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Abstract. Classifying pill categories from real-world images is crucial
for various smart healthcare applications. Although existing approaches
in image classification might achieve a good performance on fixed pill
categories, they fail to handle novel instances of pill categories that are
frequently presented to the learning algorithm. To this end, a trivial solu-
tion is to train the model with novel classes. However, this may result
in a phenomenon known as catastrophic forgetting, in which the system
forgets what it learned in previous classes. In this paper, we address this
challenge by introducing the class incremental learning (CIL) ability to
traditional pill image classification systems. Specifically, we propose a
novel incremental multi-stream intermediate fusion framework enabling
incorporation of an additional guidance information stream that best
matches the domain of the problem into various state-of-the-art CIL
methods. From this framework, we consider color-specific information of
pill images as a guidance stream and devise an approach, namely “Color
Guidance with Multi-stream intermediate fusion” (CG-IMIF) for solving
CIL pill image classification task. We conduct comprehensive experi-
ments on real-world incremental pill image classification dataset, namely
VAIPE-PCIL, and find that the CG-IMIF consistently outperforms sev-
eral state-of-the-art methods by a large margin in different task settings.
Our code, data, and trained model are available at https://github.com/
vinuni-vishc/CG-IMIF.

1 Introduction

Pill image recognition task has attracted various studies recently with the aim to
design high-quality algorithm for visual-based assistance system on pill images.
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This can help the healthcare community automatically identify unknown pill cat-
egories by taking several real-world pictures with mobile devices. It is noteworthy
that real-world scenarios of pill images are often challenging due to the changing
background as well as variances of pill instances in terms of shape, color, and tex-
ture. There have been several works that are developed to mitigate such challenges,
most of them are based on hand-crafted features [3,5,6,10]. These works are then
utilized by Ling et al. [16] and combined with a two-stage training strategy to cre-
ate a novel framework for the pill recognition model in few-shot learning. Another
approach is to explore external knowledge from medical text data (e.g. prescrip-
tion) to improve the detection performance of visual-based models [18,19]. How-
ever, existing models are often limited by novel instances of pill categories which
frequently arrive at a pill recognition system. This often happens when a novel class
of pill instance is introduced by images uploaded from the end-user using mobile
devices or from the healthcare community. A report in [1] shows that there are
roughly 40-50 novel drugs being approved each year. In such a scenario, the core
learning model of the system, which is often deployed in a lightweight device (e.g,
mobile phones), might need to rewind the training process on the whole training
data (in which novel categories participate). This is not an effective strategy for
many reasons. Memory allocated for such extensively training data is often limited.
Acquiring novel knowledge while maintaining what the model has learned so far
requires the system to store a huge amount of samples for both old and new classes,
which is infeasible. Another solution for this is to provide an initial training dataset
for the model. The model is then fine-tuned on novel categories to update the
model’s knowledge about new pill instances. However, this fine-tuning scheme suf-
fers from a serious behavior of the learning system which is widely known as catas-
trophic forgetting [8,9] (degrading performance on old tasks while accessing data
of novel tasks). This system, therefore, is in need of a flexible and effective strat-
egy to handle the novel real-world object categorization of pill image instances.
In this way, it would be able to incrementally learn from new classes without
exhaustively storing old category samples. This scenario is called class-incremental
learning (CIL).

The progress of studies on class incremental learning (CIL) for visual tasks has
been developed significantly for many years. The general setting of CIL is that the
disjoint sets of different classes arrive at the learning algorithm gradually. Many
works such as [4,13,21-23] have proposed several methods which employed avail-
able techniques to tackle the mutual challenge: catastrophic forgetting. Knowledge
distillation [12] is the most common technique which is widely adopted to tackle
catastrophic forgetting and was first applied to the CIL setting by Li et al. [15].
After that, a derived version [21] with additional usage of representation learn-
ing was proposed, in which valuable herding exemplars are replayed frequently to
keep track of the old knowledge. The strategy of herding is to pick those neighbors
which are nearest to the mean sample of the class. Using this herding strategy,
Castro et al. [4] managed to build an end-to-end framework with an additionally
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balanced fine-tuning strategy. On the other hand, Wu et al. [22] introduced a bias
correction approach by adding a bias correction layer. This is conducted at the last
layer of each incremental learning task to refine the overall scores for the final pre-
diction. Meanwhile, Hou et al. [13] identified the imbalance between previous and
new data as the main issue leading to catastrophic forgetting. They tackled this
imbalanced scenario by incorporating three main components: cosine normaliza-
tion, less-forget constraint, and inter-class separation.

