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Abstract
Purpose: A fully automated system for interpreting abdominal computed
tomography (CT) scans with multiple phases of contrast enhancement requires
an accurate classification of the phases. Current approaches to classify the
CT phases are commonly based on three-dimensional (3D) convolutional neu-
ral network (CNN) approaches with high computational complexity and high
latency. This work aims at developing and validating a precise, fast multi-
phase classifier to recognize three main types of contrast phases in abdominal
CT scans.
Methods: We propose in this study a novel method that uses a random sam-
pling mechanism on top of deep CNNs for the phase recognition of abdomi-
nal CT scans of four different phases: noncontrast, arterial, venous, and others.
The CNNs work as a slicewise phase prediction,while random sampling selects
input slices for the CNN models.Afterward,majority voting synthesizes the slice-
wise results of the CNNs to provide the final prediction at the scan level.
Results: Our classifier was trained on 271 426 slices from 830 phase-annotated
CT scans, and when combined with majority voting on 30% of slices randomly
chosen from each scan, achieved a mean F1 score of 92.09% on our internal
test set of 358 scans. The proposed method was also evaluated on two exter-
nal test sets: CTPAC-CCRCC (N = 242) and LiTS (N = 131), which were anno-
tated by our experts. Although a drop in performance was observed, the model
performance remained at a high level of accuracy with a mean F1 scores of
76.79% and 86.94% on CTPAC-CCRCC and LiTS datasets, respectively. Our
experimental results also showed that the proposed method significantly out-
performed the state-of -the-art 3D approaches while requiring less computation
time for inference.
Conclusions: In comparison to state-of -the-art classification methods, the pro-
posed approach shows better accuracy with significantly reduced latency. Our
study demonstrates the potential of a precise, fast multiphase classifier based
on a two-dimensional deep learning approach combined with a random sam-
pling method for contrast phase recognition,providing a valuable tool for extract-
ing multiphase abdomen studies from low veracity, real-world data.
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1 INTRODUCTION

Contrast enhancement in computed tomography (CT)
scans, especially of the abdomen, is crucial for suc-
cessful lesion diagnosis.1,2 Certain types of lesions

can only be observed on the CT scans taken after
the injection of contrast agents into the blood veins.
As illustrated in Figure 1, contrast enhancement pro-
cess generally consists of three main phases3 as
follows.
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F IGURE 1 Visual differences between the Non-Contrast (NC), Arterial (A), and Venous (V) phases in CT scans. The radiation enhancement
in the different phases helps to detect different lesions in CT scans such as metastases, central tumor necrosis, and other pathologies.
Radiologists usually look at arteries or veins and parenchyma to distinguish the phases

∙ Noncontrast: The CT scan is acquired without injec-
tion of any contrast agents.

∙ Arterial: The CT scan is acquired 35–40 s after the
bolus injection, which can help with identifying hepa-
tocellular carcinoma (HCC), focal nodular hyperplasia
(FNH), and adenoma in the liver.

∙ Venous: The CT scan is acquired 70–80 s after
the bolus injection, in which the liver parenchyma is
enhanced through the blood supply by the portal vein,
highlighting hypovascular liver lesions.

Machine learning algorithms over the past decades
have achieved great success in the interpretation and
diagnosis of medical imaging data,4 including the auto-
matic detection of liver lesions in contrast-enhanced
CT images.5–8 For instance, a multiphase analysis of
abdominal CT scans9 was performed to detect cirrhosis
and HCC liver. To obtain a robust performance, however,
such an algorithm often requires training from a large-
scale dataset of patient’s preoperative multiphase CT
scans and clinical features.8 Hence, a reliable method
is needed for the collection and annotation of imaging
data of abdominal structures.10 The data mining pro-
cess usually starts with accessing and collecting retro-
spective medical imaging data through picture archiv-
ing and communication systems (PACS). Unfortunately,
the current generation of PACS systems does not sup-
port the curation of large-scale, multiphase contrast-
enhanced CT datasets. The key obstacle is that DICOM

tags related to a series of descriptions (e.g., noncon-
trast, arterial, or venous) are manually input, nonstan-
dardized, and often incomplete.11 These limitations lead
to the impossibility of automatically categorizing medi-
cal image data based solely on their DICOM metatags,
as around 15% of all studies were mislabeled due to
human factors.12 As a result, these datasets often rely on
physicians for manual reannotation of CT scans, which
is typically expensive and time consuming.

