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Abstract

Quantitative ultrasound (QUS) was used to classify rabbits that were induced to have liver disease 

by placing them on a fatty diet for a defined duration and/or periodically injecting them with CCl4. 

The ground truth of the liver state was based on lipid liver percents estimated via the Folch assay 

and hydroxyproline concentration to quantify fibrosis. Rabbits were scanned ultrasonically in vivo 
using a SonixOne scanner and an L9–4/38 linear array. Liver fat percentage was classified based 

on the ultrasonic backscattered radio-frequency (RF) signals from the livers using either QUS or a 

1D convolutional neural network (CNN). Use of QUS parameters with linear regression and 

canonical correlation analysis (CCA) demonstrated that the QUS parameters could differentiate 

between livers with lipid levels above or below 5%. However, the QUS parameters were not 

sensitive to fibrosis. The CNN was implemented by analyzing raw RF ultrasound signals without 

using separate reference data. The CNN output the classification of liver as either above or below a 

threshold of 5% fat level in the liver. The CNN outperformed the classification utilizing the QUS 

parameters combine with a support vector machine (SVM) in differentiating between low and high 

lipid liver levels, i.e., accuracies of 74% versus 59% on the testing data. Therefore, while the CNN 

did not provide a physical interpretation of the tissue properties, e.g., attenuation of the medium or 

scatterer properties, the CNN had much higher accuracy in predicting fatty liver state and did not 

require an external reference scan.
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Introduction

Management of liver disease, including fatty and fibrotic liver, is an important clinical 

problem. Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver 

disease in the United States (Wieckowska and Feldstein, 2008). With up to a third of the 

United States population affected by NAFLD (70–90% of obese or Type 2 diabetic patients 

have NAFLD), NAFLD represents a significant medical concern. Inflammation associated 

with NAFLD can also lead to liver fibrosis and other liver diseases. Liver fibrosis is the 

cause of chronic damage to the liver including infections, toxins, and autoimmune disorder, 

and it can lead to cirrhosis and hepatocellular carcinoma.

NAFLD is often used to describe a range of liver conditions: fatty liver, steatohepatitis, 

advanced fibrosis, cirrhosis (Angulo, 2002). Fibrosis is the result of hepatic injury, which 

causes the gradual replacement of hepatocytes by extracellular matrix proteins such as 

collagens (Bataller and Brenner, 2005). According to the Center for Disease Control (CDC), 

cirrhosis, the end stage of fibrosis, affects 900,000 patients in the US, resulting in 30,000 

deaths per year (CDC, 2019). Evaluation of hepatic fibrosis degree is essential for prognosis, 

surveillance and treatment decisions in patients with chronic liver disease. Early detection of 

fibrosis is clinically important because fibrosis is potentially reversible if caught at an early 

stage. Liver biopsy, currently the gold standard for assessing liver fibrosis and steatosis, 

suffers from sampling errors, inter-observer variability, and invasiveness, and has potential 

complications including morbidity and mortality.

There remains an unmet clinical need to develop imaging techniques for the non-invasive 

evaluation of liver steatosis and fibrosis. Ultrasound is an attractive imaging modaility 

because it is safe, real time, portable and inexpensive. Different methods using ultrasound 

have been explored to detect fibrosis and steatosis. Conventional B-mode image features 

were shown to be inaccurate predictors of early and significant liver fibrosis (Choong et al., 

2012). Because liver stiffness increases with the degree of fibrosis, transient elastography 

(TE) and acoustic radiation force impulse imaging have been successfully demonstrated to 

quantify liver stiffness and to correlate estimates with the degree of fibrosis (Sandrin et al., 

2003; Ziol et al., 2005). Other ultrasonic methods based on echo amplitude distribution, such 

as the acoustic structure quantification (Tsui et al., 2016), can be used to quantify liver 

fibrosis via the Nakagami parameter. The Nakagami parameter, which quantifies the type of 

scattering conditions based on the envelope distribution, decreased with an increase in the 

histological fibrosis stage (which is inversely proportional to the severity of liver fibrosis). 

