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ABSTRACT Federated learning (FL) has recently received considerable attention and is becoming a popular
machine learning (ML) framework that allows clients to train machine learning models in a decentralized
fashion without sharing any private dataset. In the FL framework, data for learning tasks are acquired and
processed locally at the edge node, and only the updated ML parameters are transmitted to the central
server for aggregation. However, because local FL parameters and the global FL model are transmitted
over wireless links, wireless network performance will affect FL training performance. In particular, the
number of resource blocks is limited; thus, the number of devices participating in FL is limited. Furthermore,
edge nodes often have substantial constraints on their resources, such as memory, computation power,
communication, and energy, severely limiting their capability to train large models locally. This paper
proposes a two-hop communication protocol with a dynamic resource allocation strategy to investigate the
possibility of bandwidth allocation from a limited network resource to the maximum number of clients
participating in FL. In particular, we utilize an ordinary hierarchical FLwith an adaptive groupingmechanism
to select participating clients and elect a leader for each group based on its capability to upload the aggregated
parameters to the central server. Our experimental results demonstrate that the proposed solution outperforms
the baseline algorithm in terms of communication cost and model accuracy.

INDEX TERMS Federated learning, distributed machine learning, multi-hop wireless networks,
communication-efficiency, bandwidth optimization.

I. INTRODUCTION
Machine learning (ML) has emerged as one of the evolving
technologies of the modern-day. The success of ML systems
depends on the availability of high-quality data collected
from various sources such as sensors and internet-of-things
(IoT) devices. However, a single entity might not own all
the data it needs to train the ML model it wants; instead,
valuable data examples or features might be scattered in
different organizations or entities. For example, autonomous
vehicle sensing data sit in data silos, and privacy concerns
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limit sharing such data for ML tasks. Consequently, large
amounts and diverse data from different vehicles are not fully
exploited by ML.

The concept of federated learning (FL) was first introduced
by McMahan et al. [1]. The main idea is to train the ML
models in a decentralized fashion where no private dataset is
sent to a central repository [2]. Specifically, the data for the
learning tasks are acquired and processed locally at the edge
node, and only the updated ML parameters are transmitted
to the server for aggregation purposes [3], [4]. The goal of
FL is to train a single ML model using all the data available
in a cooperative way without moving the training data across
the organizational or personal boundaries [5]. FL has been
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successfully deployed in many applications in many indus-
tries, including healthcare, telecommunications, IoT, manu-
facturing, and surveillance system. For instance, in a smart
transportation system, a traffic management agency wants
to improve traffic congestion and traffic signal control by
training a high-quality FL model based on the local updates
collected from the vehicles in a target region. Given the
wide applications of FL, guaranteeing that such a cooperative
learning process is reliable is becoming essential research
topic.

Despite significant recent milestones in FL, there are sev-
eral fundamental challenges that yet need to be addressed
in order to enable its promise [6]. For instance, edge nodes
have often substantial constraints on their resources such as
memory, computation power, communication, and energy,
which severely limits their capability of training large models
locally. Also, the device hardware heterogeneity causes edge
nodes to complete the training task at different times. In FL,
there is a need of each node to efficiently transmit its learned
model updates to the server over the uplink communication
channel [7]. Often, the throughput of the communication
channel is constrained due to issues such as package loss,
latency, jitter, etc. Furthermore, there is a large amount of
system and data heterogeneity across edge nodes, which
will make their learning objectives and capabilities vastly
different.

Among the challenges mentioned above, the communi-
cation overhead constitutes a major bottleneck in FL sys-
tems. In the next generation of wireless networks such as
the fifth generation (5G) and sixth generation (6G) networks,
a base station essentially serves thousands of devices [8],
[9]. An efficient communication protocol together with a
FL algorithm need to be addressed. Several works have
studied the design of communication-efficient FL algo-
rithms in the literature [10], [11], [12], [13]. The major-
ity of these studies have focused on optimization of FL
in a single aspect such as device selection and schedul-
ing [14], [15], FL model parameter updates and transmis-
sion [11], [16], or network resource management [17], [18].
In [19], the authors proposed a communication-efficient FL
framework that tackles multiple causes for communication
delay by jointly optimizing the device selection, FL model
parameter transmission, and network resource management.
The selection of participating clients is one of the essen-
tial considerations in FL. The heterogeneity of the client
devices and their limited communication and computation
resources can affect the model accuracy because some might
not be able to complete the training task in a certain
round [20].

In this paper, we deal with the problem of communica-
tion network resource allocation in FL training. Specifically,
we aim to address three challenges. First, we want to involve
as many clients as possible in the training task to increase the
accuracy of the ML model. Second, we want to minimize the
FL convergence time without sacrificing the training loss of
the FL algorithm. Third, we want to reduce the training loss

in case the communication is unavailable between the server
and clients.