In addition, a typical machine learning–based
computer-aided diagnosis (CAD) system for inter-
preting abdominal CT scans is often trained images
from a specific phase, or stacks of images from dif-
ferent phases in some fixed order.13 Consequently,
in the deployment scenario, it is essential that the
system knows precisely which phase each CT scan
(series) belongs to so that the right phase scans can
be fed to models. This leads to a dire need for a phase
identification module for abdominal CT series.

Several approaches14,15 have been proposed to iden-
tify multiple phases from CT scans. For instance, Zhou
et al.14 focus on volumetric characteristics of the scan,
resize the entire scan to a three-dimensional (3D) block
of size 32× 128×128 by interpolation, and then feed
them through a 3D convolutional neural network (CNN).
In the original paper, the proposed model is trained with
43 000 scans, which is a significant amount of data to
be acquired, and this sparks the question of whether
this method would perform well on our smaller dataset.
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Another work by Tang et al.15 suggests to using a gen-
erative adversarial network on each slice instead of
the whole 3D scan. The authors state that CD-GAN is
trained for a period of approximately 36 h on an NVIDIA
2080Ti GPU with 11G memory,showing that this method
is too computationally expensive.

Different from previous approaches,14,15 we aim to
develop a fast, highly accurate deep learning system
for recognizing phases from CT scans. Specifically, we
propose an efficient strategy solely based on a two-
dimensional (2D) representation of the slices. The pro-
posed system consists of two main stages: (1) random
sampling that randomly picks R% of slices from the
input CT scan and inputs to the deep learning model.
Here, R% denotes the percentage of slices selected
from the input scan; and (2) slice-level prediction identi-
fies phases of each chosen slice amd then uses major-
ity voting to conclude the phase of the given scan.
Our experimental results on internal and external (i.e.,
CTPAC-CCRCC,16 LiTS17) datasets showed that the
proposed method significantly outperforms the state-of -
the-art 3D approaches while requiring less computation
time for inference.

To summarize, the main contributions of this work are
the following:

∙ We develop and evaluate a novel deep learning sys-
tem for the recognition of multiphase in contrast-
enhanced CT scans. The proposed system exploits
a random sampler to reduce the computational time
of the input examples. Majority voting is used to boost
the final prediction of the system.Our extensive exper-
iments show that the proposed approach surpasses
previous state-of -the-art 3D approaches in terms of
both accuracy and inference time.The proposed deep
learning system can be easily reused or fine-tuned
and therefore has potential benefits for several appli-
cations in clinical settings.

∙ The imaging dataset used in this study will be
shared on our project website at https://vindr.ai/
datasets/abdomen-phases , while the codes will be
published at https://github.com/vinbigdata-medical/
abdomen-phases. To the best of our knowledge, this
is the largest annotated dataset for the recognition of
multiphase in contrast-enhanced CT scans.

2 PROPOSED APPROACH

2.1 Overview of approach

Our main goal in this study is to develop and evaluate a
fast, accurate deep learning system for the recognition
of multiphase in contrast-enhanced CT scans. To this
end, we first randomly sample R% of the slices from the
whole original scan. Each of these chosen slices is then

passed through a CNN model, which was trained to
output the phase classification at the slice level. Finally,
the scan-level prediction is predicted by a majority vote
of the results obtained in the previous step. The pro-
posed scheme for the phase recognition of abdominal
CT scans is illustrated in Figure 2.

2.2 Data collection and annotation

To develop deep learning algorithms for contrast phase
recognition,we built an internal dataset of abdominal CT
scans. The construction of this dataset was divided into
three main steps: (1) data collection, (2) data deidentifi-
cation, and (3) data annotation.

2.2.1 Data collection

A total of 265 abdominal studies comprising 1188
CT scans in the digital imaging and communications
in medicine (DICOM) format were retrospectively ran-
domly selected from the PACS databases of Hospi-
tal 108 and Hanoi Medical University Hospital—two
major hospitals in Vietnam—within the period from 2015
until 2020. The ethical clearance of this study was
approved by the Institutional Review Board of each hos-
pital before any data-processing steps. The need for
obtaining patient consent was waived because these
studies did not impact clinical care.