In this research, we aim to investigate the application of CIL methods in a pill
classification system. Figure 1 illustrates the effect of such a system with and with-
out class incremental learning capability. To the best of our knowledge, we are the
first to explore incremental learning on the pill classification system. Existing sin-
gle stream incremental learning methods [4,13,21-23], when being applied to a
domain of application for practical usage, can be improved with the help of some
domain-specific knowledge. This serves as additional information which might col-
laborate well with the original RGB image to alleviate catastrophic forgetting. The
introduction of a supplementary information stream requires a prudent strategy
to incorporate such information. Based on this motivation, we propose a novel
integration framework that serves as a plug-in technique for any available class
incremental learning algorithms. Our fusion framework enables the incremental
learning methods to receive additional information streams as cues. This will then
help to flexibly update corresponding feature representations in an optimal way
for each learning task through the intermediate stage. To demonstrate the usage
of such an integration framework, we consider color information as additional
stream and devise an approach, named “Color Guidance with Multi-stream inter-
mediate fusion” (CG-IMIF). Experimental results on a real-world incremental pill
image classification dataset called VAIPE-PCIL show that the proposed learning
framework consistently surpasses most metric scores of various state-of-the-art
methods in different task settings.

a) Traditional pipeline of Pill Classification problem
Fixed Training Deep CI ificati
Pill dataset Model —l
ﬂ Category A ' Category D G

- egoryE |
Tost sampes Catogory B Category .

Classification Results

Growing Deep
Classification Model

Growing Training Pill dataset

Incoming Novel Disjoint
Set of Pill Categories

o 1l s

Exemplars of
previous categories

Fig. 1. The pipeline for a learning algorithm to acquire knowledge of pill categories
could be divided into two options: (a) feeding a fixed pill images database to an off-
the-shelf deep learning algorithm; (b) maintaining a few samples of old categories as
exemplars, combining with novel categories to form a growing pill image dataset, and
finally feeding into a growing deep classification model.
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Our contributions can be summarized in the following three aspects:

1. We introduce CG-IMIF, a novel incremental learning framework based on
multiple streams for the task of pill classification from images. To the best of
our knowledge, we are the first to introduce the incremental learning capabil-
ity to this task and provide a new approach to tackle challenges in learning
novel pill classes.

2. We conduct thorough experiments and in-depth ablation studies to demon-
strate the effectiveness of the proposed approach on a real-world incremental
pill image classification dataset. Experimental results show that the CG-IMIF
consistently outperforms previous state-of-the-art methods by a large margin.

The rest of this paper is organized as follows. We briefly formulate the problem
setting of pill CIL, which we aim to solve in Sect.2. Details of our proposed
CG-IMIF framework are described in Sect. 3. Experimental results and further
analysis are presented in Sect.4 and 5. Finally, we conclude the paper with our
discussion on strengths and limitations in Sect. 6, and 7.

2 Preliminaries

2.1 Problem Definition and Notation

Generally, the class incremental learning (CIL) problem represented by 7 consists
of a sequence of n image classification learning tasks

T= [(Clthl Ptlest)ﬂ(c2vpt2 Ptist)»""(cn» g"ainvptyflzst)]v (1)

rain’ rain’

where each tuple (C*, PL. . PL.,) depicts a task t. C* is a set of m! categories,
ie., Ct={c,cs, ....ct .}, P} ., and Pf, denote the training and testing data,
respectively. To represent the total number of classes up to the current task,
we define M* = Y!_, |C?|. The training, and testing data is defined as P* =
{(X*,Y*)} where X! and Y denote the training images and their corresponding
labels, respectively. During the training phase, the learning model at stage ¢
is presented with categories set C*, training samples P}, . . and an exemplar
set K;. In practice, K; is a fixed-size set acting as a support set which helps
to retain a partial set of images and the corresponding labels from previous
training data, i.e., Ky C P}, UP2,, U...UPL-1  Therefore, a revised version
of training samples at stage ¢ can be obtained by combining K; and P} ..,
K UPL i = Vb gin- It 1s also assumed that categories of different learning tasks

do not overlap (i.e C*NC? = @ where i # j). At testing time, the performance of
learner t is evaluated on all of the previous seen categories Ule C*t with samples

