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Abstract: Hierarchical stochastic processes, such as the hierarchical Dirichlet process, hold an impor-
tant position as a modelling tool in statistical machine learning, and are even used in deep neural
networks. They allow, for instance, networks of probability vectors to be used in general statistical
modelling, intrinsically supporting information sharing through the network. This paper presents a
general theory of hierarchical stochastic processes and illustrates its use on the gamma process and
the generalised gamma process. In general, most of the convenient properties of hierarchical Dirichlet
processes extend to the broader family. The main construction for this corresponds to estimating the
moments of an infinitely divisible distribution based on its cumulants. Various equivalences and
relationships can then be applied to networks of hierarchical processes. Examples given demonstrate
the duplication in non-parametric research, and presents plots of the Pitman–Yor distribution.

Keywords: Bayesian nonparametrics; Dirichet process; gamma process; Pitman–Yor process;
hierarchical process; non-parametric LDA

1. Introduction

The hierarchical Pitman–Yor process (HPYP) was first presented as a solution to n-
gram language models [1] where it mimics the behavior of the Kneser–Ney algorithm [2].
It is an extension of the hierarchical Dirichlet process (HDP) [3]. The HPYP has since been
used in a wide variety of ways, including for previously state-of-the-art and competitive
algorithms for topic models [4] and text compression [5]. The HDP has been used for previ-
ously state-of-the-art and competitive algorithms for tweet clustering [6] and document
segmentation [7]. Many more novel and creative uses of these processes exist, for in-
stance, hierarchical topic models [8]. More general reviews are given by Teh and Jordan [9]
and Jordan [10]. The gamma process can also be used hierarchically [11] and provides
an alternative scheme for handling the HDP. The notion of hierarchical models fits in
well with the computational approach to statistical modelling adopted in the machine
learning community.

However, what exactly is the HPYP? A key concept for understanding the HDP and
the HPYP is the notion of a discrete base probability measure. The base measure is a
source measure for sampling points of the HDP or HPYP. These are discrete just when
they have a countable number of possible points (the set on which the measure is based
is countable). When finite, the base probability measure is just a probability distribution,
usually represented as a vector. However, in non-parametric modelling, we seek to model
structured objects for which the dimension may be unknown ahead of time: the number
of clusters for points, the depth of a tree, the number of atoms in a molecule, the number
of words in a sentence. Allowing the base measure to be countably infinite is a useful
abstraction in this situation. Moreover, being able to generate an infinite discrete base
probability measure provides us with the ability to model prior distributions for our
structured objects without fixing dimensions ahead of time. The above models for text and
clustering give examples.

It is known that the hierarchical Dirichlet process, when applied to a finite discrete
base distribution, is just a Dirichlet distribution. Indeed, this property is the axiomatic
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definition of the process [12]. So, applications of and inference with the HDP are really just
using hierarchical Dirichlet distributions, requiring no non-parametric theory to describe,
although algorithms may be using non-parametric methods.

So, there is a clear concept of what the HDP model is. What is the corresponding result
for the hierarchical Pitman–Yor process? For all the algorithms using the HPYP, it would
be nice to know what their actual model is! Teh first referred to the hierarchical version
of the PYP as the Pitman–Yor distribution [in talks accompanying] [1], saying it has “no
known analytical form”. Moreover, is there a more general theory of hierarchical processes,
and why does this case (the HDP) come out so neatly? These questions for hierarchical
processes have been addressed in recent theory [13–15].

Note the Bayesian theory of non-hierarchical processes is extensive. A comprehensive
analysis of different processes is developed by James [16], in the more general context of the
generalised Indian buffet process [17]. The general posterior analysis of their normalised
versions, including the DP, is developed by James et al. [18]. A useful review of theory and a
slice sampler for the case of the normalised generalised gamma is given in Lomeli et al. [19].
A study of some of the processes considered here can also be found in Zhou and Carin [11],
focusing on gamma processes and their relationships.

However, these treatments are grounded in extensive probability theory and assume
the reader is already familiar with Poisson point processes, Lévy processes, subordinators
and other advanced areas [20,21]. Some of these details are not strictly necessary for the
understanding of the basic ideas. This paper presents the relevant background theory
in a self-contained way to develop models for hierarchical processes generally based on
the theory of subordinators and completely random measures [20,21]. The theory for the
most part reinterprets results from the Bayesian non-parametric and statistical commu-
nities [18,22,23], though some related ideas can also be found in machine learning [11].
However, the answers to the questions about the nature of the HPYP and general applica-
tion to hierarchical processes, networks of hierarchical processes and generalised Chinese
restaurants are not well-known outside the Bayesian non-parametric community, so we
present them here in a unified manner.

2. Background Theory

A formal theory of Poisson point processes (PPP), Lévy processes and completely
random measures (CRMs) with treatment of measure theory is needed to rigorously cover
this area [20,21]. Here, an informal summary is given, though trying to maintain a degree
of precision, for instance keeping adequate rigor in the statement of results.

2.1. Completely Random Measures

A CRM is a discrete measure µ(dx) on a space X constructed as

µ(x) = C0 +
∞

∑
i=1

λiδxi (x) (1)

where the xi ∈ X are called atoms and are assumed distinct, the λi ∈ R+ called jumps, and
the background constant C0 is zero in our use. This means that µ(xi) = λi, evaluated at
atoms, and µ(xi) = 0 otherwise. The (λi, xi) are mutually independent random variables,
and a finite number of the xi can also be fixed. These conditions ensure the measure is
completely random, that is for A, B ⊂ X , if A ∩ B = ∅ then µ(A)⊥⊥µ(B).

Moreover, suppose the class of CRMs where C0 = 0 in Equation (1) can be normalised,
so µ(X ) = ∑∞

i=1 λi < ∞. This yields discrete probability distributions on X represented
as µ(x)/µ(X ). These are referred to as normalised random measures with independent
increments (NRMIs) [18], a concept developed by Kingman [24], and are a general class of
discrete probability distributions.
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2.2. Poisson Point Process

A Poisson point process (PPP) is a stochastic process whose samples represent sets of
independent events on a measurable space X . For a sample, the count of events in A ⊆ X
is denoted N(A) ∈ N . Events are considered to be a countable subset of X , only significant
if X is not countable, for instance the real line. The PPP has complete independence, so for
A, B ⊂ X , if A ∩ B = ∅ then N(A)⊥⊥N(B) and N(A ∪ B) = N(A) + N(B). The sample is
specified by a rate ρ(dx) which is any measure on X . In PPP theory, the rate is referred to
as a Lévy measure. The PPP has the defining property that N(A) ∼ Poisson(ρ(A)), and
samples can be generated from this by working with an ever finer partition of the space X .

A special class of PPP can be used as a family of priors for a CRM. Assume a PPP has
rate ρ(dλ)µ(dx) for λ ∈ R+ and x ∈ X . This is called homogeneous because the terms in λ
and x are independent [18]. In the case considered here, the µ(dx) is a measure onX called a
base measure, and the rate ρ(dλ) has the condition

∫ ∞
0 min(1, λ)ρ(dλ) < ∞ to make every-

thing work neatly [20], as follows: This condition is equivalent to
∫ ∞

0 min(ε, λ)ρ(dλ) < ∞
for any 0 < ε < ∞. As a consequence, ρ([ε, ∞)) is bounded, meaning there will be a finite
number of points with λ > ε in the sample of the PPP (within a finitely measured subset
of X ) and

∫ ε
0 λρ(dλ) is bounded, meaning the sum of the λ’s less the ε in the sample of

the PPP (within a finitely measured subset of X ) will be finite even if there is an infinite
number of them. Then, a sample from the PPP is a countable set of points which can be
used to constuct a CRM.

2.3. Example Processes

Consider a number of standard PPPs used to construct CRMs [21]: the generalised
(three-parameter) beta process [25], the generalised (three-parameter) gamma process [26]
and the stable process. These have the forms given in Table 1, where M is a constant
background rate. They are given without specifying a base measure on X , which could be
given as a final parameter.

Table 1. General processes. Marginal is the corresponding infinitely divisible distribution for the
total rate developed, for instance, using Theorem 1.

