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Abstract. Hashing methods often face critical efficiency challenges,
such as generalization with limited labeled data, and robustness issues
(such as changes in the data distribution and missing information in
the input data) in real-world retrieval applications. However, it is non-
trivial to learn a hash function in existing supervised hashing methods
with both acceptable efficiency and robustness. In this paper, we explore
a unified generative hashing model based on an explicit energy-based
model (EBM) that exhibits a better generalization with limited labeled
data, and better robustness against distributional changes and missing
data. Unlike the previous implicit generative adversarial network (GAN)
based hashing approaches, which suffer from several practical difficulties
since they simultaneously train two networks (the generator and the dis-
criminator), our approach only trains one single generative network with
multiple objectives. Specifically, the proposed generative hashing model
is a bottom-up multipurpose network that simultaneously represents the
images from multiple perspectives, including explicit probability density,
binary hash code, and category. Our model is easier to train than GAN-
based approaches as it is based on finding the maximum likelihood of the
density function. The proposed model also exhibits significant robustness
toward out-of-distribution query data and is able to overcome missing
data in both the training and testing phase with minimal retrieval perfor-
mance degradation. Extensive experiments on several real-world datasets
demonstrate superior results in which the proposed model achieves up
to 5% improvement over the current state-of-the-art supervised hashing
methods and exhibits a significant performance boost and robustness in
both out-of-distribution retrieval and missing data scenarios.
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1 Introduction

Searching for similar items (such as images) is an important yet challenging
problem in this digital world. Accurate retrieval within a constrained response
time is crucial, especially in large databases with several millions of images. This
motivates the need for approximate nearest-neighbor (ANN) methods instead of
using an intractable linear scan of all the images for such massive datasets.
Hashing is a widely used ANN method with a principled retrieval approach for
web-scale databases. In hashing, high-dimensional data points are projected onto
a much smaller locality-preserving binary space. Searching for similar images
is reduced to searching for similar discrete vectors in this binary space using
computationally-efficient Hamming distance [1]. Searching for an item in the
binary space is extremely fast because each Hamming distance calculation (e.g.,
for 64-bit vectors) only needs 2 CPU instructions in most modern hardware.
Furthermore, the compact binary codes are storage-efficient, thus the entire index
of items can be kept in fast-access memory; for example, a million 64-bit vectors
only occupy approximately 8 megabytes. This paper focuses on the learning-to-
hash methods that “learn” hash functions for efficient image retrieval.

The mapping between the original image x and the k-bit discrete vectors
is expressed through a hash function f : # — {—1,1}*. Learning and deploy-
ing such a hash function in real-world applications face many challenges. First,
the hash function should capture the similarity relationship between images in
the binary space, for example, represented in the annotated similarity between
items. However, with a massive amount of data, the annotated similarity is
scarce. This leads to a poor generalization in methods that exclusively rely on
such annotated information. Furthermore, real-world data contains amendable
missing information (e.g., a part of an image is corrupted during lossy compres-
sion or transmission between systems) and gradually changes over time (i.e., the
underlying data distribution changes). A hash function that is not robust to such
scenarios is not suitable for real-world applications because its expected retrieval
performance will quickly degrade.

Several learning-to-hash methods, especially the supervised ones, have been
proposed for efficient ANN search [2-11]. However, subject to the scarcity of
similarity information, these methods run into problems such as overfitting and
train/test distribution mismatch, resulting in a significant loss in retrieval per-
formance. Recently, some methods employ generative models, specifically gen-
erative adversarial networks (GAN), to synthesize additional training data for
improving the generalization of the learned hash functions. Nevertheless, these
GAN-based methods do not take full advantage of generative models beyond
synthetically generating the data. The main reason is that GAN is an implicit
generative model that does not directly estimate the density function of the
data. On the other hand, explicit generative models, specifically energy-based
models (EBMs), can synthesize images and recover the missing information in
those images through the inference of the EBMs. For example, when the EBM
explicitly models the density of the data p(x), we can recover the missing infor-
mation in a data point x by revising x through the MCMC inference of the
EBM to find the most probable version of z in the data distribution, thus effec-
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tively recovering x. Such ability of explicit generative models is extremely useful
for real-world retrieval applications, especially when data loss or corruption can
happen at any stage during the data collection or transmission process in these
applications. By recovering the corrupted data, we hope to preserve much of the
retrieval performance of the model.