The main contributions of this paper are summarized as
follows.

1) We solve the first two challenges by designing an
adaptive grouping mechanism with dynamic resource
allocation strategy. Given a limited network resource,
the idea is to allocate as many clients as possible to
participate in FL. With this approach, the global model
can acquire more information from the selected clients,
improving the convergence time. We utilize a proba-
bilistic client selection mechanism that considers both
strengths of the receiver signal and channel gain of each
device to elect a leader and participating clients in each
group.

2) The third challenge requires the participating clients
to establish a new connection with nearby leaders
when the communication with existing leader is bro-
ken. In our design, we utilize an ordinary hierarchical
design with a dynamic group leader mechanism where
each group leader is responsible for communicating
with the server for local updates submission and global
model parameters dissemination. When the leader is
unavailable, we allow the clients to establish direct
communication with nearby leaders.

3) Experimental results demonstrate that our proposed
two-hop communication protocol provides good per-
formance for different scenarios and FL algorithms.
The results verify our theoretical findings that the
proposed protocol can be applied for real-world
application.

The rest of this paper is organized as follows. We discuss
the background and related work in Section II and the pro-
posed grouping mechanism, clients and leaders selection are
presented in Section III. We present our system design in
Section IV, followed by experiment results in Section V. The
conclusion is presented in Section VI.

II. BACKGROUND AND RELATED WORK
This section introduces the basic FL phases, its de factor
algorithm FedAvg, architecture design and related works in
FL client selection, communication optimization and archi-
tecture consideration.

A. FEDERATED LEARNING
Consider a general FL framework consisting of one central
orchestration server S and N clients {C1,C2, . . . ,CN }. Each
client i (e.g., a computing device) with a local private dataset
Di and would like to participate in FL process. Due to privacy
concern, it is not desirable for the clients to transfer their
private dataset to S or a central repository. Also, S wants to
learn a global model with the data distributed across these
clients.

The basic process of FL includes local gradient compu-
tation at clients and model weight aggregation by a central
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aggregation server. In general, FL involves the following
three main phases:
• Phase 1 (FL Initialization): S first initiates the weight
of the global model and the hyperparameters such as
the number of FL rounds and local epochs, size of the
selected clients for each round, and the local learning
rate.

• Phase 2 (Local Model Training and Update): each
clients Ci receive the current global weight from S
and updates its local model parameters wti using local
datasets, where t denotes the current iteration round.
Upon the completion of the local training, all clients
send the local weight to S for model aggregation.

• Phase 3 (GlobalModel Aggregation andUpdate Phase):
S aggregates the received local weights and sends back
the aggregation result to the clients for the next round of
training.

In Phase 2, the goal of each Ci is to obtain the optimal
local model parameters ŵti in round t by minimizing the loss
function Fl(wti ) formulated as follows:

ŵti = argmin
ŵti

Fl(wti ) (1)

In Phase 3, the goal of S is to obtain the optimal global
model parameters ŵtg by minimizing the loss function Fl(wtg)
formulated as follows:

ŵtg = argmin
ŵtg

Fl(wtg) (2)

such that Fl(wtg)
def
=

1
n

∑n
i=1 Fl(w

t
i ). The FL will continue

until the maximum number of rounds is reached or the accu-
racy of the global model is greater than the threshold τ .
Then, S completes the FL by aggregating the local updates
and distributes the final global model to Ci. Note clients do
not need to communicate with each other since the local
parameters aggregation is performed by S.

B. FEDERATED LEARNING ARCHITECTURE
Centralized architecture [21] is a commonly used setting in
FL where clients are connected directly to S . As shown in
FIGURE. 1, S is responsible for communicating with all
clients, aggregating local updates, and deploying the global
model. However, due to the heavy communication load with
clients, there is a possible communication bottleneck and
single-point failure. In particular, S can only access a limited
number of clients lead to inevitable training loss. Because
of this, some alternative architecture designs have been pro-
posed in the literature to overcome the issues in the central-
ized architecture.

For instance, in an ordinary hierarchical FL, several coor-
dinators (with one or more layers) will be added between
S and the clients [22], [23], [24]. All clients will be parti-
tioned and connected directly with these coordinators. This
architecture design can reduce data exchange but require
permanent coordinators to participate in the learning pro-
cess. Recently, a client-edge-cloud hierarchical FL has been

FIGURE 1. A federated learning training model.

proposed in [23], where a cloud server is used to support
coordinators in processing the massive local updates and
allows a quicker model update. However, such a design also
required permanent coordinators in the learning process.