Name Domain Parameters Rate (Lévy Measure) Marginal

beP(M, α, β) 0 < λ < 1 0 ≤ α < 1, β > 0 M
λ−α−1

Γ(1− α)
(1− λ)α+β−1 for α = 0, β = 1: Dickman(M)

GP(M, β) λ > 0 β > 0 Mλ−1e−λβ gamma(M, β)

GGP(M, α, β) λ > 0 0 < α < 1, β > 0 M
α

Γ(1− α)
λ−α−1e−λβ Twe(α, M1/α, β)

staP(M, α) λ > 0 α > 0
Mα

Γ(1− α)
λ−α−1 pstable(α, M1/α)

PP(M) λ = 1 M Poisson(M)

NBP(M, ρ) λ ∈ N+ 0 < ρ < 1 M
−ρλ

λ log(1− ρ)
NB(M, ρ)

The Poisson process and the negative binomial process [11] are also included in Table 1.
Both are used in the hierarchical context in Section 4.

The first three processes in Table 1 are widely used in various forms in the non-
parametric Bayesian and machine learning communities. From a Bayesian perspective,
they are best thought of as improper priors corresponding to the beta, gamma and gamma
distributions, respectively. This analysis is presented later in Section 3.4.

NRMIs can be created by normalising CRMs. These are sometimes generated directly
from distributions consisting of a normalised discrete set of weights as probabilities. So, gen-
erating the~λ according to a generalised (or three parameter) gamma process, GGP(M, α, β),
and then normalising yields, what is called a normalised generalised gamma process
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(NGG). The normalised generalised gamma process (NGG) is constructed analogously
to the Dirichlet process, which normalises the gamma process. They represent the main
examples of NRMIs. These NRMIs, however, are not paired with base measures when
forming a discrete process on X , rather they need to be paired with base distributions Pr(x)
since only one point is generated per sample. Denote the NGG process as NGG(α, β, M) or
NGG(α, β, M, h(·)), where α, β, M are as described for the GGP, line 3 of Table 1, and h(·) is
a base distribution. The DP is effectively the case when α = 0.

Traditionally, the parameter vector part of the DP in Equation (1) is called a GEM dis-
tribution (specifically, when a size-biased order is used [27]), named after Griffiths, Engen
and McCloskey [28]. This can be represented as an infinite vector~λ = (λ1, λ2, . . .). Corre-
spondingly, there is a two-parameter version of~λ corresponding to the PYP, GEM(α, β),
which has discount 0 ≤ α < 1 and concentration β > −α. Then, GEM(0, β) is the original
GEM. Including the base distribution h(·) yields DP(β, h(·)) and PYP(α, β, h(·)).

The Pitman–Yor process itself was developed by Pitman and Yor [28], and a general
scheme for developing related models is by Pitman [29], called Poisson–Kingman models.
However, as to be shown, the hierarchical PYP is very different from the PYP, so this theory
is not entirely relevant for the hierarchical case. Alternatively, in Pitman and Yor [28]
([Proposition 21]), it was shown that a PYP can be developed by marginalising out a
parameter of the NGG as follows.

Lemma 1. (Deriving a PYP from a NGG) Let µ(x) ∼ NGG(α, M, h(·)) for α, M > 0 and
suppose M ∼ gamma(β/α, 1) for β > 0, then it follows that µ(x) ∼ PDP(α, β, h(·)).

The result is presented rather indirectly in Pitman and has been re-expressed by several
authors [23] ([Section 3.1.1]), [30] ([Corollary 1]), and leads to a different class of models to
the Poisson–Kingman models called Poisson-gamma models [23].

Notice the lemma restricts the PYP to the case where the concentration is positive.
More generally, PYPs can have concentration β > −α. When β = 0 and α > 0, then the
PYP is formed from normalising a positive stable distribution.

3. Defining Processes Axiomatically

This section gathers together some definitions and theory in order to present a gen-
eral class of processes built on CRMs that can be treated hierarchically analogous to the
Dirichlet process.

3.1. Subordinators

A simple useful case of these PPPs has the domain X beingR+, the positive real line,
and is constant for X , so the rate is ρ(dλ) for λ, x ∈ R+. For this, define a new process for
our case C0 = 0 given by the cumulative values,

σt = µ((0, t]) =
∞

∑
i=1

λiδxi≤t

So, σ0 = 0 and σt increases in steps as each distinct xi is passed. This σt corresponds to
the class of so-called pure jump driftless subordinators, which are a kind of nondecreasing
Lévy process, which in turn are processes with stationary independent increments [20].
The key relationship that underlies the general theory of these processes is that σt is
distributed according to a particular infinitely divisible non-negative distribution, explained
in Theorem 1. Examples are given in Table 1. So, for instance, for the generalised gamma
process with parameters (M, α, β), the total σ1 = ∑∞

i=1 λiδxi≤1 is distributed as a Tweedie
distribution with parameters (α, M1/α, β).

The basic connection is given as follows, a special case of the Lévy–Khintchine formula
for subordinators. This uses the Laplace exponent of a 1D random variable y defined as the
function (of u) E [e−uy], which is related to the characteristic function.
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Theorem 1. Consider σt defined as previously by a PPP with rate ρ(dλ) for λ, x ∈ R+ and ρ(dλ)
satisfying

∫ ∞
0 min(1, λ)ρ(dλ) < ∞. The Laplace exponent of σt is given by

E [e−uσt ] = e−tψ(u)

where ψ(u) =
∫
(0,∞)(1− euλ)ρ(dλ). This form means that σt has an infinitely divisible non-

negative distribution. The t here can be referred to as the parameter for divisibility, occurring in any
infinitely divisible distribution.

Thus, given a rate ρ(dλ) defining a particular σt, one can derive its Laplace exponent
ψ(u) and then infer the distribution on σt (where analytically possible). Note the scaling
term M in Table 1 plays the role of t.

Some instances of this pairing, an infinitely divisible non-negative distribution with a
corresponding rate are given in the last two columns of Table 1. Note that distributions
corresponding to the generalised beta process are not well-known. Other distributions that
could be included in the table are the inverse beta distribution (the beta distribution is not
infinitely divisible but its inverse is), which includes the Pareto and F-distributions, and
the generalised inverse gamma distribution [31].

3.2. Axiomatic Definitions

To extend Theorem 1 to broader classes of base distributions on general domains X ,
not just the positive real line with constant measure used in subordinators, one can give an
axiomatic definition of a process based on an infinitely divisible non-negative distribution:

1. The derived process is a CRM,
2. The process behaves like the given infinitely divisible distribution on subsets of X .

Definition 1. (Axiomatic definition of a CRM process) Consider an infinitely divisible non-
negative distribution G(µ), where µ is the parameter for divisibility. Further assume its Laplace
exponent has zero drift. Given a measurable space X , positive intensity M and measure h(dx) on X ,
consider a stochastic process denoted GP(M, h(·)) induced by G(µ) as follows. X ∼ GP(M, h(·))
yields a CRM on X such that

1. For A, B ⊂ X , if A ∩ B = ∅ then X(A)⊥⊥X(B),
2. For A ⊆ X , X(A) ∼ G(M h(A)).

The first condition implies that the measures are CRMs as per Equation (1). The
second condition implies one can construct the discrete measures iteratively, on an ever
finer, nested sequence of partitions using the distribution G(). Alternatively, one can use
the Lévy–Khintchine formula of Theorem 1 to show the existence of a corresponding rate
yielding a CRM with rate M h(d x)ρ(d λ) which must then satisfy the conditions.

Note that the Dirichlet process can be defined axiomatically [12], akin to Definition 1
with the Dirichlet distribution used instead of the gamma distribution, and base probability
distribution used instead of a base measure. This axiomatic construction generalises for
any infinitely divisible non-negative distribution as follows:

Definition 2. (Axiomatic definition of an NRMI process) Consider an infinitely divisible
non-negative distribution G(µ), where µ is the parameter for divisibility. Further assume its
Laplace exponent has zero drift. Consider as well the distribution on probability vectors induced by
generating K values ζk ∼ G(µk) and normalising to obtain(

ζ1

∑K
k=1 ζk

, · · · ,
ζK

∑K
k=1 ζk

)
.

Denote this distribution by NGK(~µ), where ~µ is the vector of K value µk, given a measur-
able space X , positive intensity M and probability distribution h(dx) on X . A process denoted
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NGP(M, h(·)), developed from G(µ), is defined as follows. It is a stochastic process whose sample is
a probability measure onX such that if C ∼ NGP(M, h(·)) then for any finite partition A1, . . . , AK
ofX , and count N > 0, (C(A1), . . . , C(AK)) ∼ multinomial(N, NGK(Mh(A1), . . . , Mh(AK))).

