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Abstract
Nowadays, the explosion of CCTV cameras has resulted in an increasing demand 
for distributed solutions to efficiently process the vast volume of video data. Other-
wise, the use of surveillance when people are being watched remotely and recorded 
continuously has raised a significant threat to visual privacy. Using existing systems 
cannot prevent any party from exploiting unwanted personal data of others. In this 
paper, we develop an intelligent surveillance system with integrated privacy protec-
tion, where it is built on the top of big data tools, i.e., Kafka and Spark Streaming. 
To protect individual privacy, we propose a privacy-preserving solution based on 
effective face recognition and tracking mechanisms. Particularly, we associate body 
pose with face to reduce privacy leaks across video frames. The body pose is also 
exploited to infer person-centric information like human activities. Extensive exper-
iments conducted on benchmark datasets further demonstrate the efficiency of our 
system for various vision tasks.

Keywords Intelligent video analytics · Large-scale surveillance · Visual privacy · 
Human activity analysis · Big data · Apache spark

1 Introduction

With the rapid growth of surveillance systems, CCTV cameras have become ubiq-
uitous [48]. Manually monitoring every video stream to gain insightful informa-
tion is impractical and inefficient. Instead, using computer vision (CV) can reduce 
the need for manual monitoring and automate the analysis that provides actionable 
intelligence to users or security personnel [32]. The effectiveness of smart surveil-
lance technology has been continuously improved as a safety and management tool 
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for many industrial applications such as risk monitoring [43], managing staff [2], 
healthcare [38], and smart home [61]. Even though it has many advantages, there 
are also some drawbacks to surveillance systems related to privacy issue, i.e., human 
identity in the videos.

For example, a primary school in Hangzhou China uses facial recognition to 
monitor the behavior and attentiveness of their students [14]. The system records 
student actions such as writing, reading, raising a hand, and sleeping at a desk. It can 
also recognize several facial expressions. However, the system received many critics 
from the parents, students, and others who have concerns about what information 
is being collected or shared. The main reason is that the facial and body attributes 
not only provide details about the identity of a subject, but also reveal other person-
related information such as gender, race, and age [12]. Such information is useful to 
profile a person when they are combined with external resources such as images and 
videos on social media. Hence, when human is the dominant objects of interest in 
CV applications, there is a need to protect the relationship between collection and 
dissemination of visual data, i.e., visual privacy [34].

Personal information like face and body is considered the critical cue to infer the 
person’s identity from images or videos. As a result, this kind of visual information, 
especially faces, is sensitive and presents a significant threat to visual privacy. Spe-
cifically, in most person identification systems, facial features are commonly used to 
identify a human subject because the face is a valid point to determine the identity 
compared to other visual information such as body and gait [36]. The detected face, 
together with human identity, can be used to reveal additional person-related details. 
Without the permission of users, the outputs of these vision tasks can be exploited 
for various analysis purposes, which again threaten the privacy of individuals.

Hence, face recognition lies at the heart of visual privacy protection where human 
de-identification (e.g., mosaicking, blurring, and pixelation) can be used to mask the 
detected faces of human subjects in images or videos. Most of the current works 
[11, 41] have focused on improving the performance upon still images. However, 
video-based face recognition has been paid less attention from the community, even 
though it is more challenging. In particular, a human subject can repeatedly appear 
over multiple frames. Consequently, some faces of the subject at different scenes 
might not be recognized due to abrupt pose changes or motion blur. Failed face rec-
ognition at one scene is sufficient to leak out the subject’s identity and others in the 
video [9, 17]. Thus, a valuable surveillance system needs to not only address well 
the privacy issue from visual data but also enable real-time and accurate identifica-
tion across video frames.

Concurrently, the development of surveillance cameras in public areas (e.g., 
nursery and school) has grown the vast volume of visual data much faster than 
ever before [47]. Handling such big data storage and computation management is 
extremely changeling. Typically, most vision tasks demand more time and power-
ful resources for effectively mining and extracting insights from the video content, 
especially when using robust deep learning models. As a result, due to the limit of 
memory storage and computational capability, single machine systems with multiple 
processors usually fail to deal with the space-efficiency and time-efficiency prob-
lems. This leads to an increasing requirement for distributed solutions to efficiently 
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and effectively process a huge amount of visual data. However, most of the existing 
works [32, 67] are rarely carried out in a scalable and distributed manner. They are 
still mostly dependent on a traditional client/server framework with simple schedul-
ing strategies. Also, current frameworks mainly focus on simple vision applications 
(e.g., motion detection, object recognition) while the complex vision tasks (e.g., 
activity recognition) are still not well-supported.

Considering the issues above, in this paper, we propose a comprehensive solu-
tion for surveillance systems. The objective is to meet the requirements of real-time 
video analytics wherein the system enables the processing and analysis of large-
scale data of video streams efficiently but simultaneously preserving the privacy of 
individuals. Accordingly, we provide a versatile system with an extensive offering of 
parallel vision algorithms ranging from low-level face detection to middle-level pose 
estimation, face recognition, tracking, and high-level activity recognition. Our sys-
tem is capable of supporting different types of services consisting of the monitoring 
service; online service for sending out actionable alerts; and offline service for the 
provision of activity data and life-log that can be useful to extract the lifestyle pat-
terns and promote a healthier lifestyle. The privacy of these services is guaranteed to 
be protected.

In particular, the main contributions of this paper are described as follows:

• Our first contribution is the development of a novel surveillance framework ben-
efiting from the high performance of distributed computing tools like Kafka [1] 
and Spark Streaming [66]. Kafka is adopted for exchanging messages between 
different modules, and Spark Streaming allows to parse heavy video stream in 
a scalable manner efficiently. The use of these big data tools will enable us to 
meet the elastic computing demands of practical surveillance. Notably, Apache 
Spark, one of the most popular representatives of new big data stacks, has been 
shown to tackle the challenges of scalable machine learning issues [69]. Mean-
while, Kafka is a valuable tool to support delivering the large amount of stream 
data with high-throughput and low-latency [25]. The need for running CV tasks 
with these tools is one of the reasons to inspire the design of our surveillance 
framework. In other words, our paper delves into the careful implementation of 
the system that enables efficient parallelization of various vision algorithms in 
the distributed environment.

• The second contribution is to incorporate visual privacy protections into the 
identification process. Specifically, we adopt the data association technique pre-
sented in [24] to protect the identity of a subject where the face detector and 2D 
body pose estimator [8] based on deep learning models are combined to improve 
the face tracking and recognition. Hence, privacy leaks across video frames are 
considerably reduced. We leverage the body pose based on the fact that although 
the face appearance of the target subject might change in different scenes, its 
body appearance is almost maintained. Human de-identification is subsequently 
applied so that the users can only see the face of their registered subject. Fur-
thermore, to ensure that the identity is preserved in real-time, we propose the 
algorithm for efficiently parallelizing face detection, body estimation, and data 
association. This can be done by using the supported Spark operations (e.g., map 
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and flatMap) to split the video stream into multiple partitions and process them 
in parallel on multi-node clusters. As a result, we can significantly accelerate the 
identification process while effectively handling the big data storage imposed by 
the massive video stream.