C. FEDERATED LEARNING ALGORITHMS
Federated averaging (FedAvg) is the de facto algorithm that
allows a subset of devices to performs local iterations in
parallel in each round [25]. FedAvg has been successfully
deployed in various application domains such as mobile key-
board prediction [21], autonomous driving [26], and payment
system [27]. In FedAvg, every participating client first down-
loads and trains the global model on their local dataset. This
process is often known as local or parallel stochastic gradient
descent (SGD) where the training is performed for a number
of epochs locally. The clients then upload the difference
between their initial and final model to S for local updates
averaging.

However, when the data is non-identically distributed (non-
IID) across clients and the number of data samples varies
significantly from client to client, FedAvg might diverge in
realistic scenarios [28]. Several FL algorithms (e.g., Fed-
Prox [6], Qffedavg [12], FedFS [29], and FedOptim [30])
have been proposed in the literature to overcome the limi-
tations of FedAvg.

D. RELATED WORK
In recent years, communication efficiency and power man-
agement are two active research areas that drive many
researchers into the fields. To enhance the availability of
FL, several works focus on performance optimization of FL
in wireless networks. For instance, Tran et al. [31] analyze
the impact of wireless environment for the time of FL task.
In [32], the authors optimize the radio resources by schedul-
ing the devices to minimize the convergence time of FL.

Client selection plays an essential role in optimizing
the communications of FL systems. For instance, involving
more clients in the current FL round reduces the bandwidth
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allocated to each client [33]. Most of the recent works assume
full client participation in every training round [34], [35],
[36] but can be infeasible for FL training with large scale
devices. In practice, not all clients can participate in each
round due to computation, energy, and bandwidth limitations.
Due to this, several mechanisms have been proposed for the
selective client to participate in the FL training, such as partial
client participation [37], flexible client participation [38], and
grouping clients based on network resource and hardware
capabilities [39]. In [20], a multi-criteria client selection
approach has been proposed by considering the availability
of resources, communications overhead, and imbalanced dis-
tribution of data. In another work [40], the client selection is
based on the long-term average model exchange time.

Zhang et al. [41] proposed a series of schemes for eas-
ing the overlarge communication burden in FL systems
applied to traffic forecasting tasks using deep models. The
proposed clustering-based hierarchical and two-step-updated
FL (CTFed) scheme guarantees accurate forecasting perfor-
mance, circumventing the adoption of any gradient quan-
tization or sparsification approaches that may degrade the
performance of collaboratively-trained models when the
model’s architecture is complex, and the number of involved
parameters for feature learning is large. The proposed
approach is also orthogonal to the gradient quantization or
sparsification approaches. Recently, Lee et al. [42] proposed
a solution based on the behaviors of devices’ owners. They
exploit clustering algorithms to group devices with similar
models (i.e., similar gradient updates) and then suppress the
training updates of some devices to reduce the communica-
tion cost. However, these solutions cannot adapt to a scenario
where the clients are changing over time, like in the network
traffic.

Unlike the existing solutions, we consider the strength of
the receiver signal and channel gain rather than comparing
the gradient updates from all clients. Specifically, this work
investigates the possibility of bandwidth allocation from a
limited network resource to a maximum number of clients
to participate in FL. We elect a leader based on its capability
to upload the aggregated parameters to the BS successfully.
Furthermore, we consider an adaptive environment where the
group size and clients can differ at each FL iteration or within
a training period.

In an ordinary hierarchical FL, the FL system will fail
when one or more coordinators cannot perform their tasks.
Furthermore, this will cause clients connected to a failed
coordinator cannot join in the later rounds and hence, affect
the performance of global model. Although in practice, only
a small fraction of clients participate in each learning round,
but the exclusion of a group of clients in several rounds will
cause biased client participation issue. Inactivity of these
clients may be temporary or permanent, depending on their
connection with the coordinator. Ultimately, this will restricts
the potential availability of training datasets in those inactive
clients [43]. Also, it is worth mentioning that the deploy-
ment of FL with an ordinary hierarchical design will incur

TABLE 1. Summary of key notations.

additional costs since the coordinators must be powerful
servers with high computational resources. In client-edge-
cloud hierarchical FL also required permanent coordinators
in the learning process. Furthermore, there is a possible down-
time with the cloud server and delay, which can endanger
real-time FL applications such as autonomous vehicle sys-
tems. The usage of cloud services will further increase the
deployment costs of FL in real-world applications.

In view of the limitations in the existing FL architecture
design, this paper proposes to utilize an ordinary hierarchi-
cal design with a dynamic group leader mechanism (see
Section III-B). The group leaders take the role of coordinators
in the ordinary hierarchical FL but are not in a permanent
fashion. In other words, when an elected group leader is
unavailable due to a lost connection or limited transmission
range, another client (e.g., the second best client) will replace
it by taking responsibility as a new leader. Also, we allow
inactive clients to connect to the nearest group leader in
case no good candidate is available to serve as the group
leader. Unlike the existing works, our architecture design
can prevent problems caused by the failure of one or more
permanent coordinators and deals with inactive clients during
the learning process in FL.