Data characteristics, including patient demographics
and the prevalence of each contrast-phase class, are
summarized in Table 1. The general statistics of the
slice and scan distribution for each class are featured
in Figure 3. The distribution of the CT scanner mod-
els and their manufacturers are shown in Figure 4.
There are six different levels of slice thickness in the
entire dataset, whose distribution is captured in Table 2.
Additionally, the number of slices per scan ranges
from 30 to 2350 with a mean of 281. The distribu-
tion of the number of slices per scan is illustrated in
Figure 5.

2.2.2 Data deidentification

To protect patient’s privacy, all personally identifi-
able information associated with the DICOM images
was removed. Specifically, a Python script was writ-
ten to remove all DICOM tags of protected health
information such as patient’s name, patient’s date of
birth, and patient ID, etc. We retained only a limited
number of DICOM attributes that are necessary for
processing raw images. The full list of these DICOM
attributes is provided in Table 9 in the Supporting
Information.
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F IGURE 2 The overall pipeline for the phase prediction from abdominal CT scans. The slices are passed sequentially through a single CNN
model. Using predicted labels produced by the CNNs, a majority voting is performed to boost system performance

TABLE 1 Characteristics of patients in the training and test datasets

Characteristics Training set Test set Total

Statistics Acquisition time (years) 2015–2020 2015–2020 2015–2020

Number of scans 830 358 1188

Number of slices 271 426 121 134 392 560

Image size (slice, pixel × pixel) 512 × 512 512 × 512 512 × 512

Male (%) 53.76 56.23 55.21

Female (%) 23.12 24.15 23.73

Unidentified sex (%) 23.12 19.62 21.06

Data size (GB) 131.1 56.7 187.8

Number of slices Noncontrast 67 250 (24.78%) 27 906 (23.03%) 95 156 (24.24%)

Venous 101 040 (37.22%) 47 865 (39.51%) 148 905 (37.93%)

Arterial 90 058 (33.18%) 40 811 (33.69%) 130 869 (33.34%)

Others 13 078 (4.82%) 4552 (3.75%) 17 630 (4.49%)

Number of scans Noncontrast 138 (16.63%) 45 (12.57%) 183 (15.40%)

Venous 279 (33.61%) 133 (37.15%) 412 (34.68%)

Arterial 340 (40.96%) 151 (42.18%) 491 (41.33%)

Others 73 (8.80%) 29 (8.10%) 102 (8.59%)

F IGURE 3 Illustration of the scan ratio (a) and the slice ratio (b) among the 4 categories from the whole dataset

TABLE 2 Distribution of the slice thickness over the whole dataset of 1188 scans

Slice thickness (mm) 0.5 0.625 1.25 2.0 2.5 5.0

Number of scans 97 3 727 22 2 337
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F IGURE 4 The distribution of the CT scanner models and their
manufacturers over the whole dataset of 1,188

F IGURE 5 The distribution of the number of slices per CT scan
in our entire dataset

2.2.3 Data annotation

The dataset was labeled for a total of four contrast-
phase classes: (1) noncontrast, (2) venous, (3) arte-
rial, and (4) others. Here the others category refers
to all scans that cannot be correctly classified as
either of three phases noncontrast, venous, and arte-
rial. They may include scans of the delay phase or
scans that belong to a transitional state between two
phases. To annotate the imaging data, we designed
and built a web-based labeling framework called VinDr
Lab (https://vindr.ai/vindr-lab).18 Two radiologists were
hired to remotely annotate the data. Once the labeling
was completed, the labels were exported in comma-
separated values (CSV) format and used for training
deep learning algorithms.

In total, 265 studies were annotated. The whole
dataset was then divided into training and validation sets
by a ratio of 70%/30% accordingly. Since each study
usually contains multiple scans of the same patient, the
train-test split was stratified by the study level to avoid
data leakage. As a result, our training set consists of
271 426 slices from 830 scans (186 studies), while our
validation set contains 121 134 slices from 358 scans
(79 studies).