• In the third contribution, we introduce a simple yet effective method that cap-
tures the dynamics of 2D poses (formed as skeletons) to compute features and 
predict human activities. This method employs body joints and adopts Fourier 
Transform to obtain the video representation used for activity prediction. The 
high-level information (i.e., predicted activities) is valuable to extract the life-
style patterns and exploitable to generate healthcare recommendations. Accord-
ingly, we describe a parallel and distributed algorithm to efficiently extract the 
skeletal features used for activity classification on the Spark clusters. Interest-
ingly, the skeleton’s use also helps to preserve the anonymity of targets because 
the identity-related information (e.g., body shape, clothes) is discarded. In other 
words, the skeleton is considered as privacy-protected data which is safely share-
able to other cloud analytic services. It is different from the majority of existing 
works [50, 51, 53] in activity analysis using the human body from raw images 
without privacy concerns. To the best of our knowledge, this is the first work 
to utilize 2D pose to both reduce the privacy leaks and recognize the activities 
of multiple individuals. Notably, unlike 3D pose [23, 44] generated from depth 
cameras (e.g., Kinect), the 2D pose is particularly well-suited for surveillance 
scenarios where 2D cameras are widely employed [4].

• Finally, we verify the efficiency of our proposed framework in the wide variety 
of video analytics experiments, such as privacy-preserving person identification 
and activity recognition. Our experimental results on benchmark datasets dem-
onstrate that the scalability of the proposed framework is promising when we run 
these vision tasks on the Spark clusters and achieve the significant acceleration 
of the analysis process.

The rest of the paper is organized as follows. We present the privacy requirements of 
practical surveillance and related works in Sect. 2. We show our architecture over-
view in Sect.  3. We explained the user registration and secured data storage, and 
privacy-preserving video streaming in Sects. 4 and 5, respectively. The experiment 
results and analysis are presented in Sect. 6. The conclusions and future work are in 
Sect. 7.

2  Preliminary and related work

2.1  Requirements of visual privacy and efficient computation in large‑scale video 
surveillance

In this research, the surveillance system should provide sufficient anonymity [21] 
such that no visual information can be linked to the identity of any human subject 
in the videos, and no party can learn a subject’s activity by observing the video 
stream. Also, no party can impersonate an authorized user to access the system. 
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All users must be aware of the risk of visual privacy leakage [34]. To further 
understand these requirements, let us consider a use case of video surveillance 
system used at a nursery place. In common practice, parents monitor kids at nurs-
ery via CCTV stream that is linked to their mobile devices. This convenience also 
allows other parents to observe the behavior of other children in the CCTV foot-
age. However, this increases the risk of identity theft because the intruders can 
learn the lifestyle of a target victim. In this use case, we can see several types of 
visual privacy invasion based on different user’s behavior. For example, parents or 
staff may want to collect personal visual information from others. In another case, 
a party may upload a funny CCTV footage on social media and causes a severe 
cyberbullying problem that may affect every part of a victim’s lives and causing 
deep emotional issues. On another occasion, someone may capture a scene of the 
video stream from an authorized user’s device for malicious purposes. A pos-
sible solution to protect children’s identity is to mask their faces and show differ-
ent views for different users based on access permission. As illustrated in Fig. 1, 
when two users view the same stream video, they only can see their child while 
other kids are masked. Otherwise, CCTV cameras at the nursery place produce 
a lot of stream data required for continuous monitoring and capturing children’s 
behaviors in real-time. Therefore, it would be more efficient and convenient to 
integrate intelligent video analytics into big data stacks seamlessly(e.g., Hadoop 
and Spark) for handling and exploiting such heavy CCTV streams. Accordingly, 
in the following subsections, we briefly review research studies that are closely 
related to our proposed framework and satisfy one of the requirements mentioned 
above. These works include the protection of visual privacy and large-scale video 
surveillance systems.

Fig. 1  Example of privacy-
protected nursery surveillance 
system
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2.2  Human de‑identification for visual privacy protection

In the first line of works, there exists a growing body of human de-identification 
approaches which can be divided into ad-hoc methods and replacement of face with 
artificial faces. Earlier de-identification methods are ad-hoc methods such as mosai-
cking, blurring, and pixelation. Some works in the literature intentionally processed 
video to be in special low-quality conditions [15, 40, 45]. This kind of anonymiza-
tion technique only allows for the recognition of some target events in the video. The 
contradiction of using ad-hoc methods is between high privacy protection and low 
video utility. A higher level of privacy protection can be obtained by replacing the 
face with another, unrelated face. Bitouk et al. [6] introduced a system that replaces 
faces by selecting a similar face from a database of real face images. However, the 
construction of such a database for real applications is ethically and legally problem-
atic. A viable alternative was to use synthetic face images for face replacement, e.g., 
in the work of Newton et al. [33], who proposed the k-same face de-identification 
algorithm. The works on full-body de-identification received less attention, although 
a higher level of de-identification than face-only de-identification was needed [7]. In 
another work, Orekondy et al. [35] presented a model to redact private information 
on images by analyzing the trade-off between data privacy and utility. The genera-
tive adversarial network (GAN) has been widely used in recent works [27, 39, 59] 
where the faces were generated by training both the generator and the discriminator 
of the GAN. Specifically, Ren et al. [39] formulated an adversarial learning frame-
work to simultaneously learn a face anonymizer and activity recognizer. In [59], the 
authors introduced two external modules consisting of the verificator to enable a 
larger range of sampling exploration in GAN’s generator, and the regulator to pre-
serve the structure similarity according to a single input which better balances the 
trade-off between image quality and privacy protection. More recently, Lin et  al. 
[27] built a GAN model with a generator based on convolutional neural networks 
(CNNs) and two self-designed discriminators to improve the discrimination accu-
racy. Apart from GAN-based methods, the authors in [17] presented a feed-forward 
encoder-decoder network architecture to de-identify faces in the video at high frame 
rate and provided natural outputs with preserved expression. Although these works 
have proved their effectiveness in preserving human identity, none of them showed 
the ability to be efficiently applied in real-life surveillance scenarios. Unlike these 
de-identification approaches, our work gives specific focus on how to automatically 
identify people and protect their identity in the real-time manner. Then, the basic de-
identification (e.g., ad-hoc methods) is applied to preserve the anonymity of people. 
It is worth noting that any advanced de-identification approaches (e.g., [17, 27, 35, 
59]) that we mentioned above are applicable to our framework.