E. NOTATIONS USED
We summarize all key notations in this paper in Table 1.

III. PRELIMINARY
A. GROUPS SELECTION
Selecting a set of groups in each round of update optimally
given the limited channel information among clients is a
challenging task. This paper proposes a simple round robin
method to select a fixed percentage of groups to transmit
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FIGURE 2. Group selection: 9 groups out of 81 are selected to upload
parameters every round.

updates in each round. To limit the interference amongst
groups, we select the groups based on their geometric loca-
tions such that they are not adjacent to each other. For exam-
ple in FIGURE 3, the entire serving area of the BS is divided
into K = Ng × Ns = 9 × 9 groups; that is, there are
81 groups in total. In each update round,Ng = 9 groups of the
same color (or number) are selected to potentially participate
in the update process (the actual participated groups can
be less than Ng if the communication resource is limited).
We need Ns update rounds such that all groups are potentially
participating. Let denote the Ki are the set of group indices
selected in the i-th round (K = ∪Ngi=1Ki).

B. GROUP LEADER SELECTION
Once the groups are selected, the group leader is selected
such that it has the most capability to upload the aggregated
parameters to the BS successfully. Hence, it is clear that the
client with the highest receiver signal at the BS should be
chosen. That is, we will choose

ildr = argmax
i∈Nk

Pbsi |h
bs
i |

2 (3)

If all clients can transmit at max power Pbsi = Pmax, then the
clients with the highest channel gain to the BS are selected to
be the leader. That is

ildr = argmax
i∈Nk
|hbsi |

2 (4)

Without loss of generality, we assume the group leader is
the first client, or the client with index 0 (if not, we can re-
index the client). Note that due to random fading, the channel
condition changes after every round, and a new leader may
be selected.

The achievable transmission rate in bits-per-second (bps)
between the l-th group leader and the BS, in the second time
slot, is given by

rbsk = Bbsk log2

(
1+

Pbsk |h
bs
k |

2

Bbsk N0

)
(5)

where B is the total bandwidth, Bbsk is the allocated bandwidth
for the l-th group leader, N0 is the baseband noise spectral
density, Pbsk is the transmission power, and |hbsk |

2 is the chan-
nel gain of the l-th leader. We assume hbsk follows Rayleigh
slow fading channel model, and hbsk ’s are independent. Also,
we must have the bandwidth constraint

∑
k∈K Bbsk ≤ B.

C. CLIENT PARTICIPANTS SELECTION SCHEME
In the first time-slot, the selected clients in all groups reuse the
same bandwidth B, which is divided among all clients within
the group. Because of the frequency reuse, client of one group
can be interfered from clients of other groups if they share the
same sub-channels. In general, the bandwidth allocation for
each group can be independent; however, it is very compli-
cated to jointly optimize the bandwidth and power allocation
amongst groups due to the interference from clients which has
partial bandwidth overlap with the main client. In this work,
to simplify the problem, we assume the whole bandwidth B
is divided onto J sub-channels of bandwidths B1,B2, . . . ,BJ
such thatB1 ≤ B2 ≤ . . . ≤ BJ and

∑
j∈J Bj ≤ B, whereJ =

{1, 2, . . . , J}. Let assume the clients are reordered/re-indexed
such that the j-th client in each group is allocated to the j-th
sub-channel of bandwidth Bj. Therefore, the achievable rate
from the j-th client to the leader in the k-th group,Lk , is given
by

rk,j = Bj log2

(
1+

Pk,j|hk,j|2

BjN0 +
∑K

m=1,m6=k Pm,j|h
k
m,j|

2

)
(6)

where Pk,j and |hk,j|2 are the transmission power and the
channel gain, respectively, of the j-th client in the l-th group.
Also, |hkm,j|

2 is the channel gain of the (m, j)-th client to the
k-th leader who use the same bandwidth. Note that the second
term in the numerator in (6) is the interference from clients of
other groups who use the same subchannel as (m, j)-th client.

IV. SYSTEM DESCRIPTION
We consider a mobile network with one BS serving N
clients. The total available bandwidth is B, which is allocated
amongst clients using a frequency-sharing multiple access
protocol, such as FDMA or OFDMA [44]. We assume the
BS and each client has one antenna for simplicity. Note that
the results in this paper can be extended straightforwardly to
the scenario of a BS with multiple antennas with a maximum
receiver combining (MRC) receiver [44]. Usually, N is large
and it is inefficient for all clients to update their local learning
parameters in every round. So during each round, only a
subset of clients are selected to transmit their local update
to the BS.