In this way, a multinomial process can be defined axiomatically, as done by Zhou and
Carin [11] [Corollary IV2]. One uses MP(N, h(·)) where N ∈ N+ is the total count and
h(·) a probability measure. The axiomatic part is (X(A1), . . . , X(AK)) ∼ multinomial(N,
(h(A1), . . . , h(AK))). Similarly, a Dirichlet compound multinomial (DCM) process can be
defined, denoted as DCMP(N, h(·)), where the axiomatic part is (X(A1), . . . , X(AK)) ∼
DCM(N, (h(A1), . . . , h(AK))). These correspond to a PPP and a NBP, respectively, both
given in Table 1, where one has also conditioned on the total count being N.

3.3. On the Tweedie Distribution

From Table 1, the marginal distribution for the generalised gamma process is the Tweedie
distribution [32] with exponent α, or sometimes expressed as index p = 1 + 1

1−α which has
p > 2 necessarily. For α = 0, the Tweedie distribution becomes a gamma distribution.

The Tweedie distribution with exponent 0 < α < 1 is formed from a positive stable
distribution defined in terms of the stable distribution with characteristic exponent α, scale
parameter s = M1/α location zero and symmetry one [33]. This distribution, denoted as
pstable(α, s), has the functional form [adding a scale to the standard formula of] [34] given
by the remarkable formula

Pr(x | pstable(α, s)) =
α

1− α

1
sπ

(x/s)−
1

1−α

∫ π

0
aα(ν)e−(x/s)−

α
1−α aα(ν)d ν

where aα(ν) =
sin((1− α)ν)(sin(αν))α/(1−α)

sin(ν))1/(1−α)
,

which yields a simple ingenious sampling formula [34]. To obtain a Tweedie distribution,
“exponentially tilt” the pstable(α, s), calculated by multiplying by e−βx and renormalising.
The construction of exponentially tilting the distribution (see for instance Pitman [29]) gives
the following:

Pr(x | Twe(α, s, β)) = e(sβ)α−βx Pr(x | pstable(α, s)) .

Here, the term e(sβ)α−βx is added to achieve normalisation.

3.4. Bayesian Analysis

A complete Bayesian analysis of CRMs and NRMIs has been developed by James [16]
and James et al. [18], respectively, in the non-hierarchical context. This models the standard
framework in which hierarchical DPs or hierarchical PYPs are used, but also applies to
the Indian buffet process [17]. This is informally developed below so that their theoretical
results can be subsequently used. By Bayesian analysis, the following is meant: one has an
infinitely divisible distribution suitable for use with Theorem 1. One samples a CRM from
this with unknown parameters of rates~λ and atoms xi. Now, hierarchically sample sets of
atoms from this CRM using a PPP. Each hierarchical sample from the CRM is a discrete set
A ⊆ X , and multiple samples are drawn. Then, the task is to estimate the parameters of
the parent CRM.

A CRM is represented in the form µ(x) = ∑∞
i=1 λiδxi (x) for x ∈ X where the xi are

distinct and is generated according to a homogeneous PPP with rate ρ(dλ)ω(dx) where
ρ(dλ) is a rate satisfying the conditions of Theorem 1. One then takes J samples from this
according to a PPP, so~nj ∼ PPP(µ(·)) for j = 1, . . . , J. Each sample will be a finite subset of
the atoms, some possibly occurring multiple times. For representational purposes, post hoc
reorder the atoms of µ(x) so that only the first I have non-zero counts. So, for I < i ≤ ∞,
none of the samples~nj contain xi. The count of atom xi in sample j is represented as nj,i, so
the condition~n1:J,i 6=~0 means that at least one of the J samples contains an atom xi.
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The following informal analysis is offered as an explanation, but formal proofs are
in James [16]. To make analysis feasible, we have to convert the rate ρ(dλ) to one with finite
total measure. James [16] ingeniously and elegantly presents this by viewing the posterior
for µi after seeing the evidence of having at least one non-zero value in the J values, so
~n1:J,i 6=~0. For the particular sampling distribution of nj,i, in our case a Poisson(λi),

Pr(~n1:J,i 6=~0 | λi) = 1− e−Jλi

which has a term in λi so the posterior rate Pr(~n1:J,i 6= ~0 | λi)ρ(dλi) obtains finite total
measure. Denote this total by ΨJ =

∫
Pr(~n1:J,i 6= ~0 | λi)ρ(dλi). Then, working entirely

with finite PPPs, one can compute the marginal. First, we generate the number of non-zero
atoms I (for the given sample count J) by a Poisson and then generate the vector of counts
for each atom~n1:J,i, like so

Pr(~n1, . . . ,~nJ | ρ(dλ), PPP) = e−ΨJ
ΨI

J

I!

I

∏
i=1

Pr(~n1:J,i | ~n1:J,i 6=~0)

= e−ΨJ
ΨI

J

I!

I

∏
i=1

∫
Pr(~n1:J,i | λ)ρ(dλ)∫

Pr(~n1:J,i 6=~0 | λ)ρ(dλ)
(2)

= e−ΨJ
1
I!

I

∏
i=1

∫
Pr(~n1:J,i | λ)ρ(dλ) ,

where the term I! can be removed if one considers that the atoms are ordered. With similar
reasoning, one obtains:

the posterior rate of λi: for i ≤ I has rate Pr(~n1:J,i | λi)ρ(dλi),

the posterior rate of the remainder CRM: µR(x) = ∑∞
i=I+1 λiδxi (x), has rate

Pr(~n1:J 6=~0 | λ)ρ(dλ)ω(dx),

the total rate of the remainder CRM: TR = ∑∞
i=I+1 λi as given by Theorem 1.

The key formula for this kind of analysis is given in our context in Table 2.

Table 2. Key formula for posterior analysis of CRMs, ΨJ =
∫

Pr(~n1:J 6= ~0 | λ)ρ(dλ), and the
distribution on the remainder TR = ∑∞

i=I+1 λi.

Name ΨJ Remainder TR

beP(M, α, β)-BP M
J−1

∑
j=0

Γ(α + β + j)
Γ(1 + β + j)

µR ∼ beP(M, α, J + β)

GP(M, β)-PP M(log(J + β)− log β) gamma(M, J + β)

GGP(M, α, β)-PP M((J + β)α − βα) Twe(α, M1/α, J + β)

GP(M, β)-NBP(ρ) M
(

log(J log 1
1−ρ + β)− log β

)
gamma(M, J log 1

1−ρ + β)

GGP(M, α, β)-NBP(ρ) M
(
(J log 1

1−ρ + β)α − βα
)

Twe(α, M1/α, J log 1
1−ρ + β)

staP(M, α)-PP MJα Twe(α, M1/α, J + β)

staP(M, α)-NBP(ρ) M(J log 1
1−ρ )

α Twe(α, M1/α, J log 1
1−ρ )

The first line, the beP-BP case, is the three parameter beta process with Bernoulli data,
which is the three parameter Indian buffet process. The second line is the gamma process
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with Poisson data. Note the data marginals
∫

Pr(~n1:J,i | λ)ρ(dλ) in our context can be
obtained more directly, developed in Section 4.2, so formulas are not given.

4. Using Discrete Base Distributions

It is important to understand what happens when you use a discrete distribution as a
base distribution to a CRM, since this is what happens when hierarchical constructions of
these processes are made. Let the base measure on X have the form µ(x) = ∑∞

i=1 λiδxi (x),
and the CRM is constructed using a homogeneous PPP with rate ρ(dλ)ω(dx). What hap-
pens? This section considers various implications of this. Note different but more extensive
treatment of this scenario for the results on moments, Section 4.2, and the generalised Chi-
nese restaurant process, Section 4.4, is given by Camerlenghi et al. [14], Argiento et al. [15].
They also include example MCMC sampling algorithms.

4.1. General Results

Superposition of PPPs says to decompose a discrete CRM into a union of trivial PPPs
each with rate in the form µiρ(λ)δxi , so the X component is a delta function. The resultant
CRM is also trivial and takes the form, using Definition 1, Λδxi , where Λ is the total of the
λk generated using the rate µiρ(λ). This total is distributed as the corresponding marginal
distribution for the subordinator with intensity parameter µi, as per Theorem 1.