2.2.4 Data records

To encourage new advances in this research direction,
we will make the dataset freely accessible via our project
website at https://vindr.ai/datasets/abdomen-phases.
Specifically, all imaging data and the corresponding
ground truth labels for the training and validation sets
will be provided. The images are organized into two
folders, one for training and the other for validation in
which each image has a unique, anonymous identifier.

2.3 Model development

This section describes in detail our model development
method. We exploit state-of -the-art, high-performing
deep CNN architectures for the task of recognizing mul-
tiphase in contrast-enhanced CT scans.We describe our
network architecture choice and training methodology
as the following.

2.3.1 Network architecture

A set of state-of -the-art deep CNN models has been
deployed and evaluated on the collected dataset, includ-
ing ResNet-18,19 ResNet-34,19 SEResNet-18, ResNext-
50,20 EfficientNet-B0,21 EfficientNet-B2,21 GhostNet,22

and CD-GAN.23 These deep networks are well known to
be effective for image recognition tasks. Each network
accepts a CT scan as input and predicts the corre-
sponding contrast phase label. For implementation,
we followed the same instructions and recommenda-
tions from the original papers.19–23 We considered the
EfficientNet21 model as our main network architecture
choice due to the high level of accuracy and efficiency
of this architecture compared to previous deep CNNs.
Details of the EfficientNet21 architecture are provided
in Section VIII.A in the Supporting Information.

2.3.2 Training methodology

In the training stage, all images were fed into the net-
works with a size of 224×224 pixels. Input images
extracted from raw DICOM files were, first, converted
to standard Hounsfield units (HU), using Rescale Slope
and Rescale Intercept from DICOM headers. Afterward,
we applied the HU window with a window center of 50
and the window width of 400 to the image. During the
training process, we used the Adam optimizer24 with an
initial learning rate of 10−2 and the cosine annealing
scheduler25 with a linear warm-up.26 Each network was
trained end-to-end for 15 epochs. To this end, we min-
imized the binary cross-entropy loss function between
the ground-truth labels and the predicted label by the
network over the training samples. The proposed
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deep network was implemented in Python using
PyTorch version 1.7.1 (https://pytorch.org/). All exper-
iments were conducted on a Ubuntu 18.04 machine
with a single NVIDIA Geforce RTX 2080 Ti with 11 GB
memory.

3 EXPERIMENTS AND RESULTS

3.1 Experimental setup

3.1.1 Internal validation

Extensive experiments were conducted to evaluate the
performance of the proposed method. Specifically, we
first evaluated the slicewise classification performance
of trained CNN models (i.e., ResNet-18,19 ResNet-
34,19 SEResNet-18, ResNext-50,20 EfficientNet-B0,21

EfficientNet-B2,21 GhostNet,22 and CD-GAN23) on the
validation set of 121 134 slices. Next, we reported
the classification performance of the best performing
network at the scanwise level by applying the majority
voting on R% of the slices selected from each scan. We
experimented with R ranging from 1 to 20 at an interval
of 5, and then 20–100 at an interval of 10. Finally,
to compare the proposed 2D approach with previous
3D state-of -the-art approaches, we reimplemented
two-phase recognition approaches on CT scans includ-
ing 3DSE14 and CD-GAN.23 These approaches were
trained on the training dataset using the same hyperpa-
rameter settings as described in the original papers.14,23

We also measured the average inference time (second)
per scan for each approach and compared it with our
proposed 2D method.

3.1.2 External validation

To verify the generalization ability of the proposed
deep learning model, we evaluated it on two external
datasets, including LiTS17 and CPTAC-CCRCC.16 The
LiTS17 dataset contains 131 CT scans in the training
set and 70 CT scans in the test set. It was originally
developed for the development of liver segmentation
methods. The CPTAC-CCRCC16 was introduced by the
National Cancer Institute’s Clinical Proteomic Tumor
Analysis Consortium (CPTAC) and was developed for
investigating clear cell renal cell carcinoma (CCRCC).
We utilized the imaging data for CCRCC tumors, con-
taining 242 CT scans for our external testing. However,
the original aim of these datasets did not match the
purpose of this study. As a result, there were no target
labels for this dataset. Our radiologist team, therefore,
classified scans from these datasets into four phase
categories. As a result, the LiTS17 dataset has eight
scans of the arterial phase and 123 scans of the venous
phase. Meanwhile, CPTAC-CCRCC16 contains 57, 69,

53, and 63 scans from four categories noncontrast,
venous, arterial, and others, respectively.