2.3  Large‑scale video analytics

In recent years, although the smart surveillance systems have been widely devel-
oped, there are a limited number of works concentrated on the design of the 
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distributed architecture for large-scale processing. Tan and Chen [49] proposed the 
parallel processing system on Hadoop clusters that handled large-scale of video data 
and performed several video analytics tasks such as face detection, motion detec-
tion and tracking. Zhang et al. [67] introduced a cloud-based architecture that pro-
vided both real-time processing with Apache Kafka and offline batch data analysis 
based on the Hadoop MapReduce framework. Later on, Yi et al. [64] developed the 
low-latency video analytics on edge computing platform by offloading the computa-
tion between clients and edge nodes as well as collaborating nearby edge nodes. In 
[63], authors also adopted MapReduce operations to design an object classification 
system. Apache Spark [66] with in-memory computing capability [(i.e., Resilient 
Distributed Datasets (RDDs)], which is a fast and general-purpose engine for large-
scale data storage and processing, has emerged as an alternative to inherit attrac-
tive features of Hadoop MapReduce. Accordingly, in [62], Yang et al. proposed a 
parallel video data analysis framework based on Spark to perform action detection 
and video retrieval. The parallel-computing power of Spark was also exploited in 
[30] for face recognition from massive videos. Apart from the popular distributed 
platform like Spark and Hadoop, the video analytics systems have been constructed 
using cloud and edge computing infrastructures. For example, Chen et al. [10] built 
the distributed deep learning model for an intelligent surveillance system which was 
deployed in a multi-layer edge computing architecture. The performance of their 
system on parallel training was tested by running two analysis tasks, i.e., vehicle 
classification and traffic flow prediction. Meanwhile, Yaseen et al. [63] proposed a 
cloud-based object recognition system from large number of video streams which 
are automatically fetched from the cloud storage and analysed in an unsupervised 
manner. However, most of these works were only developed for specific vision 
tasks rather than exploring the comprehensive solutions for practical surveillance. 
Moreover, different from our work, the visual privacy concern is not considered in 
these works. Importantly, this paper brings together the research area of visual rec-
ognition, big data, and visual privacy protection those have attracted a great deal 
of interest from scientists and researchers in recent years. Hence, there are increas-
ing demands for designing and developing an intelligent surveillance framework that 
integrates cutting-edge technologies for these areas.

3  Architecture overview

This section presents the framework of the video surveillance system that supports 
the whole operating process of visual analysis, including data collection, data pro-
cessing, privacy protection, and data storage. As shown in Fig. 2, the framework is 
composed of the following components:

Data source. A set of IP cameras that are placed in monitoring regions and con-
tinuously collect the surveillance video data. These data will be sent as live video 
streams to other components to be processed further.

Message broker. This component is in charge of exchanging messages and com-
munication among different modules. It works as middle-ware of data buffer between 
system modules (e.g., data source component and data processing component) and 
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hence enables the effective decoupling based on the distributed message queue. 
Thus, using the message broker can improve both the fault-tolerance and the extend-
ability of the surveillance system (i.e., a new module is easily connectable without 
any prior modification in the system).

Distributed stream processing. This component is the main engine and respon-
sible for parsing the massive video streams by using Spark Streaming. Within this 
component, multiple visual recognition tasks are implemented under the distrib-
uted setting. Furthermore, these visual tasks are embedded in different modules to 
empower the flexibility of our system.

Big data storage. Persistent Big Data Storage relies on the Hadoop Distributed 
File System (HDFS) responsible for storing both unstructured data (e.g., video 
streams and learned models) and structured data (e.g., user profile and logs). It 
also provides storage facilities to store and manage access rights, metadata of video 
streams, and service subscription information.

Our surveillance system is built on the top of high-performance computing tools, 
i.e., Apache Kafka for handling the message broker, Apache Spark for distrib-
uted processing, and Apache Hadoop Yarn [52] to schedule computing resources. 
According to the framework components shown in Fig.  2, we will explain the 
details of data storage design and distributed stream processes in Sects.  4 and 5, 
respectively.

4  User registration and secured data storage

The end-user is authorized to upload their personal information and data streams. 
According to users’ demand, personal data will be subscribed to relevant services 
of video analytics. Notably, users need to register our streaming service through the 
application installed on their devices. After the registration, the user can upload their 
data to private cloud storage, which is associated with our stream processing ser-
vice. We store personal data, such as face images and user information in the facial 
database. Our streaming services also can visualize the results and push the notifica-
tion in both online and offline manner. Our persistent data storage is developed on 
the top of HDFS that performs data read-write access operations and data manage-
ment. Specifically, the data streams stored in the cloud can be automatically fetched 
or transferred between the cloud storage and HDFS to be processed. Besides using 
private cloud storage, since we develop our system on Hadoop and Spark clusters, 

Fig. 2  Architecture of the proposed surveillance framework
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it is possible to connect our video analytics services with other popular cloud plat-
forms like Google Cloud Storage (GCS) and Amazon Simple Storage Service (S3). 
This can be done using the Hadoop Compatible FileSystem and allowing big-data 
processes (e.g., Hadoop or Spark jobs) access to underlying data from GCS or S3 
[13]. Therefore, the users can benefit from their preferred cloud service to store the 
data and still fully utilize our video analytics system. They can also access our video 
surveillance services without any implementation knowledge. However, it is essen-
tial to note that the users should be aware of third-party cloud storage’s security and 
privacy risks. For instance, data on this type of cloud storage can be lost through a 
malicious attack, natural disaster, or a data wipe by the service provider. Also, an 
employee within the organization may misuse the credential to gain access to the 
user account, CCTV footage, and other sensitive information stored in the cloud. 
Hence, this clearly shows the usability and flexibility of our system. In addition, the 
life-log data and activity data persisted in the Big Data Storage are regularly syn-
chronized to support generating the personalized recommendation. Then, security 
and privacy components are further embedded into the cloud storage service that 
requires authentication and data stream encryption before persisting and sharing 
data.

To safeguard both the private data and analytics processes from malicious attacks, 
we need to ensure that unauthorized parties are unable to access (read or modify) 
personal data in cloud storage. However, authorized parties such as data analysts 
should be able to efficiently access all (or parts) of this data as necessary. To prevent 
unauthorized access to cloud storage files, we propose using a cloud-based secure 
big data storage system [68]. The system ensures the data is secure even in case of 
partial secret key leakage because it will periodically update the secret keys. Also, 
technique such as secure fine-grained access control [60] can be used to enforce 
access control to stored data while allowing for efficient data retrieval. Besides 
access control (authentication and authorization), we can utilize video encryption 
solutions to protect the videos in the cloud storage [37]. For example, a cloud-fog-
local video encryption service framework proposed in [26] provides a uniform video 
encryption service for devices with different computing power. Since the focus of 
this paper is not on video security solutions, we refer readers to a recent survey 
paper presented in [65]. Also, it is worth noting that the users should ensure the 
mobile devices used are protected with strong authentication and the latest patches 
and updates have been applied. For example, the client’s devices are tamper-proof 
with secure hardware elements that prevent physical tampering. Since the mobile 
security is outside the scope of the paper, we refer readers to a recent study [5] that 
discusses different privacy-security perceptions of the mobile apps.

5  Privacy‑preserving video streaming

In this section, we describe the video streaming scheme that offers prominent vision 
tasks in a distributed environment. Moreover, we incorporate privacy protections 
into our system to protect human identities. Notably, we adopt big data technologies 
to handle large-scale video stream for a distributed system reliably. Video stream 
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analytics involves a series of tasks, including object detection, tracking, face recog-
nition, and action recognition. These tasks are deployed by parallel processing of 
video streams and analyzing the visual data with different machine learning and CV 
libraries. Furthermore, we use deep learning (DL) libraries integrated with Spark to 
efficiently run CNN-based tasks under distributed settings.