Lemma 2. (CRM when base measure is discrete) Let a discrete measure on X have the form
µ(x) = ∑∞

i=1 µiδxi (x) for x ∈ X where the xi are distinct, and a homogeneous CRM is constructed
by sampling using a PPP with rate ρ(dλ)µ(dx) on R+ × X . Let Γ(t) be the marginal total
distribution for the corresponding subordinator, where t is the parameter of divisability. Then, the
CRM has the form

γ(x) =
∞

∑
i=1

γiδxi (x) (3)

where the random variable γi ∼ Γ(µi), and the xi are inherited from µ(·).

The CRM µ(·) when used as a base distribution for a PPP is mapped element-wise
to form a new CRM γ(·). So, no PPP modelling is required if you know the form of the
element-wise distribution.

There are a number of very convenient and well-known properties of the Dirichlet
that allow it to be used in hierarchical contexts. As it happens, most of these proper-
ties also hold for other NRMIs with discrete base measures, and some for CRMs, so
these results are developed here. The first property is aggregation. This has that if
(x1, x2, x3) ∼ Dirichlet(α1, α2, α3), then (x1, x2 + x3) ∼ Dirichlet(α1, α2 + α3), and this
applies for a Dirichlet of any dimension. The second property is renormalisation and has
that if (x1, x2, x3) ∼ Dirichlet(α1, α2, α3) then (x1, x2)/(x1 + x2) ∼ Dirichlet(α1, α2). Both
properties clearly follow from the fact that a Dirichlet is a normalised Gamma, and by
analogy hold for NRMIs too.

Definition 3. (Aggregation property) Consider a process that takes a measure as an input param-
eter and outputs another measure. The process has the aggregation property if when ∑∞

i=1 γiδxi (x)
is a sample from the process with a discrete input measure ∑∞

i=1 µiδxi (x) where the xi are dis-
tinct, then ∑∞

i=3 γiδxi (x) + (γ1 + γ2)δx1(x) is a sample from the process with input measure
∑∞

i=3 µiδxi (x) + (µ1 + µ2)δx1(x).

The aggregation property can be used to form arbitrary groupings of the dimensions.

Definition 4. (Renormalisation property) Consider a process that takes a measure as an input
parameter and outputs a probability measure. The process has the renormalisation property if when
∑∞

i=1 γiδxi (x) is a sample from the process with a discrete input measure ∑∞
i=1 µiδxi (x) where
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the xi are distinct, then 1
∑∞

i=2 γi
∑∞

i=2 γiδxi (x) is a sample from the process with input measure

∑∞
i=2 µiδxi (x).

The renormalisation property then yields probability measures on subsets of the
discrete domain, so it can be used for incremental sampling.

Lemma 3. (Aggregation and renormalisation) Consider the context of Lemma 2. The aggrega-
tion property holds for all CRMs and NRMIs. In the case of an NRMI, the renormalisation property
holds. For the PYP, the aggregation property holds but not the renormalisation property.

The results for the PYP can be developed using Lemma 1. The aggregation and renor-
malisation properties together mean that efficient size-biased samplers can be developed
for NRMIs by sampling one dimension at a time according to a two-dimensional version of
the NRMI, which is effectively the stick breaking construction (although, only a few explicit
cases of this are known). Alternatively, one can sample the underlying CRM according to
its corresponding infinitely divisible distribution.

A third property of the Dirichlet is neutrality, which applies in the context of renor-
malisation and requires that the part taken away is independent of the remainder: if
(x1, x2, x3) ∼ Dirichlet(α1, α2, α3), then (x1, x2)/(x1 + x2) is independent of x3.

Definition 5. (Neutrality property) Consider a process that outputs a finite discrete probability
measure, and without loss of generality let ∑I

i=1 γiδxi (x) be a sample from the process where the xi
are distinct. The process is completely neutral if there exists mutually independent non-negative
variables λ1, . . . , λI such that (γ1, . . . , γK) and

(
λ1, λ2(1− λ1), . . . , λI ∏I−1

i=1 (1− λi)
)

have the
same distribution.

It is known that the only distribution on finite probability vectors with complete
neutrality is the Dirichlet distribution [35].

4.2. Results on Moments

Moments of CRMs are critical quantities for their posterior analysis [18,36] to be devel-
oped in Section 5 and seen in Section 3.4. The generalised version is derived by unfolding
the recursion that relates the moments of a distribution to its cumulants. In the context of
Lemma 2, where γi ∼ Γ(µi), various moments such as E [γn

i | µi] and E [γn
i e−Uγi | µi] can

be computed recursively from the moments of the PPP rate ρ(dλ) [22] ([Section 1.3]) and
its exponentially titled form. Note these moments compute the marginals one needs for
multinomial and Poisson data, respectively, hence their importance.

In the theorem, the notation Pn is used to represent all possible non-empty partitions
of n items, the set {1, . . . , n}. As an example, P3 is the set

{ {{1, 2, 3}}, {{1}, {2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}}, {{1}, {2}, {3}} } ,

so it contains the partition {{1}, {2, 3}} as an element, for instance. Moreover, Pn
K ⊆ Pn

are all members are of size K, so |Pn
1 | = |Pn

n | = 1 and |P3
2 | = 3.

The following Lemma is a corollary the major result by Pitman [22], and some related
results appear in Camerlenghi et al. [14], as proven in Appendix A.

Lemma 4. (CRM moments when base measure is discrete) Consider the context of Lemma 2.
Let κn =

∫ ∞
0 λnρ(d λ) be the n-th moment for rate ρ(λ), where it exists for n ∈ N+. Let ψ(t) be

the Laplace exponent for the rate. Then, the n-th cumulant of γi can be re-expressed as a moment of
the original rate ρ(λ), and the n-th moment of γi is computed recursively from it.
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κn = (−1)n+1 d nψ(t)
d tn

∣∣∣∣
t=0

(4)

cumulantn(γi) = µiκn (5)

E [γn
i | µi] = ∑

Π∈Pn
µ
|Π|
i ∏

C∈Π
κ|C| (6)

=
n

∑
K=1

µK
i Tn

K (7)

where Tn
K = ∑

Π∈Pn
K

∏
C∈Π

κ|C|

=
n−K+1

∑
k=1

Tn−k
K−1

(
n− 1
k− 1

)
κk . (8)

Note the recursion for Tn
K starts at Tn

1 = κn derived from the non-recursive form.
Thus, if the Laplace exponent is known, one can usually compute the moments of

the process and hence the cumulants and evidence terms for its corresponding infinitely
divisible distribution. When one has Poisson data, required moments need to include an
exponential term, as proven in Appendix B.

Corollary 1. (Adding an exponential term) Consider the context of Lemma 4 with rate ρ(λ).
To obtain exponentiated moments of the form E [γn

i e−Uγi | µi], complete the following steps.

1. Use rate e−Uλρ(λ), and the Laplace exponent is given by ψ(U + t)− ψ(U), so the corre-
sponding moments are given by

κn,U = (−1)n+1 d nψ(t)
d tn

∣∣∣∣
t=U

2. Obtain the corresponding Tn
K using Equation (8) with the κn,U , denoted Tn

K,U .
3. Consequently,

E [γn
i e−Uγi | µi] = e−µiψ(U)

n

∑
K=1

µK
i Tn

K,U .

The components from Lemma 4 for the processes in Table 1 are given in Table 3. These
appear in various places in the broader statistical literature. The Laplace exponent is usually
computed using integration by parts. The form Sn

s,α is the second order generalised Stirling
number used in PYP inference [1,37], a generalized Stirling number of type (−1,−d, 0) [38].
It can be verified using its recursion [37] with Equation (8).

Table 3. Properties of processes.