In this paper, we propose a unified energy-based generative hashing frame-
work (GENHASH) that simultaneously learns the representation of the images
and the hash function. Our hashing network consists of a shared representation
network. This network learns shared representation of the images that are useful
to solve multiple objectives. Each objective is modeled as a lightweight head (a
multi-layer perceptron) on top of the shared network and solves a specific task.
The tasks include: 1) an explicit joint probability density estimation of an image
and its semantic labels (energy head), 2) a contrastive hash-function learning
(hash head) and 3) semantic label prediction (classification head). Consequently,
this multipurpose network simultaneously learns to represent the images from
multiple perspectives and allows the training process to develop a shared set of
features as opposed to developing them redundantly in separate networks such as
the GAN-based methods. Finally, since our model only trains the EBM for data
synthesis, it requires fewer model parameters than approaches that use multiple
networks (e.g., a generator and discriminator in GAN-based approaches). The
main contributions of our paper are summarized below:

— We propose a unified generative, supervised learning-to-hash framework that
takes complete advantage of generative energy-based models and enjoys better
generalization and robustness towards missing data and-out-of distribution
retrieval. The core component of this unified framework is the multi-headed
or multipurpose hashing network, which combines density estimation (i.e.,
MCMC teaching process) and hash coding (i.e., contrastive loss).

— We propose a simple yet efficient training procedure to train the multipurpose
hashing network. Specifically, we propagate the MCMC chains during training
with two persistent contrastive divergence (PCD) buffers. One PCD buffer
“explores” different modes of the model during training while the other PCD
buffer is responsible for “exploiting” the learned modes to assist the contrastive
hash function learning. The two PCD buffers jointly improve the efficiency of
the MCMC teaching, thus allowing the training process to converge faster in
practice.

— We demonstrate the advantages of our model over several state-of-the-art
hashing techniques through an extensive set of experiments on various bench-
mark retrieval datasets.

The rest of the paper is organized as follows. We discuss the related work
in Sect. 2. In Sect. 3, we describe the details of the proposed generative hashing
network. We present quantitative and qualitative experimental results in Sect. 4
and conclude our discussion in Sect. 5.
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2 Related Works

In this section, we review the previous research works related to two topics,
namely, image hashing and energy-based generative models.

2.1 Image Hashing

Learning to hash, and especially image hashing, has been heavily investigated in
both theory and practice. The existing image hashing methods can be organized
into two categories: shallow hashing and deep hashing. Shallow hashing meth-
ods learn linear hash functions and rely on carefully-constructed discriminative
features that are extracted from any hand-crafted feature extraction techniques
or any representation-learning algorithms. On the other hand, the deep hashing
methods combine the feature representation learning phase and the hashing phase
into an end-to-end model and have demonstrated significant performance improve-
ments over the hand-crafted feature-based hashing approaches [5-8,12-16].

Hashing methods can also be divided into unsupervised [2,8,17-19] and
supervised hashing [4,20-27]. The works in [2,28] regress from the hash code
of an image to its semantic label. Li et al. [14,15] predict the class label of an
image given its hash code. On the other hand, the works in [3,8] preserve the
consistency between the hash codes approximated from the similarity matrix
and the hash codes approximated from the deep networks. A pairwise similar-
ity objective or triplet ranking objective can also be formulated by randomly
drawing the similar and dissimilar examples of an image from the dataset [6,7].
Our work, GENHASH, also models the relationship between the hash code of an
image and its semantic label. However, GENHASH ensures that the hash codes
of the synthetic samples are also consistent with their sampled labels. Further-
more, different from the previous triplet-ranking-based hashing methods, the
contrastive samples (similar and dissimilar images) in our triplet-ranking objec-
tive (in Sect. 3) are synthetic (i.e., generated from a generative model) instead of
being drawn from the same empirical datasets. The primary reason is to improve
the generalization of the learned hash function. GENHASH is also orthogonal to
OrthoHash [29] and the works in [9,10,30], all of which focus on improving the
quantization aspect of learning the hash function.