Attenuation was also used as an indicator of fibrosis. Suzuki et al. (1992) looked at the fatty 

and fibrotic rabbit liver model independently and found that attenuation and hydroxyproline 

scores had a positive correlation (0.87). Based on histological grading, Lin et al. (1988) 

observed an increase of attenuation coefficient for increased fat infiltration in vitro in 

humans and a less pronounced increase of attenuation for higher grades of fibrosis (0.63 ± 

0.16, 0.83 ± 0.26 and 0.87 ± 0.12 dB cm−1 MHz−1 for grade 1, 2 and 3, respectively). More 

recent studies have evaluated quantitative ultrasound (QUS) techniques in humans for 

classifying liver disease with accuracies of 55.0% and 68.3% based on attenuation and 

backscatter coefficient (BSC), respectively, when compared to MRI-estimated proton 

density fat fraction (PDFF) (Paige et al., 2017).
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The first goal of the current study is to evaluate QUS as a noninvasive method to 

quantitatively assess liver fibrosis and steatosis in an in vivo rabbit model. The second goal 

of the study is to evaluate using the raw ultrasound backscattered signals to classify liver 

state without taking a reference spectrum. In a previous study, we demonstrated that QUS 

techniques could detect the presence of steatosis in a rabbit model of fatty liver alone with a 

classification accuracy of 84.11 % (Nguyen et al., 2019). In this study, we explored the 

effects of fibrosis and fat in the liver on QUS analysis. Independent correlations between 

QUS parameters and lipid percentages and fibrosis scores were computed. Correlations 

between the QUS parameters and linear combinations of lipid percentages and fibrosis 

scores were also calculated via canonical correlation analysis (CCA) to determine the 

relationship between QUS parameters and the codependency of steatosis and fibrosis.

The system settings were kept unchanged when acquiring rabbits liver scans. Therefore, we 

hypothesized that a 1D convolutional neural network (CNN) could separate the system-

dependent signal from the tissue-dependent signal, and perform classification in a reference-

free manner. A CNN learns a nonlinear mapping from the input to the output via stacking of 

multiple connected convolutional filter layers at different resolutions (Zeiler and Fergus, 

2014). The learned features from the convolutional layers can then be concatenated into a 

vector and classified by fully connected layers. In the case of ultrasonic tissue 

characterization, the problem can be formulated as a supervised learning strategy using a 

CNN where the input is the backscattered RF data and the output is the pathological 

indicator (e.g. fatty/non-fatty) when the task is classification or the degree of fatty liver (in 

lipid percentage) or the fibrosis scores when the task is regression.

To our knowledge, no published work exists comparing CNNs for the problem of fatty liver 

classification using ultrasonic data to QUS-based classifiers. Treacher et al. tested 100 

different CNN architectures using B-mode images as inputs and showed that there was no 

substantial predictive power to detect fibrosis (Treacher et al., 2019). The traditional 

spectral-based QUS approach does not utilize the phase information in the RF signal, 

because only the magnitudes of the power spectra from RF data were computed. We 

hypothesized that a CNN could extract classification power from the lost phase information 

from the time-domain RF and perform feature extraction and classification simultaneously. 

In this work we compare the reference-free CNN approach with more traditional QUS 

approaches that require a reference scan to classifying liver state. The CNN is reference free 

in the sense that no calibration data from a reference phantom are used with the CNN 

because the same system and settings were used to collect all data. The CNN is 

hypothesized to differentiate between the tissue signal and the signal properties from the 

system. However, if a different ultrasonic system, probe, setting or frequency range were 

used, the CNN would need to be retrained using the new configuration. If it is feasible to 

remove a reference scan from the process of liver classification, this could reduce the 

number of scan steps during the busy clinical work flow.
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Materials and Methods

Animal Procedures

The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) 

at the University of Illinois at Urbana-Champaign. Sixty male New Zealand White rabbits 

were used in the study. The study was a 3 × 5 factorial design with rabbits on a fatty diet for 

0, 1, 2, 3 or 6 weeks and injected with carbon tetrachloride (CCl4) to induce fibrosis. 