Name κn ψ(t) Tn
K

beP(M, α, β) M Γ(n−α)
Γ(1−α)

Γ(α+β)
Γ(n+β)

M Γ(α+β)
Γ(β)α

(
1F1(1− α, β, t)− 1 use Equation (8)

(for β > 1− α) + 1
β 1F1(1− α, β + 1, t)

)
GP(M, β) M Γ(n)

βn M log(1 + t/β) MK

βn Sn
K

GGP(M, α, β) M Γ(n−α)
Γ(1−α)

α
βn−α M((β + t)α − βα)

(Mαβα)K

βn Sn
K,α

staP(M, α) NA Mtα NA

Note the general beta process has no simple analytic form for either ψ(t) or its marginal
distribution. Fortunately, is is difficult to envisage a situation where it would be used hier-
archically.
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4.3. The Gamma Process

Let us consider the simple example of a gamma process, GP(M, β) and assume data
yields Poisson likelihoods in the form ∏I

i=1 γ
ni
i e−Uγi for dimensions i = 1, . . . , I in the context

of Lemma 2. The marginal likelihood then, for the data = { ni, xi : i = 1, . . . , I } is given by

Pr(data | µ(·)) = E [e−UγR | µR]
I

∏
i=1
E [γni

i e−Uγi | µi]

where the expectation is taken with respect to γ(·) ∼ GP(M, β, µ(·)), which has γi ∼
gamma(Mµi, β). Note, in this case, the exact solution is known since the data marginals of
the gamma distribution have a simple closed form,

E [γni
i e−Uγi | µi] =

∫ ∞

0
γni e−Uγ βMµi

Γ(Mµi)
γMµi−1e−βγd γ =

Γ(Mµi + ni)

(U + β)Mµi+ni

βMµi

Γ(Mµi)
(9)

Consider, however, using Corollary 1. In this case, moments including e−Uγi are found
to be κn =

∫ ∞
0 γne−Uγρ(d γ) = M Γ(n)

(U+β)n , and the Laplace exponent can be obtained using
integration by parts as M log(1 + t/β). One can confirm that the corresponding index
Tn

K = 1
(U+β)n Sn

K MK where Sn
K is an unsigned Stirling number of the first kind, an index that

is found in collapsed versions of the CRP. Equation (8) yields the standard recurrence for

it. So, by Equation (7), and adding back the term e−µiψ(U) =
(

β
U+β

)Mµi
as per Corollary 1,

obtain for atom index i the moment

Pr(γn
i e−Uγi | µi) = E [γn

i e−Uγi | µi] =
βMµi

(U + β)Mµi+ni

ni

∑
K=1

Sni
K (Mµi)

K . (10)

The sum can be converted using a standard identity [37] ([Lemma 16]) to get back
The sum in Equation (10) has an interpretation as a form of Chinese restaurant process
for the dimension i. Each partition of the set {1, . . . , ni}, given by Πi ∈ Pni corresponds
to a configuration of the ni data in |Πi| tables. For any table with participants C ∈ Πi,
the probability of the table is Mµi

Γ(|C|)
(U+β)|C|

. The probability of this configuration Πi is then

∏C∈Πi
Mµi

Γ(|C|)
(U+β)|C|

. So, introducing the partition Πi or its size as an additional variable,

Pr(γn
i e−Uγi , Πi | µi) =

βMµi

(U + β)Mµi+ni
(Mµi)

|Πi | ∏
C∈Πi

Γ(|C|)

Pr(γn
i e−Uγi , |Πi| = K | µi) =

βMµi

(U + β)Mµi+ni
Sni

K (Mµi)
K .

The second form, the probability of all configurations of size K(= |Πi|), follows from
Equation (8).

4.4. General Chinese Restaurant Processes

Motivated by the gamma process example just given, now construct a generalised
CRP interpretation of the results in Section 4.2. The marginals have an interpretation as
generalised versions of Chinese restaurants, including the more efficient collapsed ver-
sions [6], both developed in this section. This is intended to complement the comprehensive
Bayesian analysis already developed for the non-hierarchical cases by [16,18].

The significance of the formula in Lemma 4 is that the sum in Equation (6) is over
partitions Π of the n data points, and κ|C| represents the probability of generating a single
element C of size |C| (in the partition Π) according to the rate ρ(λ). The sum in Equation (7)
is now over partition sizes K, and Tn

K is the probability of generating a partition of K
non-empty sets according to the rate ρ(λ).
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Lemma 5. (General Chinese restaurant processes for CRMs) Consider the posterior data
marginal for γ(·), as in Corollary 2, where data is in the form of a Poisson likelihood with counts
ni > 0 at each atom xi:

Pr({ni, xi : i = 1, . . . , I} | γ(·), U) =
I

∏
i=1

γ
ni
i e−Uγi

One can treat Πi ∈ Pni as a latent variable, which represents the seating configuration for
instances of the atom. Then, the data marginal using Π1, . . . , ΠI takes the form:

Pr({ni, xi, Πi : i = 1, . . . , I} | µ(·), U) = e−ψ(U)∑∞
i=1 µi

I

∏
i=1

(
µ
|Πi |
i ∏

C∈Πi

κ|Ci |,U

)
. (11)

Moreover, for any j (including j > I),

Pr(xj | {ni, xi, Πi : i = 1, . . . , I}, µ(·)) = µjκ1,U + ∑
C∈Πj

κ|C|+1,U

κ|C|,U
, (12)

where the convention is used that Πj = ∅ for j > I (when there is no data). Alternatively, if Ki, the
number of tables for atom index i is handled as a latent variable, then the data marginal given table
numbers takes the form:

Pr({ni, xi, Ki : i = 1, . . . , I} | µ(·), U) = e−ψ(U)∑∞
i=1 µi

I

∏
i=1

µ
Ki
i Tni

Ki ,U
. (13)

Equation (12) is related to the generalized Blackwell–MacQueen sampling scheme by
James et al. [18] [Section 3.3]. The data marginals in Equations (11) and (13) have a simple
Poisson likelihood in ~µ. Thus, a CRP interpretation of a Gamma process can be used for
hierarchical inference with a Gamma distribution, as used by Zhou and Carin [11], for instance.

To develop a corresponding formula for NRMIs where they are generated by normal-
ising a CRM, we use an ingenious technique for normalising a CRM within a posterior
analysis from [18] The basic idea is to convert multinomial sampling into Poisson sam-
pling (without normalisation) but require some post manipulation to derive the results. A
generative variation of this goes as follows:

1. For each multinomial~n according to the unnormalised values~λ, introduce a scale-free

latent relative mass denoted U, with the scale-invariant improper prior d U
U .

2. Generate the data needed according to Poisson ni ∼ Poisson(Uλi) for i = 1, . . . , ∞,
noting that ni = 0 for i > I.

3. Then, the joint posterior on ~n,~λ, U becomes quite concentrated for U and can be
marginalised out.

4. To correct the formulas, multiply the marginal by N = ∑I
i=1 ni to obtain a conversion

to a multinomial.

To see that this indeed does what is required, one needs to verify the following identity.

N
∫
R+

∞

∏
i=1

(
e−Uλi

(Uλi)
ni

ni!

)
d U
U

=

(
N
~n

) I

∏
i=1

(
λi

∑i λi

)ni

.

Note the product ∏∞
i=1 is well-defined because ∑∞

i=1 λi is finite.

Corollary 2. (General Chinese restaurant processes for NRMIs) Consider the posterior data
marginal for γ(·) as given in Lemma 2, where data is in the form of a multinomial likelihood with
counts ni > 0 at each atom xi:

Pr({ni, xi : i = 1, . . . , I} | γ(·)) =
I

∏
i=1

(
γi

∑∞
i=1 γi

)ni

,
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and let N = ∑I
i=1 ni be the total count. Let U ∼ gamma(N, ∑∞

i=1 γi). Then, the data marginal
using Π1, . . . , ΠI , similarly to Lemma 5, takes the form:

Pr({ni, xi, Πi : i = 1, . . . , I}, U | µ(·)) = UN−1

Γ(N)
e−ψ(U)∑∞

i=1 µi
I

∏
i=1

(
µ
|Πi |
i ∏

C∈Πi

κ|Ci |,U

)
. (14)

Moreover, for any j (including j > I),

Pr(xj | {ni, xi, Πi : i = 1, . . . , I}, U, µ(·)) = µjκ1,U + ∑
C∈Πj

κ|C|+1,U

κ|C|,U
. (15)

Alternatively, if each Ki is handled as a latent variable, then the data marginal given table
numbers takes the form:

Pr({ni, xi, Ki : i = 1, . . . , I}, U | µ(·)) = UN−1

Γ(N)
e−ψ(U)∑∞

i=1 µi
I

∏
i=1

µ
Ki
i Tni

Ki ,U
. (16)