Generative Supervised Hashing: Supervised methods can easily overfit with
limited labeled data. Some methods overcome such a limitation by synthesizing
additional training data to improve the generalization of the hash functions [31,
32]. These methods employ the popular Generative Adversarial Network (GAN)
to synthesize the contrastive images. The use of generative models in hashing
is currently limited to only data synthesis. Yet, generative models can benefit
other downstream problems such as data imputation and out-of-distribution
robustness. Our work belongs to the deep, supervised hashing category and we
alm to jointly learn an energy-based generative model and the hash function
in an end-to-end manner. Borrowing the strengths of EBM, we improve the
retrieval performance over the GAN-based approaches and significantly improve
the robustness of the hash function in terms of handling missing data and out-
of-distribution retrieval.
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2.2 Energy-Based Generative Models

The works in [33,34] propose a powerful generative model, called generative
cooperative network (CoopNets), which can generate realistic image and video
patterns. The CoopNets framework jointly trains an energy-based model (i.e.,
descriptor network) and a latent variable model (i.e., generator network) via a
cooperative learning scheme, where the bottom-up descriptor network is trained
by MCMC-based maximum likelihood estimation [35], while the top-down gen-
erator learns from the descriptor and serves as a fast initializer for the MCMC
of the descriptor. While the CoopNets framework avoids mode collapse and the
bottom-up descriptor is a valid model for both representation and generation,
it still employs two separate networks that must be carefully designed together
to ensure the model converges to a good local minima [33]. This problem also
exists in GANs.

Du et al. [36] propose a scalable single-network EBM for the image generation
task. The EBM can generate a realistic image and exhibits attractive properties
of EBM such as out-of-distribution and adversarial robustness. Grathwohl et
al. [37] reinterpreted the discriminative classification task, which estimate the
conditional probability p(z|y), with an energy-based model for the joint prob-
ability p(z,y). To estimate the intractable partition function, the authors use
MCMC sampling through the Langevin dynamics. Specifically, they build upon
the persistent contrastive divergence (PCD) [38] and maintain a replay buffer
to propagate the MCMC chains during training. This allows shorter mixing
times than initialization of the chains from random noise, while occasionally re-
initializing samples from random noise in the buffer allows the training process
to explore different modes of the model. Our paper studies generative hashing
based on the framework of a single EBM with multipurpose objectives. However,
as we shall see later, the current PCD training procedure of existing EBM works
does not work well for contrastive hash function learning where the loss function
involves data synthesis of similar and dissimilar examples. Instead, we propose
to train the EBMs by mixing between an exploration buffer and an exploitation
buffer.

3 Multipurpose Generative Hashing Network

The proposed Multipurpose Generative Hashing Network consists of a shared
representation network and multiple lightweight heads. They are jointly trained
by an MCMC-based learning algorithm, as described in Fig. 1.

3.1 Problem Statement

Given a dataset X = {1, 22, ...,z } of n images, the goal of a hashing method
is to learn a discrete-output, nonlinear mapping function H : x — {—1,1}%,
which encodes each image x into a K-bit binary vector such that the similarity
structure between the images is preserved in the discrete space. In the supervised
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Fig. 1. GENHASH is a multipurpose hashing network (light blue block) that describes
the images in multiple ways, including an explicit density model p(z|c), a discrimina-
tive model p(c|z), and a hashing model, all of which share a base bottom-up repre-
sentational network. The multipurpose hashing network is trained by a loss including
negative maximum likelihood, triplet-ranking loss, and classification loss. To compute
the triplet-ranking loss, GENHASH relies on the Contrastive Pair Generation process
(light yellow block) that takes a label ¢t as input and synthesizes (i.e., samples from
the replay buffer B>) a contrastive image pair {#¥, 4} from the same class ¢™ and a
different class ¢~. (Color figure online)

hashing setting, each example z; € X is associated with a label ¢;. Note that
this is a point-wise label of an image. Another common supervised scenario has
the pairwise similarity label for each pair of images. However, for most image
applications, pair-wise labeling is significantly labor-intensive because a dataset
of n images requires n? pairwise labelings.

3.2 Multipurpose Energy-Based Model

The multipurpose EBM aims at representing the images from different perspec-
tives. We propose to parameterize this network by a multi-headed bottom-up
neural network, where each branch accounts for one different representation of
the image. The proposed network assembles three types of representational mod-
els of data in a single network in the sense that all models share a base network
but have separate lightweight heads built on top of the base network for dif-
ferent representational purposes. Let fo(z;60) be the shared base network with
parameters 6y. Next, we will describe the purpose of each head in more detail.

