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Abstract—We propose for the first time a new strategy to train
slice-level classifiers on CT scans based on the descriptors of the
adjacent slices along the axis. In particular, each of which is
extracted through a convolutional neural network (CNN). This
method is applicable to CT datasets with per-slice labels such as
the RSNA Intracranial Hemorrhage (ICH) dataset, which aims
to predict the presence of ICH and classify it into 5 different sub-
types. We obtain a single model in the top 4% best-performing
solutions of the RSNA ICH challenge, where model ensembles
are allowed. Experiments also show that the proposed method
significantly outperforms the baseline model on CQ500. The
proposed method is general and can be applied to other 3D
medical diagnosis tasks such as MRI imaging. To encourage new
advances in the field, we will make our codes and pre-trained
model available upon acceptance of the paper.
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I. INTRODUCTION

Deep neural networks, in particular deep convolutional
neural networks (CNNs) [1], [4], [24] became a key tool in
medical imaging analysis [6], [20], [22], [26]. In particular,
deep neural networks have showed excellent performance in
2D medical imaging data such as the interpretation of X-ray
scans [12]–[14], [16]–[18], [21], [23]. However, training very
deep networks on high-resolution 3D volumes of Computed
Tomography (CT) scans requires a huge computing resource.
For examples, each typical 3D CT scans study may contain
from hundreds to thousands slices, which makes training deep
neural networks on this modality challenging in terms of
computing requirements (see Figure 1). In this study, we aim to
develop an efficient 2D deep learning-based approach for 3D
medical imaging analysis that is able to provide the same level
of performance compared to 3D-based learning approaches.
To tackle this challenge, we consider each 3D CT scan as a
set of 2D images and propose a new strategy to train slice-
level classifiers on CT based on the descriptors of the adjacent
slices along the axis, each of which is extracted through a
convolutional neural network (CNN). Extracted features are
then concatenated to produce better representations for classi-
fication tasks. This method is applicable to CT datasets with
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per-slice labels such as the RSNA Intracranial Hemorrhage
(ICH) dataset [19], which aims to predict the presence of ICH
and classify it into 5 different sub-types.

Fig. 1: Examples of head computed tomography scans. Each
study may contain from hundreds to thousands slices, which
makes training deep neural networks on this modality chal-
lenging in terms of computing requirements.

The proposed method exploits a two-stage training scheme.
In the first stage, we treat a CT scan simply as a set of 2D
images and train a state-of-the-art CNN classifier [7] that was
pretrained on ImageNet [10]. During the training process,
each slice is sampled together with the 3 slices before and
the 3 slices after it. By this way, each CNN model takes a
batch size a multiple of 7 slices as input. In the second stage,
the output descriptors of each block of 7 consecutive slices
obtained from the first stage are stacked into an image and
fed to another CNN model for final prediction of the middle
slice. Then, we leverage the assemble learning to boost
classification performance. To evaluate the effectiveness of
the proposed approach, we train our deep learning framework
on the RSNA dataset and additionally evaluated on the
CQ500 dataset [2], which adopts the same a set of labels but
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only on study level. We obtain a single model1 in the top 4%
best-performing solutions of the RSNA ICH challenge, where
model ensembles are allowed. Experiments also show that
the proposed method significantly outperforms the baseline
model on CQ500 [2]. To summarize, our key contribution
is to introduce a simple 2D-based technique that allows to
train a very deep neural network on 3D imaging data and
providing better results compared to 3D-based approaches.
The proposed method is simple, general can can be applied
for many other 3D medical imaging analysis tasks such as
MRI imaging analysis. The rest of the paper is organized
as follows. The proposed approach is presented in Section
II. Section III describe the experiments and discusses the
experimental results. Finally, section IV concludes the work
as well as presents its perspectives.

II. PROPOSED APPROACH

Non-contrast head CT scans are the current standard imag-
ing propotcol for initial imaging of patients with stroke
symptoms, including intracranial haemorrhag [3]. We aim in
this study to develop and validate a 2D-based deep learning
algorithms for automated detection of the key findings from
head CT scan scans called intracranial haemorrhage. The
proposed approach is validated on the RSNA Intracranial
Hemorrhage (ICH) dataset. It is difficult to exploit high-
performing deep neural networks for the ICH classification
while keeping the full 3D resolution of the input CT. On
the other hand, using slices as independent 2D images and
ignoring the axial information of data causes detrimental
effects to the algorithm’s performance. Our method gets the
best of both worlds: we apply transfer learning [15] on 2D
images to perform classification per slice and then assemble
the results of local slices to refine the prediction of the middle
one. The proposed scheme, illustrated in Figure 2, consists of
two stages: descriptor extraction and axial fusion. Below we
describe these element in details.