Our overall stream processing is divided into two main components: a message 
broker and a distributed stream processor. The stream data from a cluster of IP cam-
eras are continuously fed into the stream collector of the broker, which serializes 
video frames to stream data buffer. The message broker is responsible for sending 
and receiving messages of different modules in a fault-tolerant fashion. The stream 
data are then consumed from the buffer and processed by the distributed stream pro-
cessor, where we will apply a variety of vision algorithms. Finally, the processed 
data will be stored in the HDFS directory. Our video stream processing is designed 
using OpenCV, Apache Kafka, and Apache Spark frameworks. It is worth noting 
that the design of our system allows us to overcome the typical limitations of tradi-
tional video analytic systems. This is because previous systems usually collect and 
process videos at the same time, and a server failure will cause the loss of stream 
data. Otherwise, data fragmentation might easily occur when traditional scheduling 
tasks detect the failure node and switch to another node. Meanwhile, our system 
decoupled from two separate components not only enables efficient task recovery 
and scheduling but also reliably handles the scalable and fault-tolerant system.

5.1  Message broker using Apache Kafka

Our stream collection component employs Apache Kafka as a distributed messag-
ing model to collect and deliver a large amount of video data with high throughput 
and low latency. The Kafka pipeline excels in excellent speed and durability for the 
development of real-time applications. Kafka is comprised of a producer, a con-
sumer, and a broker. A producer publishes messages to a specific category called a 
topic. The consumer reads these messages and processes them in real-time. To man-
age the communication between producers and consumers, a Kafka broker stores 
streams of records like keys, values, and timestamps in topics. Here, the use of a 
topic consisting of partitions is to ensure high throughput. It also enables multiple 
consumers to read the mini-batch of stream data from the Kafka broker. To ensure 
fault-tolerance, the Kafka broker works as a buffer queue storing messages in tem-
porary storage and partitions are replicated to multiple brokers.

5.2  Distributed stream processing with spark streaming

This component as shown in Fig. 3 is a vital part of our distributed video process-
ing system. Using Spark Streaming, the distributed video processing is performed 
with a stateful data computing scheme and a dynamic amount of resources on the 
Spark cluster. Every node in the cluster will be potentially able to provide meta-
data about each video processing task over every possible video frame. Here, we 
employ a discretized stream (DStream) provided by Spark Streaming API to 
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consume and process JSON messages from Kafka. Video data is ingested into the 
system by Kafka producers, and the Spark cluster is then cast as a consumer of the 
Kafka message queue to consume the data. A DStream that contains data from a 
certain interval is represented by a sequence of RDDs. Any Spark operation applied 
on a DStream is relevant to operations (e.g., Map, Reduce, Join) on RDDs. For the 
streaming operations, we use the OpenCV and distributed machine learning libraries 
[31] with a variety of built-in algorithms.

5.3  Privacy‑preserving object recognition

In this subsection, we describe the first module in the streaming component. It 
includes object recognition in conjunction with privacy-preserving processes. We 
begin with methods to recognize the face from videos. Besides, the body pose is 
concurrently estimated to be associated with the faces. Because face and body con-
tain sensitive information that can be leaked out to reveal the person’s identities, 
several techniques to protect visual privacy are utilized. The methodology of these 
tasks will be detailed in the following.

5.3.1  Object recognition without tracking

The major steps of object recognition are illustrated in Fig. 4. Our objective is to effi-
ciently detect and recognize objects (i.e., face and body) from live videos. Since the 
output is related to personal identity, this information needs to be identified in every 
frame. The straightforward method is to recognize the face frame by frame through 
two main stages, i.e., face detection [28] and face recognition [41]. Concurrently, the 
human pose estimator, i.e., OpenPose [8] will be used to localize the human body, 
which is also served as the input of high-level video analytics. Here, the problem of 
body pose estimation is to predict the location of various human key points such as 
elbows, knees, neck, shoulder, hips, and chest. Then, the OpenPose is employed to 
perform the multistage classification with multiple CNN branches where each stage 
enhances the outputs of the previous one. The key points for people who appeared 
in the frame are connected using greedy inference to generate the bounding boxes of 
human bodies. Finally, to include the identity in each human body, we combine the 
outputs of face recognition and pose estimation. This is done by measuring the over-
lap between two regions of the recognized face and estimated head pose.

Fig. 3  Workflow of video processing with Kafka and Spark Streaming



14385

1 3

Toward efficient and intelligent video analytics with visual…

Subsequently, we focus on executing the parallel algorithm of object recognition 
in the distributed environment. This algorithm is implemented using the Spark para-
digm to parallelize different vision tasks (i.e., face detection, face recognition, and 
body estimation) on multi-node clusters. The parallelization can be done by parti-
tioning video stream into frames placed into RDD and processed afterward in par-
allel by Spark operations within each worker node. Note that Spark supports two 
types of parallel operations on RDDs including transformations (e.g., map and flat-
Map) and actions (e.g., reduce). Algorithm 1 describes parallel processing of video 
streams with Spark from face detection, body estimation to classification. Initially, a 
flatMap() function takes the video stream segment (VSS) as input to read all frames 
and place them into the Frame RDD. It is worth noting that a flatMap() function is 
executed by Spark workers and will be applied to each of VSSs to obtain all RGB 
frames from them. After conducting the flatMap transformation, we load and pass 
the pre-trained face detector and pose estimator to the map() functions which trans-
form all RGB frames into a set of face and body detections. These detections are 
then transferred to another map() function to recognize the detected faces. Finally, 
the output placed in the Frame RDD is the combination of the skeleton and human 
identity. 

Fig. 4  Workflow of object recognition. For face recognition, the detected face is aligned via the affine 
transform and passed through the deep neural network (DNN) to compute the feature vector which is fed 
into the standard classifier to output the person’s identity
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5.3.2  Object recognition with tracking

It will be time-consuming if we perform object detection and recognition in every 
frame. This might fail to meet the requirement of real-time surveillance. To avoid 
this critical issue, the process of object recognition will be accelerated significantly 
by employing object tracking algorithms [57]. This is because computing the rela-
tive motions between two successive frames in object tracking is considerably 
cheaper with a smaller number of candidates to be recognized. Note that, by using 
the object tracking, the input of face recognition can be a sequence of tracked faces 
rather than a single face used for the recognition without tracking. As a result, it pro-
vides the richer face representation and is useful to improve recognition accuracy.

Face and body association (FBA). Because we utilize human bodies for further 
analytics, it also needs to be tracked simultaneously with faces. For that reason, we 
apply the data association technique presented in [24] to keep tracking the identity 
of the detected body across different scenes. The association forms the score func-
tion to determine whether the detected face and the detected body are from the same 
person. In each frame, these objects combined via the head joints returned by Open-
Pose [8]. The association is based on the fact that although the face appearance of 
the target subject might not be clearly visible (e.g., small scale or non-frontal faces) 
in different scenes, its body appearance is almost maintained. Therefore, identity 
tracking across frames will be more reliable. Figure 5 illustrates the workflow when 
incorporating the face and body association.