Conditional Energy head: The energy head hg along with the base network fj
specifies an energy function fg(x, ¢; @), where observed image-label pairs (which
come from the real data distribution) are assigned lower energy values than unob-
served ones. For notational simplicity, let the parameters be ©g = (6, 0g) and the
energy function be fg(z,c;Or) = hg(c, fo(z,0); 0). With the energy function
fE, the energy head explicitly defines a probability distribution of  given its label
¢ in the form of an energy-based model as follows:
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_ _ p@,0p)  expl—fr(z,¢;OR)]
p(x|c, 9E) - fp(x,c; QE)d(E - Z(C; QE) ) (1)

where Z(¢;0p) = [exp|—fe(z,¢;Og)]dx is the intractable normalizing con-
stant. Equation (1) is also called generative modeling of neural network fg [35].
Specifically, fixing the label ¢, fg(x,c;Og) defines the value of the compatible
solution x and — fg(x, ¢; ©g) defines the conditional energy function. Note that,
for each value ¢, there are many compatible solutions z, i.e., there are several
z’s with similar, low conditional energies.

The training of fg in this context can be achieved by maximum likelihood
estimation, which will lead to the “analysis by synthesis” algorithm [39]. Given
a set of training images with labels {(¢;, z;)}7;, we train O by minimizing the
negative log-likelihood (NLL):

1 n
Ly(Op) = - ;10gp(xi|ci§@E)a (2)
The gradient of the above loss function is given by

lzn: E Ofp(r,c;Op)|  0fp(xi,ci;On) 3)
n pot p(z]ci;OF) a@E 89E ’

where the E,|c;;05) denotes the intractable expectation with respect to
p(z|ci; Op).

Following the works in [36,37], we use persistent contrastive divergence
(PCD) [38] to estimate the intractable expectation since it only requires short-
run MCMC chains. This gives an order of magnitude savings in computation
compared to initializing new chains with a long mixing time at each iteration.
Intuitively, the PCD supplies the learning process with initial solutions from a
replay buffer of past generated samples. The learning process then refines these
solutions at high-value region around a mode of the objective function. The
model’s parameters are then updated so that the objective function shifts its
high-value region around the mode towards the observed solution. In the next
iteration, the refined solution will (hopefully) get closer to the observed solution.

The MCMC sampling strategy with the replay buffer can be summarized
in two steps: (i) the algorithm first samples & from a replay buffer B; with a
probability pg, and from uniform noise with a probability 1 — pg,, and then
(ii) it refines & by finite steps of Langevin updates [40], which is an example of
MCMC, to obtain final Z, as follows:

2 =

i't_;,_l:jt—iM‘F(SN(O,ID),i'OZi’, (4)
2 oz

where ¢ indexes the Langevin time steps, and J is the step size. The Langevin

dynamics in Eq. (4) is a gradient-based MCMC, which is equivalent to a stochas-

tic gradient descent algorithm that seeks to find the minimum of the objective

function defined by fg(x,c;O@g). The replay buffer B; stores past generated
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samples. Occasionally re-sampling from random uniform noise is crucial to the
learning process since different modes of the model can be explored in train-
ing. On the other hand, between the parameters’ update steps, the model only
slightly changes, thus sampling from past samples, which should be reasonably
close to the model distribution, allows the algorithm to simulate longer MCMC
chains on the samples. However, we call B; an explore buffer because of its
primary function, which is to seek and cover possible modes of the model.

With the MCMC examples, we can compute the gradient of the negative
log-likelihood objective by

1~ [0fe(#i,¢i;08)  Ofp(i,ci;Or)
VOr)~ T D { 90g 90p

i=1

()

Contrastive Hashing head: The head hy learns to represent the input images
as binary codes. The hash head hy and the base network fy form a hash function
fu(x;0n) = hu(fo(x;00);0m), where @ = (0, 05). The hash function aims
at mapping images with similar high-level concepts to similar hash codes and
those of unrelated concepts to dissimilar codes. With a generative model, one
effective way to learn such hash function is: for each image x, we “draw” a positive
sample T that is conceptually similar to x and a negative sample = that is
conceptually dissimilar to x, and train the hash function to produce similar hash
codes for x and ™, and dissimilar hash codes for x and z~.

Such contrastive learning can be achieved by recruiting labeled generated
samples from the inference of the conditional EBM. These synthetic samples
from each class can be similarly generated using MCMC sampling. To avoid a
long mixing time where the MCMC chains are initialized from random noise, we
can reuse past generated samples from the replay buffer 5;. However, B; may
contain several past samples that have been less rigorously refined through the
Langevin dynamics (i.e., only refined a few times). These “young" samples can
still be closer to random noise. Therefore, when being selected for contrastive
hash learning, there is not a useful difference between samples from a different
class. That is, the current sample = and their similar and dissimilar synthetic
samples 7 and z7, respectively, do not form an informative contrastive triplet.
Empirically, we observe that only relying on B; for contrastive samples learn a
hash function whose performance is significantly worse than desired.