3.2 Evaluation metrics

We report the classification performance using mean
accuracy, macroaverage precision, macroaverage preci-
sion recall, and macroaverage F1 score. These perfor-
mance indicators are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 = 2 ×
Precision × Recall
Precision + Recall

. (4)

Here, TP, FP, and FN are the number of true-positive,
false-positive, and false-negative samples accordingly.

3.3 Experimental results

3.3.1 Model performance on the internal
test set

Table 3 summarizes quantitative results for several
state-of -the-art CNN classification models on the inter-
nal test set of 121 134 slices. Note that, while training
and benchmarking those models, we chose to fix the
input image size to 128×128 for the sake of saving com-
putations. It can be seen that EfficientNet-B2 achieved
the best performance with a macroaveraged recall of
85.92%, a macroaveraged precision of 84.70%, and
a macroaveraged F1 score of 85.26%. This architec-
ture was then selected to conduct all the remaining
experiments.

We further investigated the impact of different image
input sizes on the performance of the selected model,
that is, EfficientNet-B2, as shown in Table 4. We
observed that using the input images with a size of
224×224 for training gave us the best result: a macroav-
eraged accuracy of 93.51%, a macroaveraged recall of
85.46%, a macroaveraged precision of 87.45%, and a
macroaveraged F1 score of 86.43%. In addition, train-
ing the model with the 224×224 images only took 10
min for each epoch instead of 60 min when using the
input images of size 512×512.

The classification performance of EfficientNet-B2
on our test set is shown in Table 5. We computed the
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TABLE 3 Experimental results across CNN models on the slice-level evaluation when trained with input images of size 128 × 128

Network architecture Accuracy Precision Recall F1 score

ResNet-18 0.8964 0.8249 0.8152 0.8198

ResNet-34 0.9095 0.8456 0.8172 0.8271

SEResNet-18 0.8957 0.8192 0.8095 0.8141

ResNext-50 0.9159 0.8515 0.8444 0.8475

EfficientNet-B0 0.9229 0.8486 0.8483 0.8484

EfficientNet-B2 0.9215 0.8470 0.8592 0.8526

GhostNet 0.9151 0.8397 0.8398 0.8397

CD-GAN 0.8979 0.8093 0.8526 0.8219

Note: The best F1 score is in bold.

TABLE 4 Performance of EfficientNet-B2 on the slice-level evaluation with different input image sizes

Image size Accuracy Precision Recall F1 score

128×128 0.9215 0.8470 0.8592 0.8526

224×224 0.9351 0.8546 0.8745 0.8643

512×512 0.9298 0.8400 0.8466 0.8431

Note: Best results are in bold.

TABLE 5 Across-class quantitative results of the proposed method on the internal test set for both the slice-level and scan-level
predictions. The fraction of randomly sampled slices used in majority voting was R% = 30%

Categories Precision (95% CI) Recall (95% CI) F1 score (95% CI)

Slicewise Noncontrast 0.9982 (0.9976, 0.9986) 0.9937 (0.9927, 0.9946) 0.9959 (0.9953, 0.9964)

Venous 0.9195 (0.9169, 0.9218) 0.9185 (0.9160, 0.9218) .9190 (0.9171, 0.9207)

Arterial 0.9403 (0.9379, 0.9426) 0.9208 (0.9181, 0.9234) .9305 (0.9286, 0.9322)

Others 0.5523 (0.5390, 0.5656) 0.6760 (0.6623, 0.6893) .6079 (0.5967, 0.6192)

Mean 0.8546 (0.8491, 0.8560) 0.8745 (0.8737, .8806) .8643 (0.8602, 0.8664)

Scanwise Noncontrast 1.0 (0.9989, 1.0) 1.0 (0.9897, 1.0) 1.0 (0.9887, 1.0)

Venous 0.9124 (0.8944, 0.9259) 0.9741 (0.9591, 0.9816) 0.9396 (0.9286, 0.9498)