Accordingly, for object recognition with tracking, we present a parallel and dis-
tributed algorithm that emphasizes parallelizing FBA to achieve high efficiency and 
speed-up for object tracking. As described in Algorithm 2, we begin with distribut-
ing face detection and pose estimation tasks across video frames using flatMap() and 
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map() functions. It is important to note that object detection is time-independent, 
where we can process each frame independently of others without any effect on the 
detection accuracy. Meanwhile, the data association technique like FBA is time-
dependent since the inter-frame dependencies exist when the object moves across 
consecutive frames. Therefore, independently performing FBA might degrade the 
tracking accuracy. To effectively address this issue, we develop the association tech-
nique that considers this time-dependency constraint and increases the parallelism 
for object tracking. Specifically, using groupByKey() function, we merge the out-
put of face and body detections from flatMap() function into video shots, which are 
the consecutive sequence of frames. Then, FBA is performed on each video shot 
by passing the object tracker to map() function to transform a set of object detec-
tions into a set of tracklets. This process is equivalent to splitting the video stream 
into different shots and applying FBA on each shot afterward. In this way, we can 
guarantee a certain degree of parallelism for object tracking. Subsequently, we use 
groupByKey() function to combine tracklets obtained from the map tasks. These 
tracklets are then sorted and joined in order by using the TrackerMergeing method 
in another map() function to generate the set of final object trajectories. Finally, the 
sequence of tracked objects is applied to the face recognizer to obtain a set of person 
identities with corresponding skeletons in each video stream. 

Fig. 5  Workflow of object recognition with face and body association
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5.3.3  Combining object recognition with privacy protection

Once the process of person identification is completed, we need to hide the iden-
tity of observed subjects by removing person-identifiable information. Using the 
de-identifying process, the transformed outputs cannot be used to track back and 
search for the person and objects related to an incident. This is achieved by employ-
ing image processing techniques to obscure the person-identifiable contents. Con-
sequently, some of the critical privacy concerns can be alleviated. De-identification 
methods will generate bounding boxes to cover the regions of interest. The pixels 
inside bounding boxes can be modified to achieve a certain degree of content-
obscuring. For example, the burring can be adjusted by varying the Gaussian param-
eters. Then, after the registration, users can only see the face of authorized subjects 
as shown in Fig. 1.

In particular, the identity of the registered subject in the database will be matched 
with the recognized faces. The matched faces remain visible while the others will be 
obscured with the bounding boxes. Similar to face recognition, human de-identifi-
cation that performs matching and obscuring is also fully automated. Note that the 
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efficiency of this process relies on the recognition speed and the number of author-
ized users. While the speed issue can be mitigated by accelerating face recognition 
with object tracking, the latter is efficiently handled by using our proposed distrib-
uted stream processing. On the other hand, the accuracy of face recognizer reflects 
the reliability of the privacy protector. In terms of recognition rate, as shown in [24], 
face and body association can significantly boost the performance compared to face 
recognition without association or tracking. As a result, FBA prevents privacy leak-
age much better. We will further demonstrate the effectiveness of our privacy pro-
tection method through the qualitative results in the experiments.

5.4  High‑level video analytics

The outputs of object recognition enable users to monitor their subjects of interest 
under privacy-preserving constraints and can be processed further to infer person-
centric information such as human activities. Specifically, FBA allows us to iden-
tify the bounding boxes of multiple persons associated with their identities. These 
bounding boxes will be tracked in parallel by adopting a multi-target tracking algo-
rithm. Subsequently, each person track becomes the input of high-level video analyt-
ics like activity recognition. In this scenario, human activity recognition (HAR) is 
capable of detecting the abnormal (e.g., the kid is falling) or suspicious activities 
(e.g., an intruder breaks into the school) over a period of time. For example, the 
detected activities will be notified or sent out as alert immediately to the user in 
an online manner. Meanwhile, for offline service, the sequence of activities such as 
“sitting” and “running” can be stored in the form of lifelog to generate a personal-
ized recommendation.

The life-log and activity data are persisted in big data storage as shown in Fig. 2 
of our architecture. According to the user request (e.g., require to retrieve historical 
data like daily activities), big data storage also supports the customized queries for 
data streaming. To satisfy the demand of the personalized experience, all the con-
tents and processes will be performed and stored in a secure and privacy-preserving 
way.

5.4.1  Pose‑based human activity recognition

Given a track of a single person, the objective is to assign activity labels to each 
bounding box. For this task, we make the best possible use of the human skele-
ton provided by the pose estimator. Particularly, the skeleton’s joint positions are 
detected from each frame and then employed to extract skeletal features. Meanwhile, 
the popular features in HAR, such as dense trajectory [53] and C3D [50], have a 
common limitation, which is the lack of interpretability. The skeletal feature pos-
sesses an attractive property that is more interpretable, intuitive, and concise to 
alleviate distinguishing different human activities. Interestingly, the pose estimator 
can also play the role of privacy protector because it thoroughly hides the identity-
related information like body shapes and clothes. Thus, the skeleton itself is the 
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privacy-protected data and can be safely shared or outsourced to other higher-level 
analysis services.

The overall workflow of pose-based HAR is shown in Fig. 6. Given the sequence 
of skeletons in T frames, a full set of skeletal joints are defined as:

where N is the number of body joints, i-th joint �t
i
 is a point with 2D coordinate at 

frame t. Note that the original coordinates of body joints are normalized to be irrel-
evant to the absolute body position as well as the body size. Then, a sliding window 
collects the skeletal data on every T frames, and its output is an activity label for 
each bounding box. To meet the real-time requirement, the window is slid frame by 
frame along the time dimension of video streams.

In this work, we use two types of skeletal representation: 2D coordinates of the 
joint positions (JP) and pairwise relative positions of the joints (RJP). To capture the 
dynamics of the body poses in spatial and temporal domains, we use the coordinate 
of each position and measure its velocities between consecutive frames. Following 
[54], we further adopt Fourier temporal pyramid (FTP) to address noises and tempo-
ral misalignment issues in each window. Fourier coefficients are then aggregated to 
achieve the final representation fed into a classifier to perform activity recognition. 
Table 1 summarizes the notations used for our pose-based HAR.

(1)S = {�t
i
= (xt

i
, yt

i
)|i ∈ [1,N], t ∈ [1, T]}

Fig. 6  Workflow of pose-based human activity recognition

Table 1  Notations for 
pose-based human activity 
recognition

Notation Meaning

S A set of skeletal joint positions (JP)
P(S) Feature matrix of JP coordinates derived from set S
VP(S) Feature matrix of JP velocities derived from set S
F(S) Final JP representation computed from set S

Ŝ A set of pairwise relative positions (RJP)

Q(Ŝ) Feature matrix of RJP coordinates derived from set Ŝ

VQ(Ŝ) Feature matrix of RJP velocities derived from set Ŝ

F(Ŝ) Final RJP representation computed from set Ŝ
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In particular, for JP, the set of skeletal joints S is arranged into two feature matrices 
P and VP, which represent the concatenation of JP coordinates and the JP velocities, 
respectively, as follows:

Here, each matrix Pi ∈ ℝ
2×T for i = 1, ...,N is the concatenation of joint position i 

across T frames as follows

Meanwhile, the matrix VPi ∈ ℝ
2×T is the concatenation of velocities for each joint 

position i as the following expression:

As a result, two feature matrices P(S) and VP(S) have the same size of 2 × T × N . 
Moreover, as described in Eqs. 4 and 5, the elements of these matrices can be formed 
as time-series, hence we apply the FTP() function for each element separately and 
concatenate Fourier coefficients to obtain the final JP representation as follows:

For the RJP representation, we first convert the set S in Eq. 1 into a set Ŝ of pairwise 
relative positions as following:

Where N̂ =
N(N−1)

2
 is the number of pairwise relative positions of the joints {�̂t

k
} . 