This problem is further illustrated in Fig. 2, where some samples from each
class are similar to random noise. There are more of these samples in CIFAR10
than in MNIST because the generation of natural images in CIFAR10 requires
a significantly more complex model than the generative model of MNIST. Even
further into training, we observe that there are still similar MCMC samples due
to the occasional sampling from random noise that requires longer MCMC chains
when the data distribution is complex (as in the case of CIFAR10). One naive
solution is to increase the number of Langevin steps; however, larger chains make
the EBM significantly more computationally expensive to train.
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Fig. 2. Samples from the explore buffer B;. Images on each row are from the same
semantic class. Some CIFAR10 images in this buffer are far from real images because
Bi is a mixture of (i) newly-initialized or younger samples from the MCMC chain and
(ii) those samples that have been revised several times.

We propose a simple, yet effective sampling strategy to solve this problem.
First, we introduce a second replay buffer Bs, where a sample x € Bs is required
to be initialized from supposedly longer MCMC chains. To avoid explicitly
increasing the number of Langevin steps to achieve such longer MCMC chains,
we leverage the existing replay buffer B; by “copying” samples that have been
revised several times in Bj. Intuitively, while sampling from B; allows the train-
ing process to explore different modes of the models, sampling from By exploits
the learned modes. However, since we regularly copy the samples from By to Bs
when they are “matured”, sampling from B also explores all previously learned
modes in for the contrastive hash learning.

Under this sampling strategy, to learn the contrastive hash function, for each
observed image x and its label ¢, we sample a synthetic image ', conditioned
on the label ¢, and a synthetic image x~, conditioned on a different label ¢~ # ¢
using the replay buffer By. The three examples form a real-synthetic triplet
(z,zT,27). The hash function fy can be trained to minimize the Hamming
distance (a discrete distance function that is typically approximated by the con-
tinuous Lo distance) between fy(z) and fy(z™) and maximize the distance
between fg(x) and fg(z7). This triplet-ranking loss is defined as follows:

Lu(On) = ||fu(x) = fu (@)l +maz(m — || fu(z) — h(z7)][m,0)  (6)
s.t. fH($> € {_la 1}7 fH(x—i_) € {_17 1}? fH(m_) € {_15 1}
where ||.]|z denotes the Hamming distance. The first term preserves the sim-

ilarity between images with similar semantic concepts, while the second term
penalizes the mapping of semantically dissimilar images to similar hash codes
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if their distance is within a margin m. Essentially, this is a contrastive objec-
tive that avoids collapsed solutions because it only considers the dissimilar pairs
having distances within a certain margin to contribute to the loss.

The objective of Ly, is a discrete optimization problem, hence it is computa-
tionally intractable to solve and is not suitable for a gradient-based backpropa-
gation algorithm. A natural solution is to approximate the discrete constraints
with real-valued output and replace the Hamming distance with Euclidean dis-
tance. For the thresholding procedure, a commonly-used trick is to employ the
tanh or sigmoid function. However, we find that tanh or sigmoid makes the
learning process more difficult to converge to good local optima. To overcome
this, we propose to directly regularize the real-valued output of the hash function
to the desired discrete values. The final triplet-ranking loss is as follows:

Lu(On) = ||fu(x) = fu(2")|l2 + max(m — ||fu () — fu(z7)[|2,0)
A @) = Ul + (1fa @] = 2+ [l fa(@7)] = 1l2)

where fy(.) is now the relaxed function with real-valued vector outputs and |.|
is element-wise absolute operation. The first and second terms in the objective
function approximate the Hamming distances in Eq. (7). The last term min-
imizes the quantization error of approximating the discrete solution with the
real-value relaxation. Intuitively, it centers the relaxed, continuous output of the
hash function around the desired binary value of -1 or 1. Note that the max
operation is non-differentiable; however, we can define the subgradient of the
mazx function to be 1 at the non-differential points.