Initially, rabbits were injected for 11 weeks at concentrations of 0, 0.2, 0.4 or 0.6 mL/kg (30 

rabbits). However, three rabbits died during the study and an alternate injection protocol was 

required, via consultation with IACUC, for the remaining 30 rabbits, which consisted of 

weekly CCl4 injections for 8 weeks at a concentration of 0, 0.035 or 0.07 mL/kg. The 

premature deaths were eventually ruled idiosyncratic. The rabbits were on fatty diet during 

the 8 week or 11 week period. During an injection, CCl4 and olive oil were emulsified. The 

rabbits received weekly injections based on their weights. At the end of each 8 or 11 weeks, 

the rabbits were returned to normal diet and received no injection for about a week before 

ultrasonic scanning. While changing the injection protocol in the middle of the study is not 

ideal, labels for fibrosis were based on the hydroxyproline assay, such that the changes in 

injection protocols were still tied directly to the assay results and could be correlated to QUS 

parameters.

Chemical Assay Procedures

Immediately following euthanasia, the liver was removed en mass. A portion was fixed in 

neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin 

and eosin for histopathological analysis by a board-certified pathologist. Another portion 

was flash frozen in liquid nitrogen and stored at −80° C for use in the Folch assay (Folch et 

al., 1957) and hydroxyproline assay using an hydroxyproline assay kit (Sigma Aldrich, St. 

Louis, MO). The Folch and the hydroxyproline assays were used to quantify the lipid levels 

and fibrosis in the liver, respectively. In the Folch assay, liver tissue was homogenized, and 

lipid content was extracted using chloroform and methanol (Ghoshal et al., 2012). Fat 

content was then expressed as the liver lipid percent. The hydroxyproline assay was used to 

estimate the collagen content as a measure of fibrosis in the liver. Liver tissue was 

homogenized and hydrolyzed overnight in 12 M HCl. The hydrolysate was evaporated and 

color was developed on the hydrolysate by reaction of oxidized hydroxyproline with 4-

Deimethylamini benzaldehyde and the absorbance was read at 562 nm. The hydroxyproline 

level was expressed in mg/g of liver.

Ultrasonic Scanning Procedures

Before scanning with ultrasound, rabbits were anesthetized using isoflurane gas. The skin 

area above the liver was shaved and depilated prior to scanning to improve coupling of the 

ultrasound. Warm ultrasound gel was also placed on the skin surface to improve coupling. 

The liver was scanned in vivo with an L9–4/38 transducer using the SonixOne system 

(Analogic Corporation, Boston, MA, USA) providing an analysis bandwidth of 3 to 6 MHz. 

Fifty frames of post-beamformed RF data sampled at 40 MHz were acquired for each rabbit 

and saved for offline processing. A well-characterized reference phantom was scanned using 

the same system and system settings for calibration of the BSC and attenuation estimation 
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(Yao et al., 1990). Following scanning, the rabbits were euthanized via CO2 while still under 

anesthesia.

Quantitative Ultrasound Procedures

In our supervised learning task, the input was the RF data and the output was either the 

classification or regression of liver lipid and fibrosis. The classification was useful when the 

summary statistics of the QUS parameters (i.e., slope and mid-band fit of attenuation curve) 

were meaningful and could absorb the errors incurred in the Folch and hydroxyproline assay 

results, where the regression alone might not be able to explain these experimental errors.

The desired outputs are the lipid percentage from the Folch assay and the hydroxyproline 

level from the hydroxyproline assay. Pathology descriptions were not incorporated into the 

classifier. The binary classification task of fatty liver was based on a 5 percent threshold, 

which is the median of all lipid percentages from the group of rabbits: high lipid (y = 1) if 

the lipid percentage is greater than or equal to 5 percent, low lipid (y = 0) if the lipid 

percentage is smaller than 5 percent. The median value was chosen to get an equal number 

of rabbits in each class to reduce the bias of the classifier. To obtain a complete picture of the 

relationship between QUS parameters and lipid and fibrosis scores, individual correlations 

were computed and the regression problem was also considered.