To support the deployment of FL over a mobile network,
we design a collaborative system that involves a resource
allocation mechanism, learning nodes partition, and network
monitoring role selection. The main idea is to allocate the
available block resources to the nearest nodes and help others
submit the local model updates to the agency. Furthermore,
we aim to include training data from all nodes within the
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FIGURE 3. Illustrative example of FL system with the proposed architecture design.

target region to ensure the learning accuracy of the FL model.
Ultimately, our system can reduce the FL training loss and
improve FL convergence time.

A. ARCHITECTURE DESIGN
We illustrate an example of FL system with the proposed
architecture design in FIGURE 3. The system consists of N
clients that are partitioned into K groups {G0,G1, . . . ,GK }
based on their geometric locations. In each group, one of
the clients will be elected as group leader {L0,L1, . . . ,LK }.
The group leader is responsible for collecting and aggre-
gating local updates from the clients within the group. The
second-best client will replace the existing one when an
elected group leader is unavailable due to connection loss or
high transmission power (e.g., limited transmission range and
energy inefficiency). If no good candidate for the leader, all
clients should join the nearest group. For example, as illus-
trated in FIGURE 3, clients inGi establish a direct connection
with L2. Note that the BS plays the role of L0 inG0. Also, all
clients connect with leaders via device-to-device (D2D) con-
nection while leaders establish a wireless network connection
(5G) with BS.

B. LOCATION-BASED GROUP PARTITIONING
The transmission overhead in FL is much lower than the
traditional centralized learning methods since clients only
update their local parameters to the BS. However, BS may
become a bottleneck if the model involves many learnable
parameters or limited bandwidth with clients and BS. There
are several methods to mitigate the transmission overhead
in an FL-based framework, such as compressed sensing and
model compression [45]. For instance, Chen et al. [46] pro-
posed a multi-hop collaborative framework that helps the
edge devices to reach the Base station by sending training
parameters through their neighbors.

In this work, we propose a location-based clustering
method based on multi-hop collaboration combined with the
resources allocation optimization algorithm that reduces the

transmission overhead and helps the FL algorithm to con-
verge faster. FIGURE 4 shows an example of a real scenario
of the Group-based method FL (GFL) applied in vehicular
traffic network partitioning. To conserve the communication
efficiency of the wireless networks, we propose an adaptive
grouping coordination design to group clients based on their
computational power, energy, the distance of clients to the
base station, and signal strength. New groups will be formed
for every fixed number of iterations to adapt to the new
network condition.

C. COMMUNICATION MODEL
Since the BS has high power capability and multiple antenna
are equipped and the whole bandwidth can be used to broad-
cast the global models to all clients.We assume that all clients
are able to successfully receive the global model update from
BS within a short duration. Similar to [47], in this paper
we do not consider the optimization for broadcasting the
global models to clients.We instead consider the optimization
problem for local model updates from clients to the central
orchestration server (located at the BS).

In the following, we consider two communication proto-
cols. The first one is single-hop communication, which is
similar to many existing works [19], [47], and considered
as a baseline. However, as the distance getting longer for
some certain clients, the transmission requires high power.
A multi-hop routing is preferred in a traditional wireless
communication network to improve energy efficiency. In this
work, for the first time we propose a two-hop communication
model for FL. It is expected not only improving the battery
life-time of the clients but also improving the converging time
of the overall model.

1) SINGLE-HOP COMMUNICATION
Similar to many existing works, in this protocol, a subset of
clients are selected to transmit the local parameters directly
to the BS in each updating round. The clients selections can
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FIGURE 4. Location-based allocation for active, Inactive groups, and leader of active group.

be performed using the methods presented in [19] and [47].
We will use these methods as baselines.

2) TWO-HOP COMMUNICATION
In this subsection, we assume theN clients are divided intoK
groups, each consisting of Nk clients for k = 1, . . . ,K , and∑

k∈K Nk = N . The k-th group has a group leader, called Lk ,
which is generally selected if it has a strong connection to the
BS, see FIGURE 4 and FIGURE 3.

In each updating round, a subset of the groups are selected
to participate in the updates. Also, a subset of clients in
each selected group are allowed to send the updated local
parameters to the BS. Each communication round is divided
into two time-slots.

• In the first time slot, all the selected clients in a selected
group are allocated bandwidth to transmit the updated
local parameters to their group leader. The group leader
aggregates the parameters within its group. Note that
the clients are grouped together if they are located close
to each other. In this time slot, all selected groups are
assumed to be located separate from each other, hence,
we can reuse the same bandwidth for all groups.

• In the second time slot, all selected group leaders trans-
mit the aggregated parameters to the BS. Each leader is
allocated its own bandwidth.

The BS is finally aggregate the parameters from all groups.
The BS then broadcast the global updated model back to all
clients.