(7)

Discriminative head: Image labels provide not only knowledge for training a
classification model but also a supervised signal for extracting high-level infor-
mation of the images. On the other hand, the learned hash codes should also
capture high-level abstractions of the images, therefore should be predictive of
the image labels. This relationship can be modeled through a multi-class classi-
fication problem. Specifically, we propose a classification head h¢o that predicts
the class label of an image given its hash code. For each image x;, let ¢; be the
predicted label. The multi-class classification loss can be defined as follows:

0T L h(z)
Le = Z Ci log e (8)
where 0o € RE*L is the parameter of the linear layer that maps each hash code

into the class labels. We additionally denote ©¢ = (0, 0¢) as the parameters of
this classification network. This objective function is optimal when the discrete
space is approximately linear separable with respect to the class labels. In other
words, the hash codes of the images from the same semantic class have small
Hamming distances between them, while the hash codes of the images from
different classes have larger Hamming distances.

3.3 Optimization

At each iteration, the energy-based model p(z|c; @) samples synthetic con-
trastive image pairs by following the strategy described in the previous section.



Unified Energy-Based Generative Hashing Network 537

With synthetic images, we train the multipurpose hashing network to simultane-
ously describe the images from multiple representational perspectives. The over-
all training objective of the network, which combines the negative log-likelihood
Ly (OFg), the triplet-ranking loss Ly1(O ), and the classification loss Lc(O¢), is
given by:

L(Og,On,0c) = L(Or)+ Bulu(On) + fcLlc(Oc) 9)

where By and (B¢ are parameters to balance the weight between different losses.

In general, EBMs are less computationally efficient than GAN-based mod-
els [36]. However, the increased computational cost (compared to GAN-based
methods) is only in the training phase, which can be mitigated with larger hard-
ware and distributed training. With short-run MCMCs (typically only 15-20
Langevin steps in our experiments), we can already significantly reduce the train-
ing time of the EBM component. During the testing phase, since we only use the
hash function and discard the remaining components (Fig. 1b), the computation
is similar to the computation of the models in other hashing methods.

4 Experiments

In this section, we present the evaluation results on several real-world datasets
to demonstrate the effectiveness of the proposed method.

4.1 Experimental Setup

Datasets: We evaluate our method on three widely-used datasets in the image
hashing domain: NUS-WIDE, COCO and CIFAR-10.
Evaluation Metrics: We evaluate the retrieval performance of the methods
using the standard retrieval metrics in image hashing: Mean Average Precision
at K (mAPQK) and Precision at K (PQK).
Baselines: We compare our method against several representative approaches
from image hashing. ITQ [4], BRE [3], and KSH [41]) are shallow supervised
hashing approaches. CNNH [8], SDH [2], DNNH [7], FastHash [28], DHN [6],
DSDH [14], DVStH [42], HashNet [5], CSQ [43], and the state-of-the-art gen-
erative method, HashGAN [19] are deep supervised hashing approaches. Addi-
tionally, we include the results of HashGAN-1, which is the HashGAN method
where the GAN model and the hash function are jointly learned in one stage.
The complete experimental setup, including the dataset details, evaluation
metric calculations, and implementation details, are provided in the Supplement.

4.2 Retrieval Results

In this section, we present the results of querying for similar images. Table 1
shows the mAP results for all the methods. Compared to the shallow hashing
methods, GENHASH improves at least 14% on NUS-WIDE, 13% on CIFAR-10,
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Table 1. Mean Average Precision (mAP) for different number of bits.

Method NUS-WIDE CIFAR-10 COCO

16 bits | 32 bits | 48 bits | 16 bits | 32 bits | 48 bits | 16 bits | 32 bits | 48 bits
ITQ [4] 0.460 |0.405 |0.373 |0.354 |0.414 |0.449 |0.566 |0.562 |0.530
BRE [3] 0.503 |0.529 |0.548 |0.370 |0.438 |0.468 |0.592 |0.622 |0.630
KSH [41] 0.551 |0.582 |0.612 |0.524 |0.558 |0.567 |0.521 |0.534 |0.534
SDH [2] 0.588 |0.611 |0.638 |0.461 |0.520 |0.553 |0.555 |0.564 |0.572
CNNH [8] 0.570 |0.583 |0.593 |0.476 |0.472 |0.489 |0.564 |0.574 |0.571
DNNH [7] 0.598 |0.616 |0.635 |0.559 |0.558 |0.581 |0.593 |0.603 |0.605
FastHash [28] |0.502 | 0.515 |0.516 |0.524 |0.566 |0.597 |0.601 |0.609 |0.612
DHN |[6] 0.637 |0.664 |0.669 |0.568 |0.603 |0.621 |0.677 |0.701 |0.695
DSDH [14] 0.650 |0.701 |0.705 |0.655 |0.660 |0.682 |0.659 |0.688 |O0.710
DVStH [42] 0.661 |0.680 |0.698 |0.667 |0.695 |0.708 |0.689 |0.709 |0.713
HashNet [5] 0.662 |0.699 |0.711 |0.643 |0.667 |0.675 |0.687 |0.718 |0.730
CSQ [43] 0.701 |0.713 |0.720 |0.646 |0.699 |0.709 |0.679 |0.699 |0.714
HashGAN [19] | 0.715 |0.737 |0.744 |0.668 |0.731 |0.735 |0.697 |0.725 |0.741
GENHAsn 0.742 | 0.754 |0.773 |0.711 | 0.739 | 0.778 |0.747 | 0.768 |0.775