Note, to complete the analysis, one needs to model the unseen parts of the processes.
So, while it is assumed µi for i = 1, . . . , I is being sampled or estimated, of µi and γi for
i = I + 1, . . . , ∞ only a finite number, if any, can be sampled or estimated. Handling these
is illustrated in Section 5 using a remainder term µR = ∑∞

j=I+1 µj.
In general, then, there are two different levels of inference one can use when the

marginal does not have a simple closed form and must instead be computed using the
latent forms in Lemma 5 or Corollary 2:

Sampling over table configurations:

For the DP, this is exhibited by the standard CRP. One can see from Equations (6) and (12)
that to resample which table a point belongs to, one would use the following proportionalities:

Pr(C | Π, µk, . . .) ∝

{
µkκ1 start a new table
κ|C|+1

κ|C|
add to table C . (17)

Sampling over table sizes:

For the PYP, this is demonstrated by table indicator sampling methods [6,39] and
“direct” Gibbs sampling of Gasthaus and Teh [5], though subsequently not used because in
their context they needed to constantly resample discount α. This is a collapsed sampler
that instead samples K, the number of tables using Equation (7):

Pr(K | µk, . . .) ∝ µK
k Tn

K (18)

This is only efficient when Tn
K can be tabulated. In the general case, this requires

O(n2K) steps to follow using Equation (8) and O(nK) for cases such as the gamma process
above where a simpler double recursion is available for Tn

K since they are generalised
second-order Stirling numbers.

5. Variants of the Generalised Gamma Process

In this section, we develop both the CRM and NRMI variants of the generalised
gamma process in the hierarchical context. Using the generalised gamma process in
an NRMI yields an NGG or a PYP. When the NGG process and the PYP are supplied
discrete base distributions as input, they behave analogously to the Dirichlet distribution,
as illustrated with Lemma 3. In this discrete context, refer to the corresponding distributions
as the NGG distribution and the Pitman–Yor distribution (PYD). Here analytical forms of
the PY distribution are developed.
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5.1. The Hierarchical Context

Consider an NRMI in the context of the base distribution µ(x), as before. Suppose
multinomial type data is observed in the form of counts nk associated with the atoms xk of µ(·)
for k = 1, . . . , K, with total count N = ∑K

k=1 nk, where all others are zero. The latent relative
mass trick of James et al. [18] can be used to include U as a latent variable in the likelihood for
the NGG and the PYD. Setting U = 1 and dividing by N in this case restores the posterior to the
original Poisson version. The likelihood for a PYD also includes M (via Lemma 1). To express
this, the remainder terms for both the base distribution and the CRM need to be represented.

λR =
∞

∑
k=K+1

λk = Λ−
K

∑
k=1

λk

µR =
∞

∑
k=K+1

µk .

The joint posterior for the NGG is now

Pr({λk, nk, xk : k = 1, . . . , K}, U, λR | GGP, M, α, β, N, µ(·))

=
1

N1U 6=1 Γ(N)
e−UΛUN−1 Pr(λR | Twe(α, (MµR)

1/α, 1))

K

∏
k=1

λ
nk
k Pr(λk | Twe(α, (Mµk)

1/α, 1)) (19)

=
1

Γ(N)
e−M((1+U)α−1)UN−1 Pr(λR | Twe(α, (MµR)

1/α, 1 + U))

K

∏
k=1

λ
nk
k Pr(λk | Twe(α, (Mµk)

1/α, 1 + U)) ,

where the second line is obtained by applying the exponential tilting formula. Note,
Lemma 2 means element-wise application of a distribution to the parameter vector ~µ inside
µ(·). Forms for the PYD are obtained by adding the prior for M. For the normalised stable
process, denoted NSP, one obtains

Pr({λk, nk, xk : k = 1, . . . , K}, U, λR | NSP, M, α, N, µ(·))

=
1

Γ(N)
e−UΛUN−1 Pr(λR | pstable(α, (MµR)

1/α))

K

∏
k=1

λ
nk
k Pr(λk | pstable(α, (Mµk)

1/α)) (20)

=
1

Γ(N)
e−MUα

UN−1 Pr(λR | Twe(α, (MµR)
1/α, U))

K

∏
k=1

λ
nk
k Pr(λk | Twe(α, (Mµk)

1/α, U)) .

From this, one can derive an integral formula for the PYD. Details are in Appendix C,
and the result is original.

Lemma 6. (Integral formula for the PY distribution) Let ~µ be a K-dimensional non-zero
probability vector. Then, consider ~θ ∼ PYD(α, β,~µ) for α > 0 and β ≥ 0. To express the
probability of~θ, introduce corresponding latent variables~ν = (ν1, . . . , νK) ∈ [0, π]K:

Pr(~θ | PYD, α, β,~µ) =

∫
[0,π]K

αK−1Γ(1 + β)

(1− α)K−1πKΓ(1 + β/α)

Γ(K + β(1− α)/α)∏K
k=1 aα(νk)

(
µk
θk

)1/(1−α)

(
∑K

k=1 aα(νk)
(

µk
θk

)1/(1−α)
θk

)K+β(1−α)/α
d~ν . (21)
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This can be readily evaluated using numerical integration for small K. Plots of the
marginal for θ1 for different parameter settings are given in Figures 1 and 2.

Due to the aggregation property of the PYD, these are representative marginals of
the distribution for all dimensions. One can see the distributions becoming increasingly
skewed as α increases.
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Figure 1. PDFs from Lemma 6 for location µ1 = 0.1 and fixed α.
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Figure 2. PDFs from Lemma 6 for variations with identical location and variance.

6. Networks of Processes

The next natural question to consider is how the above results apply to networks of
processes. Several general schemes have been developed for inference in more general
networks [3,6,11,19,39,40]. General networks for HPYPs have been demonstrated to scale [4,6],
in contrast to earlier Gibbs schemes [3,40], and arguably the HGP has advantages over the
HDP [11]. This section is a review of related material with regards to hierarchical processes.
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6.1. Identifiability

One important question is the issue of statistical identifiability, and an underlying issue
here is whether the parametric structure admits a unique representation [41]. In our case, some
simple classes of non-uniqueness are easily identified and avoided. For instance, in Poisson
matrix factorisation, if the matrix entry xi,j ∼ Poisson

(
∑K

k=1 θi,kφk,j

)
, then one can insist that

the scale of one of the matrices ~Θ or ~Φ (comprising the entries θi,k and φk,j respectively) needs
to be anchored somehow so that the scale of the Poisson parameter is uniquely determined by
just the other one. So, the rows of one of the matrices should normalise.

6.2. Equivalences

Another issue is that in some cases, networks can be transformed from one case to
another. For instance, Zhou and Carin [11] ([Section VB]) show that a Poisson gamma-
gamma process construction is equivalent to a HDP construction with an independent
Poisson-gamma on the total. Given that there are significant differences between the
corresponding algorithms in this case, and there are many more in the literature, what
other equivalences are there?

Normalising processes are conducted to convert a CRM into an NRMI and in some
cases, independence between the parts yields an equivalence between the CRM form and
the NRMI form augmented with a total. This has major implications to networks of such
processes, presented in the following subsection, so the results are summarised here.

The first results are on discrete processes and are well-known, some for instance
reproduced by Zhou and Carin [11].

Lemma 7. (Equivalent processes) Let ~µ be a probability vector (possibly infinite), and M be a
constant positive background rate. Let X = ∑∞

i=1 xi, the sum of entries of the non-negative integer
vector ~x. The following equivalences between (A) and (B) hold:

• Conditioning the PPP,

(A) ~x ∼ PP(M~µ) (B) X ∼ Poisson(M) and ~x ∼ MP(X,~µ) .

• NBP as a Poisson-gamma mixture,

(A) ~x ∼ NBP(M, ρ,~µ) (B) ~x ∼ PP
(

GP
(

M,
1− ρ

ρ
,~µ
))

.

• DCMP, given X ∈ N+, as a multinomial-Dirichlet mixture,

(A) ~x ∼ DCMP(X, M~µ) (B) ~x ∼ MP(X, DP(M~µ)) .

• Conditioning the NBP,

(A) ~x ∼ NBP(M, ρ,~µ) (B) X ∼ NB(M, ρ) and ~x ∼ DCMP(X, M~µ) .