Accordingly, the calculations of two feature matrices in terms of RJP coordinates 
and RJP velocities are expressed as follows

Here, each element Qk = [�̂1
k
, �̂2

k
, ..., �̂T

k
] ∈ ℝ

2×T for k = 1, ..., N̂ is the time-series 
of pairwise relative position k across T frames. In addition, the element matrix 
VQk = [�̂1

k
, (�̂2

k
− �̂

1

k
), ..., (�̂T

k
− �̂

T−1
k

)] ∈ ℝ
2×T is expressed as the time-series for the 

velocities of pairwise relative position k across consecutive frames. Hence, the size 
of two feature matrices Q(Ŝ) and VQ(Ŝ) with respect to pairwise relative positions is 
2 × T × N̂.

(2)P(S) = [P1,P2, ...,PN]

(3)VP(S) = [VP1,VP2, ...,VPN]

(4)Pi = [�1
i
, �

2

i
, ..., �

T
i
] =

[
x1
i
x2
i
... xT

i

y1
i
y2
i
... yT

i

]

(5)VPi = [�1
i
, (�2

i
− �

1

i
), ..., (�T

i
− �

T−1
i

)] =

[
x1
i
(x2

i
− x1

i
) ... (xT

i
− xT−1

i
)

y1
i
(y2

i
− y1

i
) ... (yT

i
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)

]

(6)F(S) = [FTP(P1),FTP(VP1), ...,FTP(PN),FTP(VPN)]

(7)
Ŝ = {�t

ij
= �

t
i
− �

t
j
|1 ≤ i < j ≤ N, t ∈ [1, T]}

= {�̂t
k
|k ∈ [1, N̂], t ∈ [1, T]}

(8)Q(Ŝ) = [Q1,Q2, ...,QN̂]

(9)VQ(Ŝ) = [VQ1,VQ2, ...,VQN̂]
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Similar to the JP representation, we also employ FTP to obtain the final RJP 
representation. This can be done by applying the FTP() function to each element 
of Q(Ŝ) and VQ(Ŝ) separately. The resulting Fourier coefficients are then concat-
enated together to form the final RJP representation as following expression

Finally, activity recognition is conducted by using the linear SVM to classify the 
final representation which could be either F(S) or F(Ŝ) . It is worth noting that the 
2D pose used in our approach is different from the 3D pose extracted by Kinect 
cameras [54]. Despite the great success of 3D pose-based HAR in the literature, 
Kinect still possesses many limitations, especially its applicability in the surveil-
lance scenarios where most CCTV systems are equipped with 2D cameras.

5.4.2  Distributed human activity recognition

To run the HAR model on the distributed system, we further propose a paral-
lel algorithm for feature extraction that can be used to efficiently classify human 
activities. We achieve this by parallelizing the computation of the final represen-
tation F(S) or F(Ŝ) for JP or RJP, respectively, to speed up the process of feature 
extraction and effectively handle the large-scale data streams, which are regarded 
as a sequence of RDDs. These data stream RDDs are created from the object rec-
ognition module wherein Kafka is employed for transmitting intermediate data 
to HAR module. As described in the above subsection, we can see that the pro-
cess of feature extraction is time-dependent because the final representation based 
on FTP is derived from the sequence of skeletons whose joints are moving from 
one position to another. Therefore, to avoid degrading the HAR performance, it 
is important to take the inter-frame dependencies into account during this stage. 
On the other hand, it is worth noting that we can perform the computation inde-
pendently on each spatial location of the body joint or pairwise relative joint. 
Accordingly, after taking a track of skeletons associated with a person identity 
from data stream RDDs, we use flatMap() function to distribute the tasks across 
joint positions and perform the subsequent computations in parallel on Spark 
workers. Then, the map() function is applied to compute the elements of feature 
matrix of coordinates ( P(S) or Q(Ŝ) ) and feature matrix of velocities ( VP(S) or 
VQ(Ŝ))). These elements are then passed to the FTP() function and use group-
ByKey() function to obtain the final representation ( F(S) or F(Ŝ) ). The process 
of computing the JP representation on Spark is described in Algorithm 3. Simi-
larly, we can apply the same algorithm to compute the RJP representation by sim-
ply replacing S with Ŝ , and using the respective computations (Eqs. 8 and 9) of 
feature matrices Q and VQ. Finally, the distributed version of SVM from Spark 
MLlib [31] is employed to classify these skeletal representations into activities. 

(10)F(Ŝ) = [FTP(Q1),FTP(VQ1), ...,FTP(QN̂),FTP(VQN̂)]
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5.4.3  Activities log protection

Once a human subject’s identity is protected, our system can perform various vision 
tasks to automatically produce personal activity data. For offline service, this data can 
be further adopted to model the high-level context of long-term behaviors. Then, these 
types of life-log data enable us to extract the lifestyle patterns of target subjects and 
facilitate user by providing personalized recommendation services. Here, given the 
children’s activities, recommendations can be personalized by using content-based fil-
tering mechanisms [20]. Subsequently, user needs are correctly mapped to the best pos-
sible recommendations based on inference rules. Some healthy recommendations .such 
as “encouraging the children to do exercises if they slept too much” and “W-sitting 
is not recommend for kids.” The activities log contains sensitive contextual informa-
tion of the human subjects and are vulnerable to adversarial attacks. Therefore, there 
is a need to guarantee that only authorized parties can use the log to perform required 
analytical tasks. With a secure big data storage system and access control mechanism, 
we can prevent unauthorized access to the activities log files. However, they remain 
susceptible to re-identification attacks [18, 22] through background information and 
cross-correlation with publicly available resources even when the personal information 
is removed from the life-log data. To prevent privacy leakage from the log files in case 
of lost or stolen, we can utilize homomorphic encryption that supports operations in an 
encrypted form [3, 19].
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6  Experimental results and analysis

6.1  Settings

Our video surveillance framework is implemented on the Spark cluster consist-
ing of 11 nodes: one master node, one node as the Kafka broker, and nine worker 
nodes used for different vision tasks. In particular, we divide these worker nodes 
into three groups: two nodes for face detection; five nodes for body estimation, 
and two nodes for tracking and recognition tasks (i.e., recognize face and activ-
ity). We assign the resource for each group based on the workload and time con-
sumption of tasks performed in that group. Each node had the same configura-
tion: 4 cores running at 2.2 GHz and 32 GB memory. Each worker node has an 
NVIDIA GTX 1080 Ti with 11 GB memory. The Hadoop version was 2.7, the 
Spark version was 2.3.3, and the Kafka version was 2.2.

6.2  Datasets

We report experimental results on four large-scale video datasets consisting of: 
YouTube Faces (YTF) [58], IARPA Janus Benchmark B (IJB-B) [56], MSR 
DailyActivity [54], and NTU RGB-D [42]. While YTF and IJB-B are used to 
evaluate the performance of person identification, MSR and NTU RGB-D are 
employed to validate the efficiency and correctness of HAR algorithms.