Table 2. Precision@1000 for different number of bits.

Method NUS-WIDE CIFAR-10 COCO

16 bits | 32 bits | 48 bits | 16 bits | 32 bits | 48 bits | 16 bits | 32 bits | 48 bits
ITQ [4] 0.489 |0.572 |0.590 |0.289 |0.271 |0.305 |0.489 |0.518 |0.545
BRE |[3] 0.521 |0.603 |0.627 |0.398 |0.445 |0.471 |0.520 |0.535 |0.559
KSH [41] 0.598 |0.656 |0.667 |0.580 |0.612 |0.641 |0.519 |0.540 |0.558
SDH [2] 0.640 |0.702 |0.712 |0.655 |0.671 |0.651 |0.696 |0.695 |0.710
CNNH [8] 0.601 |0.651 |0.672 |0.533 |0.545 |0.578 |0.671 |0.690 |O0.718
DNNH [7] 0.620 |0.689 |0.707 |0.651 |0.678 |0.691 |0.713 |0.701 |0.728
DHN [6] 0.655 |0.713 |0.726 |0.659 |0.701 |0.725 |0.703 |0.731 |O0.750
DSDH [14] 0.658 |0.728 |0.752 |0.678 |0.710 |0.729 |0.721 |0.735 |0.754
HashNet [5] 0.680 |0.729 |0.741 | 0.720 |0.721 |0.741 |0.745 |0.746 |O0.753
CSQ [43] 0.701 |0.741 |0.750 |0.725 |0.735 |0.741 |0.749 |0.742 |0.749
HashGAN [19] | 0.720 |0.759 |0.772 |0.735 |0.751 |0.762 |0.755 |0.768 |0.783
GENHAsH 0.749 | 0.780 | 0.808 | 0.780 | 0.799 | 0.823 |0.789 |0.795 |0.811

and 20% on COCO. Compared to the state-of-the-art deep hashing method that
does not have data synthesis (i.e., HashNet), GENHASH improves at least 9%,
9%, and 5% on NUS-WIDE, CIFAR-10, and COCO, respectively. GENHASH
outperforms HashGAN, the state-of-the-art supervised, data-synthesis method
by statistically significant margins in all the datasets.

The mAP results provide empirical evidence to support our discussion in
Sects. 1 and 2. First, generating synthetic data improves the performance of a
supervised hashing method. This could be explained by the fact that generative
models improve the amount of “labeled” training data and increase its diversity,
both of which improve the method’s generalization capacity. Second, we can
observe that the performance of HashGAN significantly decreases without the
fine-tuning step (HashGAN-1’s results). Training GAN-based models is difficult
with problems such as mode collapse; thus in GAN-based models such as Hash-
GAN, a second fine-tuning step, where only the hash function is trained with the
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synthetic data while the other components are fixed, is needed to avoid difficul-
ties in simultaneously training the generator and discriminator. This increases
the computational requirement of the GAN-based methods. Finally, GENHASH,
which simultaneously trains the generative model and the hash function, has
better retrieval performance than the state-of-the-art, two-stage HashGAN. This
supports our claim that the one-stage scheme learns better similarity-preserving
hash codes of the images.

In addition, we present the Precision@1000 results in Table2. The Preci-
sion@1000 is calculated at the common retrieval threshold (1000) in image appli-
cations. Similarly, the proposed GENHASH significantly outperforms all the com-
pared methods.

4.3 Out-of-Distribution Retrieval

In this section, we show that GENHASH, which is a multipurpose EBM, exhibits
better out-of-distribution (OOD) robustness in retrieval than other methods. In
real-world retrieval applications, the arrival of new data instances or new data
format are common. This results in conceptual drift or change in the underlying
data distribution where the hashing methods are trained on. A hashing method
that is robust (i.e., its performance is not significantly worse) to slight changes
in such underlying distributional change in the data is preferred because it takes
a longer time for the trained model to become obsolete.