The conditioned versions of the PPP and NBP are used to decompose a likelihood
into a total count and the vector of counts for atoms, given the total. Notice, while the
conditioned version of the PPP yields a likelihood where the normalised measure (~µ) and
its total (M) are independent, the same does not hold for the conditioned NBP.

6.3. Normalisation and Independence

On non-discrete processes, some independences apply.

Lemma 8. (Normalised processes and independence) Let Λ = ∑∞
i=1 λi, the sum of entries of

the infinite non-negative real vector~λ. The following two pairs (A) and (B) are equivalent:

• For the gamma process:
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(A) ~λ ∼ GP(M, β);
(B) Λ ∼ ga(M, β) and~λ/Λ ∼ GEM(0, M), where Λ and~λ/Λ are independent.

• For the generalised gamma process where 0 < α < 1, marginalising M

(A) ~λ ∼ GGP(M, α, β) where M ∼ ga(δ/α, βα);
(B) Λ ∼ ga(δ, β) and~λ/Λ ∼ GEM(α, δ), where Λ and~λ/Λ are independent.

Moreover, the gamma process is the only case of such independence possible for pure NRMIs (this
excludes the second case as it is marginalised).

Independence in the PYP case (represented as GEM(α, δ) in the lemma) is shown by
Pitman and Yor [28] ([Proposition 21]).

That the gamma process is the only independence case for CRMs and their NRMIs
is a result by Perman et al. [27] ([Corollary 2.3]). This is equivalent to the neutrality of
the Dirichlet distribution, again the only distribution on probability vectors exhibiting
neutrality. Neutrality and independence in this case can be shown to be equivalent prop-
erties. Independence in both these cases is also a consequence of the fact that so-called
sized-biased sampling for the cases is independent of the total [27,29]. Independence
properties such as in Lemma 8 do not hold generally, as indeed sized-biased sampling is
not generally independent of the total.

Lemma 9. (Normalisation of other process) Let Λ = ∑∞
i=1 λi, the sum of entries of the infinite

vector~λ.

• For the generalised gamma process, if ~λ ∼ GGP(M, α, β) then Λ ∼ Twe(α, M1/α, β) and
~λ/Λ ∼ NGG(α, M).

• For the stable process, if~λ ∼ staP(M, α) then Λ ∼ pstable(α, M1/α) and~λ/Λ ∼ PYP(α, 0),

Λ and~λ/Λ are not independent in either case.

6.4. Modelling LDA Using HDP

Consider models for the HDP variant of LDA [3], called HDP-LDA, which has been
the subject of extensive research. There is a wide variation in the literature of how these
are to be represented by graphical model and for statistical inference. Figure 3 shows two
equivalent models for HDP-LDA. Figure 3a gives the original model as formulated by
Teh et al. [3], and Figure 3b shows the modification used here. Authors sometimes use a
more complicated formulation in terms of the underlying stick-breaking model.

wd,n

φd,n

Gd
DP

cθ

G0
DP

Dirichlet
~β cα

Nd

D

(a) Graphical representation with DPs

wd,n ~φk

Dirichlet

~βzd,n

~θd
Dirichlet

cθ

~α
GEM

cα

Nd

D

∞

(b) Modified representation with Dirichlets

Figure 3. Equivalent versions of HDP-LDA. In (a), the arc from ~β has a modified head to indicate
that Dirichlet(~β) is used in a nested manner.



Entropy 2022, 24, 1703 19 of 24

In this problem, there are D documents and Nd words in each document for d = 1, . . . , D,
where the words wd,n are modelled with an admixture. The probabilistic specification for
the corresponding models are given in Figure 4.

G0 ∼ DP(cα, Dirichlet(cβ
~β))

Gd ∼ DP(cθ , G0)

~φd,n ∼ Gd

xd,n ∼ Categorical(~φd,n)

(a) Original probabilistic model

~φk ∼ Dirichlet(cβ
~β)

~α ∼ GEM(0, cα)

~θd ∼ Dirichlet(cθ~α)

zd,n ∼ Categorical(~θd)

xd,n ∼ Categorical(~φzd,n)

(b) Modified probabilistic model

Figure 4. Equivalent versions of HDP-LDA. Concentration parameters cX treated as constants or
estimated. Indices d = 1, . . . , D, n = 1, . . . , Nd and k = 1, . . . , ∞. The ~φ are indexed differently in
the two versions. The~α and~θd are infinite probability vectors in the CRM representation of G0 and
Gd, respectively.

Figure 4a shows the probabilistic specification with full base distributions. While this
follows the theory directly, it is a fairly large departure from the original representation of
LDA. The reformulation in Figure 4b is a direct analogue of the original representation of
LDA with two modifications essential for the treatment of a HDP, discussed below as the
root node and the non-root node.

The root node of the DP hierarchy is represented as a GEM, which generates the infinite
vector. In practice, this can be represented using size-biased sampling [27] formulations,
and in the simplest and popular cases this corresponds to stick-breaking methods [42]. In
implementation, however, there is no need for this as posterior formulations for the processes
are well understood and require no implicit ordering constraints as in stick-breaking.

Non-root nodes down the hierarchy are represented using their underlying infinitely
divisible non-negative distribution, in this case the Dirichlet. Note, however, this extends
the standard definition of a Dirichlet as the input parameter is an infinite dimensional vector.
In implementation, this is no impediment as only a finite amount of data is ever dealt with,
although it does require modelling the current number of non-empty dimensions. This can
be readily handled using standard parametric techniques [6] or by using truncation [4].

Note Figure 4a also uses a nested construction [43] with the expression
DP(cα, Dirichlet(cβ

~β)). Here a distribution, in this case a Dirichlet, but it could also be a GP,
a DP or any other process, is used as the base distribution. This nesting construction is ex-
actly what is needed to model matrix and tensor factorisation using hierarchical processes.

The nested, hierarchical equivalent to Figure 5b is as follows:

~β ∼ GEM(dβ, cβ)

G0 ∼ GP
(

cα, 1, PYD
(

dφ, cφ,~β
))

Gd ∼ GP(cθ , sθ , G0)

φd,n ∼ Gd

~nd ∼ Poisson
(
~φd
)

The background word probabilities ~β are generated, then used as the base distribution
for a PYD which then creates variants ~φk as each atom of the gamma process G0. The
mixture weights of G0 correspond to~α from Figure 5b. Variants of this, Gd, are then created
which modify the mixture weights~α but leave the atoms constant. So, Gd is a weighted
sum of the original ~φk, as is the case in Figure 5b. This is very elegant, but Figure 5b better
exposes the detail needed for implementation.
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~α ∼ GEM(0, cα)

~β ∼ GEM(dβ, cβ)

~θd ∼ Dirichlet(cθ~α)

~φk ∼ PYD(dφ, cφ,~β)

~nd ∼ multinomial

(
Nd,

∞

∑
k=1

θd,k~φk

)

(a) Non-parametric topic model

~α ∼ GP(cα, 1)
~β ∼ GEM(dβ, cβ)

~θd ∼ gamma(cθ~α, sθ)

~φk ∼ PYD(dφ, cφ,~β)

~nd ∼ Poisson

(
∞

∑
k=1

θd,k~φk

)

(b) Corresponding matrix factorisation

Figure 5. NP-LDA and its matrix factorisation counterpart. Concentration parameters cX are con-
stants or estimated, as are discounts dX . Indices d = 1, . . . , D and k = 1, . . . , ∞. Vector-wise versions
of the gamma and Poisson represent the gamma process and Poisson process, respectively.

6.5. Example Equivalences with Non-Parametric LDA

Consider extending HDP-LDA to include a Pitman–Yor distribution on the word
side. This model, termed NP-LDA Buntine and Mishra [4], has been demonstrated using
a truncated approximation. To bring out equivalences, the multinomial form of the topic
model is given, and both are defined in Figure 5.

The gamma scale parameter on α0 is one as it has an equivalent affect to cθ . So, it
needs to be made a constant for identifiability. The equivalence is obtained by noting, from
Lemmas 7 and 8, and many such results exist for the finite case, for instance by [44]. One can
introduce a total rate for documents, Θd, and model the count, Nd, entirely independently:

α0 ∼ gamma(cα, 1)

Θd ∼ gamma(cθα0, sθ)

Nd ∼ Poisson(Θd) .