fl"OHl UE:I Pttest'
2.2 Conventional CIL Methods

Several CIL methods have been proposed which consider various properties
of CIL problem to tackle mutual challenge: catastrophic forgetting. Most CIL
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works are divided into two branches: exemplar-based, and non-exemplar-based
approaches. While the latter is much more challenging, the former is more prac-
tical since it is reasonable to maintain a few samples of old classes to avoid
performance degrading. Within the scope of this research, we aim to exploit the
capability of exemplar-based CIL methods by attaching these to our proposed
framework. Therefore, we first describe a few core components of exemplar-based
CIL approaches as follows.

Representative Memory is a set of samples from categories of old tasks and is
represented by K;_1. It serves as an exemplar set to support model in revisiting
knowledge acquired from old tasks. In an exemplar-based approach, the learning
model can only access the previous category set C*~! through K;_;. The size of
the support set is often limited and mainly divided into two memory settings:
1) a constant number of exemplars per class, and 2) and a limited capacity of S
samples. In the first setting, the size of the support set K; grows with the number
of classes. In addition, the size of K; in the second memory setting is constant
over the time ¢. Samples across categories are manipulated frequently with two
main operations: new sample selection and old sample removal. For each class,
a sorted list of its samples is maintained based on their distances to the class’
mean feature vector. Hence, the most representative samples for each class are
selected as members in the next support set K;;;. Meanwhile, the remaining
samples are ignored to reserve slots for novel samples from new classes.

Growing Deep Neural Networks in an exemplar-based method is con-
structed by two main factors: the common feature extractor backbone, and a
growing classification layer module. At a specific learning stage ¢, new classifi-
cation head C'L; is initiated to allocate corresponding parameters W;. Feature
vectors, after being extracted by the feature extractor, are fed into C'L; to pro-
duce prediction logits for the current category set C*. The size of the logits after
being input to CL; is equal to the size of the category set C*. The prediction
vectors are then utilized to compute the traditional cross-entropy loss which rep-
resents the training loss on the set of pill images P/, ., for the current task. On
the other hand, the old classification head C'L;_; can be used to represent the
old knowledge of the model. Samples from support set K; can be passed through
a list of classification head module C'L; from the first task to the latest old task
t—1 (i.ei€]0,t—1]) in order to obtain prediction logits.

Cross-Distillation Loss Function is common in most of exemplar-based
methods. This is constructed by combining cross-entropy, and distillation loss
function. The cross-entropy loss function helps minimize the overall empiri-
cal errors when learning on new category set C; at task ¢t. Meanwhile, the
distillation loss function plays a role in distilling the old model M;_; from
previous tasks into the current model M; to avoid catastrophic forgetting.
Let’s consider the incremental learning model at a specific learning stage ¢
where it has obtained ¢ — 1 numbers of classification heads. New classifica-
tion head CL;, which is now added to learn on new task t, produce the pre-
diction logits as o(x) = [01(z), 02(x), ..., 0:(z)] for any input z. Similarly, out-
put logits which are produced by old classification head can be represented as
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o(x) = [61(x), 62(x), ..., 6:—1(x)]. With these representation, the distillation loss
can be computed for all samples from exemplar sets K;_; and from new classes
P} i Gie. Ky UPL . =V! ) as follows:

train rain train
Z Z —7k(z) log [mx(z)],
me‘/haln (2)
R eok(f)/T eok(m)/T
7ip(x) = i (x) =

Zﬁ;ll e0i(@)/T’ 22;11 0i(2)/T’

where T plays as the temperature scaling factor. Meanwhile, the groundtruth
label for each sample z (i.e. y(x)) for new category sets along with softmax
of logits of the k-th category set (i.e. px = softmaz(ox(x)) ) can be used to
compute the cross-entropy loss function as follows

= Y > —yla)logpk(x)], (3)

eV}t k=1

train

The final cross-distilled loss function; therefore, can be obtained by combining
distillation loss function in Eq. 2 and cross-entropy loss function in Eq. 3

L=alLs+ (1-a)L., (4)

where the scalar value « controls the balance between the two functions.