Table 3. OOD Retrieval. Table 4. Data-corruption Retrieval.
Train/Test HashNet | CSQ | HashGAN | GENHASH Type HashNet | HashGAN | GENHASH
SVHN/MNIST |0.181 0.5170.354 0.609 Snb | Cloan 0.513 0.608 0.680
SVHN/SVHN |0.837 | 0.854|0.889 0.895 Corrupted | 0.223 0.281 0.652
MNIST/SVHN |0.193 0.273]0.280 0.498 RRM | Clean 0.471 0.615 0.654
MNIST/MNIST | 0.957 0.991 | 0.990 0.991 Corrupted | 0.243 0.298 0.607

We propose to simulate a minor but realistic distributional change in the
data as follows. In the learning phase, each hashing method is trained on a
source dataset. In the testing or evaluation phase, we use a different test dataset
that is conceptually similar to the source dataset but comes from a (slightly)
different data distribution. We choose MNIST and SVHN as conceptually-related
datasets. One dataset is selected as both the train and retrieval sets, while the
test queries are sampled from the other dataset.

Table 3 shows the retrieval results of GENHAsH, HashNet (a deep hashing
method), HashNet and HashGAN (a GAN-based hashing method). As can be
observed, GENHASH significantly outperforms both HashNet and HashGAN in
OOD retrieval, with more than 25% when using MNIST for querying, and 20%
when using SVHN for querying. GENHASH’s mAP performance is still roughly
more than 50% when the test data distribution changes. This makes GENHASH
still useful in practice, while in other methods, the retrieval performance signif-
icantly drops closer to the performance of a random retrieval.

While the OOD retrieval performance falls significantly, compared to the
retrieval performance using data from the same distribution as that of the train-
ing data, data-synthesis methods (HashGAN and GENHASH) are more robust
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toward distributional changes, compared to the conventional deep hashing meth-
ods HashNet and CSQ. In addition, when being trained on a more complex
dataset (SVHN), the retrieval performance of GENHASH significantly improves
in our OOD tests, while the OOD retrieval performances of the other methods
only slightly improve.

4.4 Missing-Data Robustness in Retrieval

GENHASH is a multipurpose EBM. Similar to other explicit generative EBMs [36,
37|, we can additionally model the energy function of x. This provides us with
an important advantage over other generative models: we can revise (or recon-
struct) a sample with corruption by initializing the input chain into the Langevin
dynamics with the corrupted samples. Through the Langevin revision, the cor-
rupted samples can be re-constructed. Note that, this feature of the EBM is not
immediately available in other generative hashing methods, such as HashGAN.

We perform the missing data experiments as follows. First, we assume that
both training data and test data may contain corrupted input images. During
training of GENHASH, we train on the clean input as mentioned previously. For
corrupted input we initialize the MCMC chains with the corrupted samples and
revise these samples through the Langevin dynamics. We corrupt the images in
both the training and test sets of the CIFAR10 dataset. We corrupt 20% of the
data using salt-and-pepper noise (denoted by SnP) or random rectangular mask
(denoted by RRM, where the rectangles randomly cover approximately 10-20%
of the images at random locations) on the images for both training and query
sets. Then, the model in each hashing method is trained with the corrupted
training set and the evaluation is performed on the corrupted test set.

In Table 4, we show the results for the missing-data robustness experiments.
As can be observed, the performances of the baseline methods, including the
generative hashing HashGAN method, are significantly degraded when there are
corruptions in the data. On the other hand, GENHASH’s retrieval performance
only slightly drops when the data is corrupted. This shows the advantages of the
proposed EBM-based multipurpose generative hashing network.

5 Conclusion

This paper proposes a unified generative framework, called GENHASH to solve
the image hashing problem. The framework learns a multipurpose hashing net-
work to represent images from multiple perspectives, including classification,
hashing, and probability density estimation. This approach learns high-quality
binary hash codes and achieves state-of-the-art retrieval performance on sev-
eral benchmark datasets. Furthermore, GENHASH is significantly more robust
to out-of-distribution retrieval compared to the existing methods and can handle
significant corruption in the data with trivial drops in the retrieval performance.
In GENHASH, we also train a single EBM-based network, which makes it easier
for the practitioner to design better architectures. This is preferred compared to
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other GAN-based approaches because designing the discriminator and generator
networks is not a trivial task with various problems when one network has more
capacity than the other.
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