If the concentration parameters are estimated during learning, which is the common case,
and recommended for topic models, then equivalence does not hold.

Experimental evidence [4] shows the following:

• The topic side,~θd, is best not modelled using PYPs because experiments indicate that
this gives no performance improvement. The non-Zipfian DPs work best, probably
because of the smaller dimensions for number of topics.

• Modelling the word side, ~φk, using PYPs systematically outperforms HDP-LDA by a
moderate margin in perplexity and yields more explainable topics because the overall
“background” words are separately modelled using ~β.

Several model equivalences hold with regard to these kinds of models.

• The asymmetric-symmetric version of LDA [45] is a truncated version, not well
understood in the community.

• The asymmetric-asymmetric version of LDA, evaluated by Wallach et al. [45], is a
truncated version of the model in Figure 5a.

• Hierarchical Poisson factorisation [46] (HPF) is a non-parametric formulation of
Poisson-gamma matrix factorisation using stick-breaking, and thus is equivalent
to HDP-LDA above (when augmented with a gamma model of the total counts).

• Robust (negative binomial) Poisson factorisation by Zhou et al. [47] is related (ignoring
some issue with hyperparameters) to bursty topic models by Doyle and Elkan [48],
which has a non-parametric extension in Buntine and Mishra [4].

7. Conclusions

Discrete base distributions make CRMs behave like vectors of infinitely divisible dis-
tributions, where application is element-wise without the non-parametrics. So, the gamma



Entropy 2022, 24, 1703 21 of 24

process becomes an element-wise gamma distribution, and the generalised gamma process
becomes an element-wise Tweedie distribution. This was presented in Lemma 2, Lemma 4
and Corollary 1 and accompanying tables. Similarly, discrete base distributions make
NRMIs and related processes behave as normalised versions of the above, sharing some
properties of the DP such as renormalisation. So, the HPYP becomes the PY distribution,
whose form was developed in Section 5.

If closed forms for analysis of the infinitely divisible distributions do not exist, the
generalised versions of Chinese restaurant process (CRP) sampling, given in Equation (17),
can be used instead, including versions of the more recent, efficient collapsed samplers for
CRPs [6,39], given in Equation (18). Similar formulations also appear in [14,15]. Note many
of these quantities, for instance in Table 1, can be derived from the Laplace exponent of the
CRM, so a convenient form of the distribution is not needed. The CRPs come about when
unfolding the recursion that relates the cumulants of a distribution to the moments of the
distribution, a simple result in basic statistics. In this way, known CRPs for the gamma
process follow a general scheme that also applies for the generalised gamma process, the
generalised beta process and others.

While most of these results follow fairly simply from general results in the non-
parametric Bayesian community, some have not yet seen use in the Bayesian machine
learning community.

As a specific example of hierarchical distributions, it was also shown in Section 5 that
the NGG and PY distributions, for the case where discount α > 0 and concentration β > 0,
are behaving like normalised Tweedie variables, and for the case where concentration
β = 0 like normalised positive stable variables. Moments of the Tweedie distribution show
how the standard hierarchical likelihood for the HPYP used to date [5,37] can be directly
derived from this framework without considering non-parametric theory. A novel integral
expression for the PY distribution for discount α > 0 and concentration β ≥ 0 was also
developed in Equation (21). This answers the question, “what is a hierarchical PYP”?

There are a rich number of variations of matrix factorisation and topic models that
exist, for instance, see ([11] Table 1) with seven different versions of negative binomial
matrix factorisation, and the software used in Buntine and Mishra [4] has seven different
non-parametric versions of LDA. This is ignoring the extensions of the model where
the problem is changed significantly: document segmentation [7], hierarchical topics [8],
supervised topic models, etc., and these extensions no doubt have their own rich variety of
versions and equivalences. Moreover, some of the known equivalences between processes,
when applied in the hierarchical case, yield relationships between models and algorithms in
the machine learning community that deserve further investigation, discussed in Section 6.
This is confounded by the fact that variants are evaluated using significantly different
methodologies; compare, for instance, topic modelling evaluation with recommender
systems evaluation. It is an open question as to what other significant equivalences exist in
the literature, and the implications this has to the algorithms one can use.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.
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Appendix A. Proof of Lemma 4

Proof. The major result is by Pitman [22]. Equation (5) is obtained by differentiating inside
the integral of the Laplace exponent. Note that when they both exist, cumulants κn and
central moments cn are related by the following recursive formula

cn = κn +
n−1

∑
k=1

(
n− 1
k− 1

)
κkcn−k .
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One can expand this iteratively to remove the recursion on moments. While Pn

represents the set of all non-empty partitions of n objects, let Sn denote the set of all
vectors representing the sizes of non-empty partitions of n. So, if ~m ∈ Sn then ml > 0 for
l = 1, . . . , |~m| and ∑

|~m|
l=1 ml = n. One obtain s the following:

momentn(γk) = ∑
~m∈Sn

|~m|

∏
l=1

cumulantml (γk)

(
n−∑j<l mj − 1

mk − 1

)
.

This is the same form of expression used in defining the generalised Stirling num-
bers [37] ([Lemma 16]). The significance is that the sum is over the sizes of the partitions of
n, and the product of choose expressions represents the number of partitions with those
sizes. Thus, this can be re-expressed as Equation (6). The recursion of Equation (8) can be
obtained from the original recursion on cn and reformulation.

Appendix B. Proof of Corollary 1

Proof. This is based on the following result: Suppose a Poisson process has rate µkρ(λ), and
the distribution of the total T = ∑∞

k=1 λk from a sample has distribution Pr(T | µk). Then, it
follows that given rate e−Uλρ(λ), the distribution of the total becomes eµkψ(U)−UT Pr(T | µk)
where ψ(·) is the Laplace exponent of ρ(λ). The result follows by using the constant e−µkψ(U)

to adjust the moments to those desired.

Appendix C. Proof of Lemma 6

Proof. Start with Equation (19) with no data, so nk = 0 and U can be dropped. Substituting
terms, and letting λR be λ0:

= eM M(K+1)/(1−α)e−∑K
k=0 λk

(
α

(1− α)π

)K+1

K

∏
k=0

a(νk)λ
−1/(1−α)
k µ

1/(1−α)
k e−λ

−α/(1−α)
k M1/(1−α)µ

1/(1−α)
k a(νk) .

Note it can be seen that conditionally M1/(1−α) has a gamma distribution. Condition-
ally, the variables λk are log concave and vanishing to zero at the limits (0, ∞). Moreover, by
the transformation λ′k = 1/(1 + λk), the transformed Hessian is only non-negative when
the derivative is positive, so the function of λ′ ∈ [0, 1] is unimodal and suitable for slice
sampling. Moreover, it can also be shown that conditionally the auxiliary variables νk
are unimodal and bounded so are readily sampled using efficient slice sampling (as for
instance used in a related context by Lomeli et al. [19]).

Marginalising out M by adding its prior and then using the change of variables
m = M1/(1−α),

=

(
α

(1− α)π

)K+1 (1− α)e−∑K
k=0 λk

Γ(β/α)

K

∏
k=0

a(νk)λ
−1/(1−α)
k µ

1/(1−α)
k

Γ(K + 1 + β(1− α)/α)(
∑K

k=0 λ
−α/(1−α)
k µ

1/(1−α)
k a(νk)

)K+1+β(1−α)/α
,

then conduct a change of variables from (λ0, λ1, . . . , λK) to (Λ, θ1, . . . , θK) where Λ is the
sum and θk = λk/Λ. The determinant of the Hessian is ΛK. This results in an independent
term in Λ in the form e−ΛΛβ−1 which integrates leaving Γ(β). This results in the data
likelihood as given in Equation (21), though the dimension has also been changed from
K + 1 to K for simplicity. Moreover, (1−α)Γ(β)

Γ(β/α)
has been re-expressed as 1−α

α
Γ(1+β)

Γ(1+β/α)
, so it is

well-defined when β = 0.
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The derivation for the β = 0 case is similar, starting from Equation (20), but again
there is no data and U = 0. Introduce the integral expression for the pstable(α, s), perform
a change of variables from (λ0, λ1, . . . , λK) to (Λ, θ1, . . . , θK) and then marginalise out Λ.
At this point, the terms in M will cancel.
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