The attenuation and BSC curves were extracted from raw RF data by manually segmenting 

the liver regions from the B-mode images of the livers, i.e., regions of interest were chosen 

for each frame. Figure 1 shows a representative B-mode image of a liver along with the 

segmented area. The segmentation of the ROI can occur throughout the field of the image; 

however, segmentation occurred in regions that visibly appeared homogeneous in scattering, 

that were not shadowed by ribs or other structures and with care to omit large vessels. 

Segmentation was limited to depths between 0.5 and 3 cm depth. The liver regions were 

selected such that they were always further than 0.5 cm from the transducer surface. Each 

region of interest was divided into various data blocks of size of 15 by 15 wavelengths (5.1 

mm by 5.1 mm) of the center frequency of the array probe, i.e., 4.5 MHz. Each data block 

had a 75% overlap with other data blocks. The BSC was calculated for each data block using 

the reference phantom method (Yao et al., 1990). The attenuation curve in each data block 

was estimated using the spectral log difference method and averaged over all blocks in an 

image frame and over all image frames for a rabbit to have a mean attenuation curve for 

each rabbit liver (Yao et al., 1990; Parker, 1983). A slope and a mid-band fit at 4.5 MHz 

were estimated from the fitted line to the average attenuation curve. Effective scatterer 

diameters (ESDs) and effective acoustic concentrations (EACs) were derived from the BSC 

curves using a spherical Gaussian scattering form factor (Oelze et al., 2002; Oelze and 

Mamou, 2016). Additionally, correlations between each QUS parameter and the lipid 

percentages and hydroxyproline levels were computed.

A linear regression of the four QUS parameters (ESD, EAC, attenuation slope, attenuation 

midband fit) was performed individually versus lipid and fibrosis scores. Specifically, linear 

regression of lipid percentage yi1 and the hydroxyproline level yi2 to QUS parameters vector 
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xi = xi1, xi2, xi3, xi4 , where xi1 is the ESD, xi2 is the EAC, xi3 is the attenuation slope and xi4 is 

the attenuation midband-fit:

w1, b1 = argmin
w1, b1

∑
i

yi1 − w1xiT − b1
2, (1)

w2, b2 = argmin
w2, b2

∑
i

yi2 − w2xiT − b2
2, (2)

where i is the index of the rabbits’ ID.

Canonical correlation analysis (CCA) (Hardoon et al., 2004) was also performed to estimate 

the correlation of the linear combination of the four QUS parameters with the linear 

combination of the lipid and fibrosis, which would provide a value describing the 

codependence of these two outputs. Let yi = yi1, yi2  be a vector of lipid and hydroxyproline 

values from the rabbits, the vector SxwxT  is the weighted linear combination of the input 

QUS parameters where wx represents the weights, and the vector SywyT  is the weighted 

linear combination of the output parameters:

SxwxT = x1w1
T , …, xnwxT , (3)

SywyT = y1wyT , …, ynwyT . (4)

Then, the CCA finds the weights wx and wy such that the correlation between SxwxT  and 

SywyT  is maximized:

ρ = max
wx, wy

corr SxwxT , SywyT = max
wx, wy

SxwxT , SywyT

SxwxT SywyT
, (5)

where wx and wy can be considered as the axes where the projections of xi and yi have 

maximum correlations. The term n denotes the total number of rabbits.

Convolutional Neural Network Architecture

The model-based QUS approach requires the use of the reference phantom to derive the 

BSCs and the attenuation from power spectra calculated from the RF data. In this study, we 

explored the use of the CNN approach that did not require the use of a reference phantom or 

a model. Furthermore, the ultrasonic scanner settings used in all of the rabbits scans were the 

same, the differences manifested in the RF data were hypothesized to come solely from the 

fatty diet and/or the CCl4 injections. Using a CNN, the feature extraction and classification 

can be accomplished simultaneously through the concatenation of the convolutional layers 

and the fully connected layers.

Because the CNN involves stacking of multiple layers of convolutions with many 

parameters, large amounts of data are required to train the network. Unfortunately, 
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biological data is expensive and time-consuming to acquire; therefore, the number of 

animals in the study was small. Thus, to prevent overfitting of the CNN classifier, in 

conjunction with applying regularization techniques such as batch normalization, drop-out 

and early stopping, only the problem of binary classification was considered: i.e., 

classification of high lipid vs. low lipid. In each training fold division, there were 

approximately 100,000 training examples and 10,000 testing examples (each sample is one 

RF line) while the number of weight parameters in the CNN were 2178, so the network 

could generalize to new data. Note that the CNN was used to classify from the liver images 

only, without the help of reference signals to remove the system effects.