3 Methodology

The majority of current pill identification methods rely on RGB images. There-
fore, to the best of our knowledge, most existing systems fail to address hard
examples (e.g, pills with very similar shapes and colors) [16]. This problem
becomes more challenging in the context of the class incremental learning. In
this problem, we have to cope with two issues at the same time: 1) recognizing
pill instances that belong to the novel classes, and 2) not forgetting the previously
learned knowledge of the old ones. We seek in this study robust domain-specific
knowledge, which could be in good companion to traditional RGB image stream.
However, the introduction of an additional stream issue a different challenge; the
significant need for a stream integration method. To tackle such a challenge, we
propose an Incremental Multi-stream Intermediate Fusion framework (IMIF).
The IMIF allows additional information streams to be effectively propagated
during the incremental learning phase. In the following subsections, we briefly
define the multi-stream class incremental learning method and describe how it
can be decomposed into different components.

3.1 Multi-stream Class Incremental Learning Model

We define a multi-stream class incremental learning model M as a combination
of three key components: 1) a single stream base method X, 2) an additional
stream of information Y, and 3) a method of fusing stream Z.
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ol

Fig. 2. Samples of pill images from VAIPE-PCIL dataset are shown on the first row.
The second row exhibits the corresponding color histogram information for images on
the upper row respectively.

==

M = Base method X + Feature stream Y + Fusion mechanism Z

At this point, the base method represents any method that follows the general
setting described in Sect. 2.2. Y serves as a piece of additional domain informa-
tion that gives cues to the learning model apart from RGB images. Normally,
Y is specific to the domain of the task. Lastly, Z presents a fusion mechanism
that enables method M to incorporate additional information stream Y into the
incremental learning process. From this decomposition, our CG-IMIF replaces:
1) the representative stream Y with color-specific information, and 2) the fusion
technique Z with the proposed IMIF. In the following, we describe our proposed
Color histogram guidance stream and Incremental Multi-stream Intermediate
Fusion technique in Sect. 3.2 and Sect. 3.3, respectively.

3.2 Color Histogram Guidance Stream

Pill images compose of various features which can be used as discriminative
factors in classification problems. Among those is color distribution information
which can be approximated by the color histogram of pill images. The color
histogram represents the color distribution of the input image in terms of three
different channels: red, green, and blue. In detail, it is often encoded into a single
vector where the indexes of entries are mapped to a set of all possible colors. In
grey-scale images, values of vector entries store the frequency that counts the
total number of pixels having the intensity (i.e., color value), which is hashed by
the corresponding index of the vector. However, in a three-dimensional image,
color ranges for each channel are associated across color channels to formulate a
unique combination. This combination accounts for those pixels of which color
ranges lie in three discrete ranges of value: [ri,7;]; gk, 91]; [bm,bn]. The color
feature vectors are useful to make a distinction among pill instances that have
similar shapes but different colors. The color ranges for each channel of the
RGB images are divided into eight segments in our problem, where each segment
represents 32 different consecutive color values. After that, the color histogram
vector can be obtained by accumulating the quantities of pixels assigned to a
specific color range for each channel to result in a vector with 8 x 8 x 8 = 512
elements. Figure?2 illustrates a few examples of extracting the color histogram
stream for each corresponding cropped pill image.
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Fig. 3. The traditional training paradigm with only single-stream information used by
almost existing exemplar-based CIL methods.

3.3 Incremental Multi-stream Intermediate Fusion Technique

Traditional Early Fusion. A naive fusion technique Z concatenates different
streams of information right after the feature extraction phase. Specifically, fea-
ture vectors f, € R%, and fy € R¥ are extracted from raw RGB images, and
additional information stream Y, respectively. Both of these features are then
fed into separate projection layers to project into the same latent space. In prac-
tice, the projection layers are implemented by a single hidden layer controlled
by parameters O = [WP bP] as follows

sp = oWl fr +0)), sy = o(Wy.fy + %), 89 = [sr, sv]. (5)

The projected vectors are then concatenated to obtain the global feature vector
54 € R% . This global feature sg can be considered as a single input into any
traditional single stream CIL methods as shown in Fig. 3.