Arterial 0.9977 (0.9843, 1.0) 0.9454 (0.9322, 0.9587) 0.9708 (0.9637, 0.9811)

Others 0.7809 (0.7213, 0.8331) 0.7358 (0.6668, 0.8048) 0.7617 (0.7026, 0.8187)

Mean 0.9247 (0.9083, 0.9408) 0.9180 (0.8976, 0.9359) 0.9209 (0.9033, 0.9374)

precision, recall, and F1 score for both the slice and
scan levels along with their 95% confidence interval (CI)
using bootstrapping over 5000 resamples of the test
set. Our proposed model achieved a mean F1 score of
0.8643 (95% CI (0.8602, 0.8664)) for the slice-level pre-
diction and a mean F1 score of 0.9209 (95% CI (0.9033,
0.9374)) for the scan-level prediction, with the majority
voting on 30% of the total slices. We observed that the
reported performance remained consistent between
our three main classes: noncontrast, venous, and arte-
rial, while there was a visible gap between others
and the rest. Additionally, the ROC (receiver operating
characteristic) curves of the proposed model for the
four classes are plotted in Figure 6 along with their
corresponding AUC (area under the ROC curve) scores

on the slice-level test set. Unlike the F1 score, AUC is
a threshold-independent metric. Nevertheless, it can
be seen that the AUC scores reported in Figure 6 are
strongly correlated with the slicewise F1 scores given in
Table 5.

The effect of using different values of R when
performing random sampling with the majority vot-
ing for scan-level prediction is illustrated in Figure 7.
It can be clearly seen that the macroaverage F1
score increased as R (the percentage of slices in
each scan to be selected randomly for inference)
approaches 20% and leveled off as R increased. By
applying R = 30, we observed a 5.66% increase in the
macroaveraged F1 score compared to the slicewise
performance.
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F IGURE 6 ROC curves of the trained EfficientNet-B2 for the 4 different classes on the slice level

F IGURE 7 Scan-wise performance (mean F1-score) of the
trained EfficientNet-B2 on the internal test set is plotted against the
percentage R of randomly sampled slices per scan used in majority
voting. The shadow strip depicts the 95% confidence intervals of
these F1-scores

3.3.2 Comparison to state-of -the-art
methods

To demonstrate the effectiveness of the proposed
2D approach, we compared our result with recent
state-of -the-art methods14,23 for the recognition of mul-
tiphase in contrast-enhanced CT scans. To this end, we
reproduced the 3DSE by Zhou et al.14 and the CD-
GAN23 by Tang et al. and reported their performance of
these approaches using the F1 score on the test set.For
a fair comparison,we applied the same training method-
ologies and hyperparameter settings as reported in the

original papers.14,23 In particular, the input image size to
the model was fixed to 128×128 when compared to CD-
GAN. The experimental results are provided in Table 6.
We found that the proposed 2D approach significantly
surpassed the previous state-of -the-art approaches (an
improvement of 6.09% compared to the 3DSE14 and
3.07% compared to CD-GAN23), while requiring less
time for inference.

3.3.3 Model performance on the external
test set

Table 7 presents the experimental results on two exter-
nal test sets LiTS and CPTAC-CCRCC. The average F1
score on the LiTS was 86.94%, while the average F1
score on the CPTAC-CCRCC was 76.79%. We found
that the proposed method suffered from covariate shift;
however, it still remains at a high level of F1 score.

4 DISCUSSION

4.1 Key findings

The phase recognition is important for medical imag-
ing data collection and the deployment of machine
learning models in practice. From the clinical perspec-
tive, a method for fast and precise recognition of CT
phases can effectively aid in the diagnosis of abdomi-
nal pathologies.27 By training a set of strong deep CNN
models on a large-scale, annotated dataset, we built
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4526 MULTIPHASE RECOGNITION IN CT SCANS

TABLE 6 Comparison of state-of -the-art approaches

Method Precision Recall F1 score
Inference time
(s)

Scanwise EfficientNet-B2 + sampling (ours) 0.9209 0.9220 0.9209 6.87 × 1e–4

3DSENet 0.8288 0.9092 0.8600 2.12 × 1e−3

Slicewise EfficientNet-B2 (ours) 0.8470 0.8592 0.8526 8.98 × 1e−5

CD-GAN 0.8093 0.8526 0.8219 1.60 × 1e−5

Note: Best results are in bold.