Person identification: YTF contains 3,425 videos of 1,595 subjects, with an 
average of 2.15 videos per for subject and an average length of 181.3 frames per 
video clips. IJB-B consists of 7,245 videos and 1,845 subjects with 4.2 videos 
per subject on average. Videos in IJB-B are collected from various sources under 
large variation of the pose, scenes, and video length.

Human activity recognition: MSR DailyActivity provides 320 video clips 
with 16 activities. NTU RGB-D is one of the largest action recognition datasets 
which contains 56880 short video samples of 60 activity classes. Both MSR Dai-
lyActivity and NTU RGB-D datasets were captured by Kinect cameras to gener-
ate RGB videos and depth map sequences. However, in this work, we only use 
RGB videos to investigate the effectiveness of 2D pose estimator.

6.3  Evaluation criteria

We mainly focus on evaluating the scalability and the efficiency of different video 
analytics tasks. The scalability performance is measured in terms of the speedup. 
This is considered as an essential factor in measuring how much faster the par-
allel algorithm is when the number of computing units is increased. With the 
given computing resource, the efficiency is validated by varying the amount of 
video data applied to our system. This is done by calculating the time cost as the 
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number of streams grows. Besides, we further report the accuracy of video ana-
lytics based on HAR in different settings.

6.4  Performance of efficiency for object recognition

In this subsection, the performance is measured in accordance with the computing 
resource (i.e., the number of Spark nodes) of each vision task and the amount of 
data in terms of the number of video streams. To conduct experiments, we combine 
YTF and IJB-B datasets and divide them into four streams. Each stream(the length 
is about 10 h) is generated by concatenating video clips from the dataset. Conse-
quently, the total length of full streams is 40 h.

Firstly, we evaluate the scalability of our framework when running different 
deep learning face detectors on the Spark cluster, where we employ Algorithm  1 
described in Sect. 5.3 but exclude the use of pose estimator and face recognizer. Two 
versions of SSD face detector are examined in this experiment where one detector 
uses the built-in model from OpenCV, namely SSD-OpenCV, and the other uses the 
Mobilenet model, namely SSD-Mobilenet. The latter is run on both CPU and GPU. 
Since there are two nodes for face detection as described above, the comparative 
results are achieved as the number of nodes increased from 1 to 2. Obviously, as 
shown in Fig. 7a the results demonstrate the scalability of our framework, which sig-
nificantly accelerates the face detection process. Remarkably, the speedup is approx-
imately 1.8× when the number of computing nodes is doubled. SSD-Mobilenet with 
GPU run fastest at a speed of 84 fps on 1 node. SSD-OpenCV is two times slower, 
but its speed is still satisfactory in real-time. SSD-Mobilenet without GPU is too 
slow (6 fps) and not suitable for streaming service. Figure 7b shows the relationship 
between the time cost and the amount of the stream data. We can see that the pro-
cessing time is almost linear when the number of streams is increased. Hence, the 
detection is expected to keep scaling well to larger datasets. This further shows that 
our distributed implementation effectively exploited parallelism. With GPU support, 
SSD-Mobilenet with GPU is consistently faster than SSD-OpenCV.

In the next experiment, we test the scalability of the pose estimation. Here, we 
reserve 5 Spark nodes with GPUs because the pose estimator (i.e., OpenPose) is 
heavily executed through CNN models. We also use Algorithm  1 without a face 

(b)(a)

Fig. 7  a Scalability of different face detectors w.r.t number of nodes. b Efficiency of different face detec-
tors w.r.t number of streams
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detector and recognizer to perform the distributed pose estimation. As shown in 
Fig 8a, the time cost is proportional to the number of nodes. Considering 1 video 
stream fed into our surveillance, the time-consuming task like the pose estimation 
can be performed quickly at the speed of 100 fps. This further demonstrates the scal-
ability of our framework since the speed up relative to the run time of one node is 
consistently increased as the number of nodes. Figure 8b illustrates the relationship 
between the time cost and number of streams when executing pose estimation. The 
processing time of this task is increased linearly as the size of stream data grows. 
With the full of streams, to complete the task, it takes nearly 10 h which is 4 times 
faster than the total length of the streams. This speed exhibits the acceptable effi-
ciency for real-time scenarios. Thus, in this experiment, we can observe that the 
pose estimation benefits from parallelism.

Regarding person identification, we examine the efficiency of three face recogni-
tion approaches. The first approach performs face recognition without tracking as 
described in Algorithm  1. The second denoted as FA employs tracking based on 
face association using Algorithm 2 without a body estimator. The last denoted as 
FBA associates both face and body to improve the tracking accuracy as validated 
in [24]. For this approach, we fully use the distributed implementation of Algo-
rithm 2. Apparently, as shown in Fig. 9a and b, face recognition without tracking 
is slower than the others. With tracking, we can accelerate the recognition speeds 
to 2 or 3 times. The reason is that given a video stream segment, the process of data 

(b)(a)

Fig. 8  a Scalability of pose estimation w.r.t number of nodes. b Efficiency of pose estimation w.r.t num-
ber of streams

(b)(a)

Fig. 9  a Scalability of face recognition w.r.t number of nodes. b Efficiency of face recognition w.r.t num-
ber of streams
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association is much faster than the process of face classification, which is needed 
to be performed in every frame. Moreover, by leveraging the parallelism for object 
tracking, both FA and FBA are consistently faster than the recognition without track-
ing when we increase the number of nodes or streams. FBA is relatively slower than 
FA because the complexity of data association considering body pose is higher. The 
results from Fig. 9a, b once again verify the efficiency of our proposed parallel algo-
rithms. All approaches scale well as the increasing resource. They efficiently han-
dle large streams at an acceptable time cost. Especially, FBA achieves eight times 
speedup compared to the length of full streams.

6.5  Qualitative evaluation of visual privacy protection

The effectiveness of human de-identification is primarily dependent on the accuracy 
of face recognition and tracking, as discussed in Sect. 5, wherein the face recogni-
tion accuracy or identification rate can be measured as the percentage of the cor-
rectly recognized faces per the total number of tested faces. If the face is recognized 
incorrectly or the tracking is failed in several frames, it results in the privacy leaks. 
Consequently, the speed and accuracy of the face detector and tracker must be guar-
anteed to detect a new face quickly and de-identify it reliably as soon as possible. 
As shown in the results above, our system meets the real-time requirement for face 
detection effectively. Furthermore, most of the current face detector can only work 
well with the frontal view. However, if the small scale or non-frontal faces remain 
in many frames before it turns into the frontal view, the de-identification might 
be failed due to the late detection. Estimating human pose can address this issue 
because the body is always visible. It allows us to determine the head pose even 
though the face is not clearly visible. As shown in Fig.  10, the proposed method 
can produce better results of tracking identity when combining the pose estimator 

Fig. 10  Example of privacy leaks. Results on the first row are obtained by using only SSD face detector. 
Results on the second row are obtained by combining SSD face detector with tracking based on FBA
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with the face detector. This further validates that our parallelization strategy of FBA 
handles well the time-dependency issue of data association technique as discussed 
in Sect.  5.3 where we can maintain both good qualitative performance and high 
speedup.