Intermediate Fusion. We observed that fusing information stream in an early
manner for a class incremental learning problem is not optimal. The global fea-
ture s, is problematic since it is regularly updated at each incremental task.
As a result, the projection layer in the early phase can not find good parame-
ters that balance the performance of old and novel categories in different tasks.
Therefore, we propose to relocate the projection layer to the intermediate phase
instead (i.e, incremental learning phase) by initiating an entirely novel projec-
tion layer in an incremental manner. When C? from new task ¢ arrives at the
system, a new classification layer C'L; is created. This layer accompanies by an
attached projection layer specific to the information stream of a specific task.
Therefore, the parameters controlling the projection layer for each information
stream are different from those defined in the early fusion (Fig. 4).

or' = [Wr', ', ey = (W, b]. (6)
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Fig. 4. Our proposed CG-IMIF architecture composes of: 1) color histogram feature
extraction (orange block), and 2) intermediate fusion framework (purple block) to
incorporate additional information stream. (Color figure online)

4 Experiments

4.1 Dataset

We employ a real-world image dataset, namely VAIPE-Pill (VAIPE Pill Iden-
tification) [2] to exploit CIL capability on the pill image classification problem.
This dataset is created to promote the research on recognizing distinct types of
medicines from mobile devices. The dataset contains 7,294 pill images of 262 cat-
egories taken in real-world scenarios. The characteristics of VAIPE-Pill dataset
are illustrated in Table 1.

To facilitate research of CIL in pill image classification tasks, we derive a
dataset version, namely VAIPE-PCIL (VAIPE Pill Class Incremental Learning)
dataset from the original VAIPE-Pill data. VAIPE-PCIL is obtained by cropping
pill instances from the original data. We only select those categories which satisfy
either of the following conditions: 1) the number of samples should not be too
small (i.e., and 2) larger than 10 samples), image size of samples should be at
least 64 x 64. Samples of pill image from VAIPE-PCIL can be found in Fig. 1.
All of our experiments are conducted on the VAIPE-PCIL dataset to study the
performance of CG-IMIF.

4.2 Experimental Protocol

Settings. We follow the standard benchmark protocol proposed in [13]. We fix
class arrangements in random order. After each training stage t, the resulting
learner is evaluated on the testing data U§=1 P! ., which represents for all of
the testing data up to the current task ¢. Since no test data from the previous
learning stage are hidden from the learner, it is guaranteed that no overfitting
can occur.
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Table 1. Statistics of VAIPE-Pill dataset on different characteristics.
Characteristic Training set | Testing set Total
Number of images 6,461 833 7,294
Number of pill categories 262 262 262
Instances per category 179.75 23.56 203.2
Image size (pixel X pixel, mean) 3,311 x 3,276 | 3,276 x 3,469 | 3,300 x 3,400
Instances per image 7.28 7.4 7.3
Number of bounding box annotations | 47,097 6,174 53,271
Number of categories per image 5.18 5.76 5.32

There are two commonly different task evaluation settings in class incremen-
tal learning: task-awareness and task-agnostic. The first setting is much easier
for the algorithm since it has access to the task ID (i.e., ID or set of categories)
about the incoming test data. Therefore, it is reasonable to only use the corre-
sponding classification head in the incremental learning phase, which is trained
on that task-ID to evaluate the performance. This task setting, however, is not
practical in many real-world circumstances since task-ID is not always available.
We evaluate our performance in terms of task-agnostic instead. In task-agnostic,
the model is not given the task identities of the test data. Hence, the evaluation
results are achieved by taking the results of all prediction logits, which are pre-
dicted by all of the classification heads. In this way, the model has to learn to
resolve the confusion among classes from a different set of classes.

Evaluation Metrics. We adopt two commonly used benchmark metrics from
[13] for CIL problems: average accuracy and average forgetting rate. The average
accuracy and forgetting rate records of performance for each incremental learning
phase are often if a single number is preferable. Meanwhile, the average phase
accuracy and forgetting rate would be used to observe learning behaviors during
incremental tasks for each method.