In this work, we assume the base station periodically and
accurately estimates the channel gains and locations from all
the clients. Similar to a block fading channel model [44],
we assume both the channel gains and locations are randomly

and independently changing from one time slot to the next
time slot. This time slot is predefined and smaller than the
coherent time of the fading channels. We note that the mobil-
ity of clients could result in changing in clusters they belong
to. Our approach is to periodically update the cluster mem-
bers based on their locations, and the group leaders are also
updated based on the procedure described in Section III.B.

D. RESOURCE ALLOCATION PROBLEM FORMULATION
Since the proposed two-hop protocol requires two time slots
to transmit update from clients to BS, we need to be able
to transmit twice the rate in each time slots compared to
the single-hop protocol. Let assume, within an assigned time
slot, it requires a transmission rate of at least 2R, otherwise,
the packet is lost. That is, we use information theoretical
approach to assume that the packages can be decoded suc-
cessfully at the receiver if the instantaneous SINR is greater
than a threshold, which is equivalent to the instantaneous
channel capacity is greater than the required rate to transmit
the updated package. Otherwise, the updated package failed
to decode and was considered as lost [44]. In this case,
the server will skip the aggregation from this clients. Our
objective is to maximize the total number of successfully
updated clients in each time slot; hence, maximize the overall
FL performance.

Due to the fading channel, the outage probability of the
(k, j)-th client is given by

pk,j = Pr(rk,j ≥ 2R) (7)

That is, if the rate rk,j ≥ 2R, then the (k, j)-th client
is successfully upload its parameters to its leader; other-
wise, it is considered as failed to update. Similarly, the out-
age probability of the k-th leader in the second time slot
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is given by

pbsk = Pr(rbsk ≥ 2R) (8)

We note that the (k, j)-th client is successfully uploaded its
parameter to the BS if and only if both rk,j ≥ 2R and rbsk ≥ 2R
satisfy.

Similar to [47], to optimize the convergence rate, we need
to allocate the resource such that it maximize the number of
successful transmission from clients to BS via their leaders.

We assume the channel gains can be accurately estimated
at the BS. We denote Ibsk and Ik,j to be the indicators that the
k-th leader and (k, j)-th client transmit their updated param-
eters successfully, respectively. We note that the (k, j)-th
client’s transmission to the BS is successfully if both
Ibsk = 1 and Ik,j = 1. Therefore, the resource optimization
problem is formulated as follows

(P1) max
B,P

∑
k∈K

∑
j∈Nk

Ibsk · Ik,j

s.t. Pmin ≤ Pk,j ≤ Pmax,

Pmin ≤ Pbsk ≤ Pmax,∑
j∈J

Bj ≤ B,
∑
k∈K

Bbsk ≤ B, (9)

where Ik,j = 1 if rk,j ≥ 2R, and Ik,j = 0 if otherwise, and
Ibsk = 1 if rbsk ≥ 2R, and Ibsk = 0 if otherwise.

Algorithm 1 Groups and Clients Selection
Input: t: update round index, Ng: number of super groups,

Ns: number of groups in the super group, {Gk}: sets of
clients, {Ki}: the set of all sub-groups.

Output: Sets of selected groups Ks and sets of clients {Csk}.
1: [Central Orchestration Server]
2: Initialize the round-robin index r = (t mod Ns)+ 1.
3: [Group Selection]
4: for each group Gk with index k ∈ Kr do
5: Assign group leader for the k-th group based on equa-

tion (3).
6: end for
7: Solve for (P2.1), the leader bandwidth allocations, in (10)

to obtain a list of participant groups, Ks.
8: [Clients Selection]
9: for each group k ∈ Ks do
10: Order the channel gains from clients to its leader from

high to low.
11: end for
12: Solve the bandwidth allocation problem (P2.2) in (11)

using the suboptimal method described after (P2.2),
we obtain the sets of participant clients in each participant
group Csk for k ∈ Ks.

13: return Ks and {Csk}

We observed that (P1) is a nonconvex optimization prob-
lem because Ik,j and Ibsk are discrete valued function, which
takes value {0, 1}. To obtain a suboptimal solution, we pro-
pose to decompose (P1) into multiple sub-problems. First,

Algorithm 2 Our Proposed Solution
Input: M : Maximum number of rounds, m: the number of

clients selected in each round,Nepoch: the number of local
epochs, and η: the local learning rate

Output: Global Model wg
1: [Central Orchestration Server]
2: Initialize global weight w0

g, M , m, Nepoch, and η
3: for each round t from 1 toM do
4: Follow theAlgorithm 1 to obtain the set of participant

groups Kt and sets of clients Ctk for k ∈ Kt .
5: for each participant group k ∈ Kt do
6: for each client i ∈ Ctk , including the leader, in

parallel do
7: wtk,i, Nk,i← LocalTraining(k, i, wtg)
8: end for
9: [The k-th Leader]