TABLE 7 Across-class quantitative results on the external datasets

Categories Precision Recall F1 score
Number of
samples

LiTS Noncontrast N/A N/A N/A N/A 0

Venous 0.9868 0.9763 0.9804 124

Arterial 0.7312 0.7987 0.7584 7

Others N/A N/A N/A N/A 0

CPTAC-CCRCC Non-Contrast 0.7728 0.9140 0.8374 57

Venous 0.7018 0.8833 0.7829 69

Arterial 0.9077 0.8191 0.8609 53

Others 0.7688 0.4858 0.5905 63

an automated system that is able to accurately recog-
nize contrast multiphases from CT scans. In particular,
we empirically showed that a major improvement has
been achieved, in terms of the F1 score and inference
time by applying the proposed random sampling and
majority voting. Compared to previous state-of -the-art
3D approaches, our model showed 30 times improved
inference time and a nearly 6% improvement in the F1
score on our dataset.

Although a highly accurate performance has been
achieved across three classes: noncontrast, arterial,
and venous, we acknowledge that the proposed method
reveals some limitations. To make a correct classifica-
tion of contrast phases, experts often rely on multiple
slices containing arteries, veins, and parenchyma. How-
ever, in our method, slices from each scan are predicted
independently, without incorporating information from
other regions. In addition, since contrast materials are
absorbed differently for each individual, slices of the
same regions from two different phases, such as the
arterial and venous phases, could have similar bright-
ness in the arteries. An example is demonstrated in
Figure 8: there is a clear brightness difference between
the two images in the arterial phase and the top left
arterial image resembles slices from the venous phase.
For this reason, our slice-level predictions are prone
to errors. Another challenge is related to the nature
of our dataset. Our samples vary in the scan range,
and some abdominal CT scans can include neck or
thighs where contrast material does not pass through,
making these slices indifferentiable across our four

F IGURE 8 Aortic area images from scans of 4 different patients
demonstrate the visual variance between images of the same
categories

classes. Therefore, our model is likely to produce a false
prediction on these slices, which contributes negatively
to the performance of the scan-level prediction.

The low generalizability of deep learning-based
diagnostic systems28–31 to datasets and scanners
beyond the ones they have been trained with, has been
limiting the use of such methods in real-world clinical
settings. We showed that the proposed deep learning
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MULTIPHASE RECOGNITION IN CT SCANS 4527

method was successfully generalized to two different
datasets from other hospital sites, each with a different
CT scanner.

4.2 Future work

There are several possible mechanisms to improve our
current method. The most promising direction is to elim-
inate nonaffected contrast-enhanced regions of a scan,
such as pelvis areas. This would improve slice-level
prediction since the model is forced to learn and predict
images with clearer features. In addition, due to the per-
formance drop-in “others,” future work includes applying
techniques for reducing the impact of imbalanced data.
For example, weighted Binary Cross-Entropy (BCE)
losses,32 which directly penalize probabilistic false posi-
tives,can be used.We also plan to experiment with train-
ing and testing the proposed method on the coronal and
sagittal projections of the CT scans, so that each input
image could contain all necessary components: arter-
ies, veins, and parenchyma, which are used to identify
the correct contrast phases. Moreover, we will conduct
additional experiments, incorporating training procedure
refinements33 such as data augmentation methods to
further improve the generalization of our method. Lastly,
it is worth investigating more sophisticated methods
for sampling and synthesizing slice-level predictions,
such as the multi-instance learning paradigm,34 rather
than the straightforward random sampling and majority
voting strategies discussed in the paper.

5 CONCLUSION

In this study, we developed a 2D deep learning–based
approach for the recognition of contrast phases in
abdominal CT scans. We adopted a random sampling
strategy to improve the classification performance and
reduce inference time. The introduction of a random
sampling mechanism helps avoid training and infer-
ring on 3D data, which are usually much more costly,
while still attaining impressive performances. Extensive
experimental results on both the internal and exter-
nal datasets have demonstrated that the proposed
approach significantly outperformed previous state-of -
the-art 3D approaches.
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