4.3 Implementation Details

All of our experiments and methods are implemented with Pytorch [20] and
trained on a single NVIDIA GeForce RTX 3090. We inherit the codebase from
FACIL [17]. They have already implemented various state-of-the-art methods for
CIL problems in a well-structured manner. Details of base models as well as the
implementation of our IMIF framework are discussed below. In all experiments,
we attach our IMIF framework to several state-of-the-art methods in CIL: BiC
[22], EEIL [4], and LUCIR [13]. Since these methods followed the common pro-
totype of exemplar-based methods, we discussed some of the general settings of
exemplar-based methods in our experiments before diving into details about the
setting of each base one. There are two common strategies to reserve samples
for old classes: 1) exemplar-management stores a constant number of samples
for each old class, or 2) it maintains a fixed capacity (e.g, Riotar = 2,000 for
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CIFAR-100 [14] and Riota;r = 20,000 for ImageNet [7]). In our experiments, we
follow the first setting since it is usually more challenged than the second one.
In addition, the exemplars are randomly selected among different categories. For
the training network, we made use of 50-layer ResNet [11] with no pre-trained
weights as the backbone for feature extraction module, which is applicable to the
VAIPE-PCIL dataset. To fairly compare the performance, we fixed the number
of training epochs (200 epochs) across different methods. The learning rate is
initialized with 0.1 and is divided by 1.5 if the loss function suffers from non-
decreasing circumstances for a specific number of attempts (e.g, Irpatience = 5).
The networks are trained using stochastic gradient descent with mini-batches of
32 samples. The training images are resized to the same shape of 256 x 256 x 3
with only one transformation (e.g, flipping). The class orders across different
methods are randomly fixed for a fair comparison.

In terms of configuration for base methods, we follow the same settings for
the original version BiC [22], and our improved version BiC-CG-IMIF. BiC [22]
proposed to integrate a bias correction layer attached to the end of each classi-
fication head to adjust the classification score. The number of training epochs
for the bias correction layer is 200 epochs in our setting. Moreover, we set 0.1 as
the ratio of the number of exemplars that are used for the validation. EEIL [4]
performs an additional fine-tuning phase after each official training phase to bal-
ance the performance between old and novel categories. In our experiments, we
fix 40 as the number of epochs for fine-tuning and the learning rate fine-tuning
factor as 0.01 across different methods. We also adhere to the base setting of
LUCIR [13] method where they removed ReLU in the penultimate layer to take
both positive and negative values. For the IMIF framework, the projection layer
implemented is represented by a single hidden layer. Therefore, the output size
for different projection layers should be the same so that the transformed fea-
ture vectors, then can be fused in the shared space. In terms of the color-guided
information, color ranges for each channel of the RGB images are divided into
8 segments where each segment represents 32 different consecutive pixel values.

4.4 Experimental Results

We evaluate our proposed CG-IMIF approach and report the overall perfor-
mance in comparison with several state-of-the-art approaches in Table 2 Exper-
imental results show that most of the state-of-the-art approaches attached with
our proposed IMIF tool and color-specific information as additional stream help
to achieve consistent improvements over task settings. The setting consists of
three tasks in total where the number of categories is uniformly distributed
for 5, 10, and 15 tasks. It is noticeable that the lower score of forgetting rate
indicates that the model is more unlikely to forget about old knowledge. In addi-
tion, average phase accuracy and forgetting rate is also illustrated in Fig.5, 6
to inspect the learning behaviour of each method through incremental phases.
Dashed and solid lines with different colors are utilized to differentiate the base
ones (X) and our CG-IMIF, respectively. In terms of the average phase accuracy,
LUCIR-CG-IMIF obtains the highest performance where it can consistently and
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Table 2. Average accuracy A (%) and forgetting rate F (%) of CG-IMIF compared to
other state-of-the-art results in different task settings. Best scores are marked in bold
for both evaluation metrics.

Metric Method Task settings
N=5 N=10N =15
Average acc. (%) 1 EEIL [4] 63.83 | 62.40 57.41
A= % g A EEIL-CG-IMIF 70.80 | 64.85 |60.93
BiC [22] 53.83 | 55.75 53.77
BiC-CG-IMIF 65.53 | 63.59 | 54.83
LUCIR [13] 69.63 |62.90 55.49
LUCIR-CG-IMIF | 76.85 |69.94 |64.97
Forgetting rate. (%) | EEIL [4] 49.82 | 45.46 48.27
F= % i1 T EEIL-CG-IMIF 46.68 | 44.64 |46.23
BiC [22] 20.05 |30.50 26.93
BiC-CG-IMIF 7.75 |22.01 |27.35
LUCIR [13] 44.13 | 44.32 47.11
LUCIR-CG-IMIF | 33.15 |37.88 |39.79

¢ Using the similar exemplar settings and selection for fair comparison.

significantly surpass other methods (also the base one-LUCIR). On the other
hand, BiC-CG-IMIF is better at mitigating the forgetting constraint. However,
it is not consistent over tasks and the curve fluctuates. One possible explanation
is that the bias layer inside the traditional BiC method and BiC-CG-IMIF might
cause the model to sacrifice the performance of the current task to maintain the
memory of the old ones.