10: wt+0.5k,g =
1
Nk

∑
i∈Ctk Niw

t
k,i, where Nk =

∑
j∈Ctk Nk,j

(at the k-th leader)
11: end for
12: [Central Orchestration Server]
13: wt+1g =

1∑
k∈Kt Nk

∑
k∈Kt Nkw

t+0.5
k,g (at S)

14: end for
15: [Participating Clients]
16: Each client (k, i) divides local dataset Dk,i into batches,

Bk,i
17: for each epoch j from 1 to Nepoch do
18: for each batch b ∈ Bk,i do
19: w← w− η∇L(w; b)
20: end for
21: end for
22: return the weight w and Nk,i = |Dk,i|

we optimize the total number of leaders that can successfully
transmit to the BS, then we optimize the total number of
clients that can successfully transmit the update to its leader.
That is,

(P2.1) max
B,P

∑
k∈K

Ibsk

s.t. Pmin ≤ Pbsk ≤ Pmax,∑
k∈K

Bbsk ≤ B (10)

and

(P2.2) max
B,P

∑
k∈Ks

∑
j∈Nk

Ik,j

s.t. Pmin ≤ Pk,j ≤ Pmax,∑
j∈J

Bj ≤ B. (11)

Both (P2.1) and (P2.2) are still nonconvex optimization
problems because the objective function include the discrete
valued variables Ik,j or Ibsk .
Note that solving (P2.1) is similar to the baseline method.

That is, we order the channel gain |hbsk |
2 from high to low
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and allocate the bandwidth such that the respective leader can
successfully transmit to the BS. We repeat the process until
the total allocated bandwidth, B, is reached.

To optimally solve for (P2.2), it is more complicated,
if computationally feasible, due to the interference terms as
shown in (6). In this paper, we propose a suboptimal solution
approach as follows. In each group, we order the channel
gain |hk,j|2 from high to low, and allocate the client with the
highest channel gain to the same channel with bandwidth B1,
the second best one to the same channel with bandwidth B2,
and so on. The Bk is chosen such that it is upper bounded by
some limit Bmax < B (in simulation we choose, B/Bmax = 3)
and as many clients can successfully transmit the updates to
its leader. We repeat the process until all available bandwidth,
B, can not be further utilized. That is,

∑K ′
i=1 ≤ B, but∑K ′+1

i=1 > B, where K ′ ≤ K is the actual active group.
We can show that the complexity of the proposed algorithm
is O(K 2).

The proposed algorithms to solve the optimization problem
(P1) in (9) is summarized in Algorithm 1 and Algorithm 2.

V. EXPERIMENT RESULTS
In this section, we conduct experiments to investigate how the
dynamic resource allocation strategy influences the FL algo-
rithms. We use FedAvg as the basic FL algorithm to evaluate
our proposed two-hop communication protocol. To show that
the proposed protocol is also applies to other FL algorithms,
we conduct experiments on FedProx [6], which is a general-
ization of the FedAvg algorithm to address the heterogeneity
of data and systems in FL.

A. DATA DISTRIBUTIONS AND CONFIGURATIONS
We evaluate our results on CIFAR-10 [48] dataset, which
consists of 60000 32 × 32 colour images in 10 classes, with
6000 images per class. To show how the trained models
are impacted due to differences in local data distributions,
we configure the data distributions in our experiments as
follows:

• Scenario 1: In the IID setup, data samples from each
class are equally distributed across all N = 500 clients
in the system. Hence, each client has 100 samples and
all 10 classes in its local dataset.

• Scenario 2: We distribute the initial dataset equally to
each client but with a random number of classes.

• Scenario 3: Each client has a random number of data
samples (at least 50 data samples) and with a random
number of classes.

In the non-IID setup (Scenario 2 and 3), the number of
classes is drawn randomly from 4 to 10 for each client.
We distribute the training set of each dataset to the clients
for training and utilize the original test set of each dataset to
evaluate the performance of the global model. We consider
a system with N = 500 clients. For illustration purposes,
we show the sample data distributions for Scenario 2 and 3 in
FIGURE 5.

TABLE 2. Simulation parameters.

B. FL MODEL
In our implementation, we use ResNet18 [49] for CIFAR-10
in PyTorch. In addition, we perform data augmentations by
using techniques such as Random Horizontal Flip, Random
Rotation and Color Jitter. We run and compare the perfor-
mance of our proposed two-hop communication protocol for
Group-based Federated Learning (GFL) with the following
two baseline approaches:
• Centralized Machine Learning (CML): All data samples
are gathered in a place.

• Centralized Federated Learning (CFL): Every client has
a participation rate pr%, either full participation (pr =
100%) or partial participation (pr < 100%).

