchange during the train-
ing. Federated learning [2] can be an attractive 
solution to perform collaborative training, where 
only trained parameters are shared with the MEC 
server while actual data and user information are 
stored at local EDs for privacy enhancement. In 
the B-MEC context, for example, each ED can run 
a DRL function to learn its off loading and mining 
policy based on its own local observation. Then, 
the participating EDs can communicate with the 
MEC server for DRL model aggregation (e.g., 
model averaging) to create a new global DRL 
model without sharing their private data.

IncEntIvE IssuEs
In practice, how to encourage EDs, which serve 
as both off loading and mining nodes, to join com-
putation and data mining for the long term is a 
critical challenge for B-MEC systems. Although 
blockchain is able to incentivize EDs via coin pay-
ment based on their mining effort, it is still not 

enough to compensate for the energy resources 
consumed for computation task off loading. Thus, 
it is important to jointly consider incentives, off-
loading and mining in B-MEC system optimization. 
A possible direction is to design a smart con-
tract-inspired incentive mechanism to accelerate 
the data offloading and block mining. Another 
interesting area is to jointly optimize utility with 
respect to monetary benefi ts and resource usage 
of off loading and mining. 

conclusIons
This article proposed the novel concept of TOBM 
to assist B-MEC systems. A joint design of off-
loading and mining was considered, where a 
PoR consensus mechanism was proposed. Then, 
a cooperative DRL approach was proposed to 
solve the TOBM problem, showing a consider-
able system utility improvement over the existing 
cooperative and non-cooperative schemes. Final-
ly, we highlighted the key research challenges and 
promising directions for future B-MEC research.
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