5 Ablation Studies

To examine the effect of additional information stream usage and fusion frame-
work, we perform extensive ablation studies. This is aim to observe the effect
of different components in our proposed framework where LUCIR is chosen as
the base method. LUCIR is preferable because of the consistency and high per-
formance of LUCIR across task settings in the experimental results which have
been discussed in Sect. 4.4. In addition to color information, edge signals might
be a good candidate to discriminate different pill categories based on their shape.
To understand the importance of different stream usage in our method, we com-
pare 4 different settings: 1) RGB image only, 2) RGB and edge images, 3) RGB
and color histogram, and 4) a combination of all three streams. Each sepa-
rated row in Table3 refers to each scenario of information stream usage with
two different fusion techniques. Concretely, the setting that combines RGB and
color histogram streams achieves the highest score. One possible explanation for
this result is that the edge signal might not be sufficiently strong to push the
performance.
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Fig. 5. Incremental accuracy for different task settings among the original version
and our method CG-IMIF.
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Fig. 6. Incremental forgetting rate for different task settings among the original
version and our method CG-IMIF.

In addition, we implement the basic fusion technique where additional infor-
mation streams are fused in an early manner. Each separated row in Table 3
illustrates the results of two different fusion mechanisms. Our fusion technique
(on the second line of each row) outperforms the traditional one in various met-
rics and task settings. The best result is LUCIR-CG-IMIF which integrates color
histogram information into the traditional LUCIR method with IMIF.

6 Discussions

Key Findings. To the best of our knowledge, this work is the first to tackle the
class incremental learning problem for the pill image domain, which is crucial and
applicable for real-world pill recognition systems. Also, we empirically showed
that the technique of intermediate fusion with the additional stream is superior
to the early fusion technique. One plausible explanation for this effect is the
flexibility of the fusion layer after it has been relocated to the intermediate stage.
This allows the additional information to maintain its optimal performance for
old tasks while learning to adapt to new tasks.

Limitations. Though the proposed framework has superior performance over
several state-of-the-art methods in CIL, it contains some limitations in differ-
ent aspects. The new fusion layer at the intermediate phase might enlarge the
model’s size in terms of the number of parameters. Considering the scenario when
a massive amount of tasks are encountered in the learning progress, the learning
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Table 3. Ablation performance to compare variants of combination which utilize differ-
ent information streams as well as different fusion techniques. The combination which
achieves highest performance over different tasks is our CG-IMIF and is marked in
green.

A . F tti te.
Variant of Combination verage ace. (%) 1 orgetting rate. (%) |

N=5 N=10 N=15 N=5 N=10 N=15

RGB only 69.93 62.90 55.49 44.13 4432 47.1

RGB-Edge + Early 70.94 63.90 55.28 42.4 4213 45.80
RGB-Edge + 72.58 68.38 62.90 38.78 38.19 41.02
RGB-Color + Early 73.58 64.57 53.56  37.825 42.86 46.15
RGB-Color+ 76.85 69.94 64.97 33.15 37.88 39.79
RGB-Edge-Color + Early 69.99 63.33 56.34 42.35 44.17 46.24
RGB-Edge-Color+ 73.65 68.32 62.15 36.30 38.48 40.58

model could create sequences of abundant layers. This might create a side effect
when too much memory is reserved for storing the model’s parameters. Such
reservation is unreasonable in a real-world deployment. Another restriction with
the proposed framework is related to additional stream utilization. Apart from
the traditional RGB stream, another information channel that is specific to the
domain of usage might impose a disagreement with the original RGB channel.
This requires a careful study of a different combination of streams accompanying
the traditional stream to observe its effect.

7 Conclusion

This paper introduces the incremental learning capability to the traditional pill
image classification systems. To this end, we propose a novel framework, namely
Incremental Multi-stream Intermediate Fusion (IMIF) which integrates an addi-
tional stream of information to improve the performance of the single stream
CIL method. We then devise CG-IMIF which utilizes IMIF along with a color
histogram as guidance information. Our CG-IMIF is flexible and can be attached
to any exemplar-based approach to improve the performance of the base ones.
We experimentally show that CG-IMIF outperforms many existing state-of-the-
art methods on the VAIPE-PCIL dataset. We hope our work would lay the
foundation and could benefit several types of future research into the continual
learning ability of intelligent machines in smart health applications.
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