6.6  Performance of human activity recognition

In this experiment, we evaluate the HAR performance in terms of efficiency and 
accuracy. The experiments were conducted by using two activity datasets, i.e., NTU 
RGB-D and MSR Daily Activity. Particularly, NTU RGB-D is used to examine the 
efficiency of HAR processed on our framework. For this dataset, we also created 
four video streams and the length of each stream is 10 h. Meanwhile, MSR Daily 
Activity is used to evaluate the accuracy of different HAR approaches. In this work, 
we consider the scenario where the subject performs a sequence of various activities 
(e.g., walking, sitting, and reading book). Hence, we generate the stitched version 
of MSR Daily Activity which is built by simply concatenating individual activity 
instances into sequences. Each sequence contains three to five activities.

We first investigate the efficiency of different HAR methods. Especially, we com-
pare our pose-based HAR approach with the state-of-the-art approach presented 
in [46]. For the pose-based HAR, we employ two skeletal features, i.e., joint posi-
tions (JP) and relative joint positions (RJP). The implementation of distributed HAR 
was described in Algorithm 3 (Sect. 5.4). The CNN-based approach uses the VGG 
model [46] to extract the CNN feature maps, which are applied to a classifier to 
get the prediction scores. Note that the pose-based approach (JP and RJP) run on 
CPU, and VGG runs on GPU due to its high complexity. The comparative results are 
shown in Fig. 11(a) and Fig. 11(b). We can see that JP achieves the best efficiency, 
even compared to VGG with GPU support. RJP is the most time consuming because 
of its higher dimensional feature vector. Due to the parallelization of computing 
skeletal representation, both JP and RJP scale well on our system where the com-
puting tasks are effectively distributed to multiple Spark workers. However, JP with 
lower complexity handles the large-scale stream better that achieves 3 times speedup 
when running full streams.

(b)(a)

Fig. 11  a Scalability of different HAR appraches w.r.t number of nodes. b Efficiency of different HAR 
appraches w.r.t number of streams
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Table 2 presents the accuracy comparison between different methods. The rec-
ognition rate is measured via frame-wise accuracy. Concretely, in our activity data-
set, each video frame is associated with a label, and the overall frame-wise accu-
racy is the percentage of true positives after performing the prediction on the test 
video stream. Firstly, we consider two CNN-based methods. The first method [46] 
uses RGB images and VGG model for feature extraction. The second method pre-
sented in [55] is the advanced version of [46] that takes RGB images and RGB 
difference as the input to the VGG model. Here, RGB difference is employed to 
capture the dynamic appearance (i.e., the salient motion region) between two con-
secutive frames. Accordingly, as shown in Table 2, the combination of RGB images 
and RGB difference boosts the performance of [46]. Interestingly, we can observe 
that our pose-based methods outperform CNN-based methods even though they 
have lower complexity. This is because the skeleton is more informative and has 
higher interpretability, enabling us to differentiate human activities better. The 
accuracy of RJP is slightly higher, while JP balances the trade-off between accu-
racy and efficiency better. Then, we further compare our pose-based method with 
other works [4, 29] that also use OpenPose to extract 2D pose and build the skeletal 
representations. Note that we followed the standard-setting and the implementation 
protocols described in these works to obtain the results on our dataset, which were 
not reported in the original papers. Specifically, in [29], the authors proposed an 
approach to encode the sequence of skeletons over time in an image-like data struc-
ture, namely EHPI, which is then fed into CNNs for classification. The accuracy of 
this representation is lower than JP and RJP by 2% and 4%, respectively. This can be 
attributed to that, due to the use of FTP, our method better suppress the noises and 
handle temporal misalignment issues more effectively. Differently, the method in [4] 
explicitly takes the sequential nature of activities into account wherein the temporal 
dependencies are modeled using Two-Branch LSTMs. Due to the deployment of the 
sophisticated structure, the LSTM yields the best result with 87%. Despite the supe-
rior accuracy, it is difficult to parallelize the computations of this LSTM network 
because its inherent properties incur the dependency problem for both time and spa-
tial locations of body joints. Hence, it might be extremely challenging to execute 
the algorithm in the distributed environment. Therefore, the obtained results in this 
experiment further demonstrate the effectiveness of the body pose, especially our 
skeletal representation, in improving HAR accuracy.

6.7  Detailed analysis on scalability

As described in our experimental settings (Sect. 6.1), we assign the resource for dif-
ferent vision tasks according to workload and time consumption. Consequently, five 

Table 2  Accuracy comparison of different methods

Methods JP RJP VGG [46] VGG [55] EHPI [29] LSTM [4]

Accuracy (%) 81% 83% 72% 77% 79% 87%
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Spark nodes with GPU supported are dedicated to the expensive pose estimation 
task that requires heavy computations of CNN models in OpenPose. Meanwhile, for 
less intensive computing tasks, i.e., face detection, face recognition, and activity rec-
ognition, we reserve only two Spark nodes. As shown in the previous experimental 
results, even with relatively limited computing resources, all these tasks can yield 
satisfactory speedups, which are well-suited for the real-time requirement of large-
scale surveillance. To further demonstrate the scalability of our system, we exam-
ine the relation between the processing time and the number of nodes by increasing 
the reserved nodes from two to five for modules requiring less computation. The 
results are shown in Fig. 12a–c. We can see that the execution time costs in most 
cases decrease near-linearly when the number of nodes increases. In Fig. 12a, the 
ratio between the runtimes of two face detector versions (SSD-opencv and SSD-
mobilenet-gpu) is approximately 2 on each number of nodes. The result of HAR 
behaves similarly in Fig 12c, where the runtime ratio between JP and RJP is consist-
ently around 1.4 as increasing number of nodes. These indicate that our distributed 
implementations can maintain efficient parallelization by fully exploiting the char-
acteristics of RDD operations. The result of face recognition shown in Fig. 12b is 
extended from the one in Fig. 9a, where we examine the performance of FBA. It 
also shows that FBA can achieve near-linear scalability. Therefore, given that execu-
tion is performed on large video streams, our implementation is expected to keep 
scaling on a larger number of nodes. Thus, combining the results of Fig. 12 with 
that of Fig. 8a, the scalability performance presented in this paper clearly verifies 
the robustness of our system when we vary the number of nodes from one to five to 
execute different vision tasks.

7  Conclusions

In this paper, we have proposed a comprehensive solution for large-scale surveil-
lance systems. The proposed solution ensures visual privacy protection to individu-
als in the videos and supports intelligent video analytics ranging from low-level face 
detection to mid-level body pose estimation, face recognition, and high-level activ-
ity recognition. With our solution, we not only increase the confidence of users to 
use video surveillance systems but also raise public awareness about technologies 

(a) (b) (c)

Fig. 12  Scalability w.r.t number of nodes for a face detection, b face recognition, and c human activity 
recognition
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that place privacy at risk. Extensive experimental results on standard datasets veri-
fied the effectiveness and efficiency of our framework for different vision tasks. As 
future work, we plan to incorporate co-privacy [16] in our future work. The concept 
of co-privacy (or cooperative privacy) considers the best option for a party to obtain 
privacy protection is by helping another party achieve theirs.
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