In GFL, we divide N clients into 81 groups where each
group has a leader and n−1 members, all with a participation
rate pr%. Any group with n < 3 will not be selected
at any round. For a fair comparison with CML, we use a
fixed random seed in our experimental setup. We ran these
experiments on 180 rounds with different participation rates,
batch size of 16, and SGD with momentum 0.9 and learn-
ing rate 10−3 and cosine annealing scheduler [50]. In GFL,
we randomize the location of all members every 5 round.

C. COMMUNICATIONS PARAMETERS
We consider an area of 450 × 450 square meters, and
500 clients uniformly distributed in this area. The BS is
located at the center of this area. In the simulation, the whole
area is divided into 81 small squares, each with size 50 ×
50 square meters as shown in FIGURE 6.a and 6.b. Clients
located in each small square form a group as aforementioned.
That is, we use 81 groups of clients in our simulation. Similar
to [51], we assumed IID Rayleigh fading channels between
any two terminals, which can be clients, leaders or the BS.
The pathloss (PL) model is assumed to be

PL = −30+ 10 log10 d
α (dB) (12)

where α is the pathloss exponent and d inmeter is the distance
between two terminals (e.g., between a client and its leader).
The other communications parameters are summarized in
Table 2.

D. PERFORMANCE EVALUATION
In the simulation, we randomly generated clients’ locations
and communications channels with parameters as shown in
Table 2 with 1000 iterations. The simulation results were then
averaged over these 1000 realizations unless otherwise stated.

In FIGURES 6.a and 6.b, we plot the locations of par-
ticipation clients for a conventional single-hop protocol and
our proposed two-hop protocol, respectively (for a particular
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FIGURE 5. Sample data distributions.

FIGURE 6. Sample locations of active and inactive clients for R = 1.4 Mbps and participation rates.

clients’ locations and channels). As shown in FIGURE 6.a,
there are only 26 clients who can participate at a round, while
in FIGURE 6.b, for the same communication resources, our
proposed two-hop protocol resulted in a higher number of
the total active clients, 9 leaders, and 49 clients, which is
58 in total. The gain comes from the more efficient way of
exploiting the communications resources such as bandwidth
and energy in the two-hop protocol compared to the single-
hop protocol. We note that in the two-hop protocol, the D2D
communications between clients and its leader are closer in
range in the first time slot, thus more energy efficiency, and
is more efficient in bandwidth due to the frequency reuse
amongst groups.

In FIGURE 6.c, we plot the average participation rates for
the conventional single-hop protocol and the proposed two-
hop protocol. The participation rate is defined as the ratio
between the participated clients (including the leaders) and
the total number of clients. We can observe that the proposed

two-hop protocol outperforms the conventional protocol. For
example, at the rate R = 1.4 Mbps, the participation rate
for the proposed protocol and the conventional protocol are
11.58% and 5.31%, respectively. In other word, we see about
118.08% gain in participation rate for our proposed two-hop
protocol.

In terms of performance, we performed experiments for all
three scenarios specified in Section V-A to show the influ-
ence of the dynamic resource allocation strategy on model
accuracy. As shown in FIGURE 7, the model accuracy of the
proposedGFL outperform that of the traditional CFL over all
the considered scenarios. The performance improvement is
more pronounced in scenario 3, which is with non-IID. data.
Hence, it results a positive insight to applying the proposed
protocol for a real-world application.

We also conducted experiment using a modern algo-
rithm, FedProx. We observed that our proposed method GFL
also outperforms the CFL method in all three considered
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FIGURE 7. The change in global model accuracy with various data distribution scenarios and participating rates. The experiments were implemented
using ResNet-18 on CIFAR-10 with one local epoch for up to 200 rounds and different algorithms, FedAvg (first row) and FedProx (second row). The model
converged after approximately 150 rounds.

TABLE 3. ResNet-18 on CIFAR-10 with different local epochs and scenarios.

scenarios. Moreover, the FedProx algorithm results a better
performance as compared to the FedAvg algorithm, espe-
cially, in scenario 3. In addition, we run the experiments with
the same settings but with a different number of local epochs,
and the results are summarized in Table 3.

VI. CONCLUSION
In this paper, we have investigated the communication effi-
ciency problem for FL system. Our concern mainly focuses
on the possibility of bandwidth allocation from a limited net-
work resource to a maximum number of clients to participate
in FL. Based on the connection probability that considers both
distance and contribution of each client (to the global model),
our proposed solution able to select participating clients and

elect a leader in each group. In light of the experiments on
our proposed two-hop communication protocol, we found
that dynamic resource allocation is crucial for the training
performance. In particular, the bandwidth allocation from a
limited network resource to a maximum number of clients
to participate in FL can improve the accuracy of the global
model. The proposed solution is orthogonal to most works
on resource allocation for FL systems and can be incorporate
together with other approaches such as clustering-based hier-
archical, and two-step updated FL (CTFed) scheme.
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