A. Descriptor extraction

In this stage, we train a 2D CNN to classify individual
slices of the CT scans, which are converted into 3-channel
images using 3 different windows: brain (l = 40,w = 80),
subdural (l = 75,w = 215), and bone (l = 600,w = 2800). The
output of the network is a descriptor of size 6×1 that includes
the probabilities of the 5 ICH sub-types and an additional
class for any of them. During training, each slice is always
sampled in a block of 7 that includes itself in the center
and 6 neighboring slices. With this approach, we can take
advantage of pre-trained models on ImageNet [5] to initialize
the network. Specifically, a ResNet-50 [7] was used in our
experiments. We followed the procedure in [8] and trained
the network for 20 epochs with a batch size of 16× 7 using
Adam optimizer [9]. An initial learning rate of 5e− 4 and
the cosine annealing learning rate scheduler [11] were used.
Several augmentation techniques such as cropping, resizing,

1Model weights and codes are available upon acceptance of the paper.

flips, rotations, distortions, gaussian noise, and CutMix [25]
were applied to prevent the network from overfitting.

B. Axial fusion

This stage combines the descriptors of each 7 consecutive
slices generated in stage 1 to exploit the axial information and
to refine the prediction of the centered slice. In particular, we
concatenate the 7 descriptors into a 7×6×1 tensor and train
a 3-layer CNN to output the final classification result for the
representative slice in the middle of the block. This network
contains only 2 convolution layers and 1 fully connected layer.
The 2D convolution kernels help the model learn both the
relationship between ICH predictions across local slices and
the relationship between probabilities for the sub-types. The
output of the fusion network can therefore be seen as a re-
calibrated prediction of a single slice.

III. EXPERIMENTS AND RESULTS

A. Datasets and evaluation protocols

The RSNA and CQ500 datasets were used to verify the
effectiveness of the proposed approach. Both of them contain
non-contrast CT scans that are labeled with 5 sub-types of
ICH: intraparenchymal, intraventricular, subdural, extradu-
ral, and subarachnoid. The only difference between the two
datasets is that the labels of RSNA are per slice, while the
those of CQ500 are per CT scan. The whole RSNA dataset
was split into 3 parts: a public training set (19,530 studies),
a public testing set (2,214 studies), and a private testing set
(3,518 studies). Each study is a CT scan of 20 to 60 slices
of 512×512 pixels. The weighted log loss was used as the
evaluation metric for this dataset, in which a weight of 2/7
was used for the ICH label and a weight of 1/7 was used for
each of the 5 sub-types.

Meanwhile, CQ500 consists of 500 studies, from which
490 were selected for experiments while the rest 10 of them
are noisy and were excluded from the dataset. We used
CQ500 as another test set to validate the efficiency and
robustness of the proposed algorithm, which was merely
trained on the public training set of RSNA. On this test, the
performance of our method is measured by area under the
ROC curve (AUC). Note that the study-level probability of any
class was taken as the maximum probability amongst all slices.

B. Experimental results

We report a weighted log loss of 0.05341 on the private
testing set of RSNA, which ranks in top 4% over 1345 teams
on the Kaggle leaderboard. Note that our result is provided
by a single ResNet-50 model, while many other solutions
in this competition exploit ensemble techniques. On CQ500,
the proposed method achieves a mean AUC of 0.971. This
is an improvement of around 2% compared to the baseline
model [2]. Especially, our method provides better AUC
scores over all disease labels as shown in Table I. These
results strongly demonstrate the generalization capacity of
our model, which was trained on a different dataset with a
different labeling protocol.
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Fig. 2: Illustration of the proposed two-stage training procedure.

Findings [2] Ours
ICH (any subtypes) 0.9419 0.9612
Intraparenchymal 0.9544 0.9691
Intraventricular 0.9310 0.9832
Subarachnoid 0.9574 0.9596
Subdural 0.9521 0.9694
Extradural 0.9731 0.9814
Mean 0.9520 0.9710

TABLE I: Experimental results measured by AUC score on
CQ500 dataset.

IV. CONCLUSION

Training very deep neural networks such as D-CNN model
on 3D medical scans like CT or MRI is a challenging task.
Three-dimensional computed tomography (3DCT) is a type
of CT scanning which records multiple images over time,
that requires huge computational requirements when D-CNNs
are explored. We presented in this paper a novel two-stage
training strategy for the task of slice-level classification on
CT scans. The key idea is to sample each slice together
with its neighbors and to refine the classification of it using
the coarse descriptors of the whole group. This method was
experimentally demonstrated to work well on ICH datasets
like RSNA and CQ500. We believe that it can be easily
extended to other 3D datasets of CT or MRI scans.
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