The same gated RF lines inside the liver segmentation when extracting the QUS parameters 

were used as inputs to the CNN. The length of each RF signal data segment was 5.1 mm, 

corresponding to 15 wavelengths axially. Only the RF data of the liver images were 

employed, the RF data from the reference phantom were not utilized. The RF data and the 

corresponding labels from the Folch assay were collected to form a data set to train and test 

the CNN. Out of 57 rabbits, five rabbits had very low SNR images where we could not 

segment an ROI of 15 by 15 wavelengths, so they were not included in the classification. 

Six-fold cross validation was used to assess the model performance. In each fold, 52 rabbits 

were randomly divided into 44 rabbits for training and 8 rabbits for testing, and the process 

repeated five additional times. In each testing fold, the number of rabbits in each class were 

kept balanced: four rabbits were of class 1 and four rabbits were of class 0. The accuracy 

was evaluated on a frame by frame basis. The predicted label of each frame was the majority 

of the predicted labels in all ROIs in that frame. The average accuracy of the classifier was 

computed across all frames.

The CNN consisted of stacking successive layers of convolutions, downsampling and 

dropout. Each hidden convolutional layer in the CNN applied different convolutional filters 

to the previous layer output,

fi
n + 1[m] = σ ∑

k = 1

N
fi

n[m − k]ℎi
n[k] , (6)

where fi
n[m] is the i-th features map at layer n, ℎi

n[k] is the ith-filter to be learned at layer n. 

In the hidden layer n, different numbers of filters were designed to extract different features 

from the data. The activation function σ(x) applies nonlinearity to output of the convolution, 

and effectively introduces nonlinearity in the decision boundaries of the feature space. In 

this work, we utilized the rectified linear unit (RELU) function as an activation function:

g(x) = max(0, x) . (7)

The RELU activation function suppresses the convolution output that is smaller than zero.

The first layer of the network was the gated RF input from a data block selected from the 

image of the sample. The filter coefficients, ℎi
n[k], which are learned during the training 

phase via backpropagation, extract different features from the RF signal. Due to its ability to 

escape local minima of the cost function, Adam optimizer (Kingma and Ba, 2014) was 
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employed to perform gradient descent on the loss function. The loss function used for the 

binary classification was the cross-entropy between the ground truth and the predicted 

output:

L = − ∑
i = 1

N
yilogyi + 1 − yi log 1 − yi , (8)

where yi is the true output which takes the values of 1 for high lipid or 0 for low lipid, yi is 

the current output of the forward pass. The summation is over all training examples. The 

final output node used a sigmoid function to suppress the output into a scalar between 0 and 

1 (yi in Equation 8). When the output of the sigmoid function is greater than 0.5, the input is 

classified as high lipid, otherwise low lipid.

In practice, instead of using all the training examples to calculate the gradients for updating 

the weights, a small batch size of 16 or 32 examples was used to update the network 

weights. This approach was empirically determined to accelerate training and did not affect 

the accuracy (Masters and Luschi (2018)). During testing, the unseen RF input was passed 

through the network to get an output prediction and accuracy was calculated based on the 

predicted output and the true output.

The network architecture used in this study resembles the VGG (named after Visual 

Geometry Group, University of Oxford) network architecture in (Simonyan and Zisserman, 

2014), where downsampling at each layer was employed to reduce the dimensions of the 

feature space. Downsampling or max-pooling was applied by keeping the maximum values 

inside a sliding window across the hidden layer output map. The idea of concatenation of 

convolution, nonlinearity and max pooling was to select only the features in the input that 

strongly contributed to the output prediction. The initial weights of the convolutional filters 

were randomized before training. To prevent feature weights drifting and exploding, batch 

normalization (Ioffe and Szegedy, 2015) was also used to ensure the weights at each layer 

had zero mean and unit variance.

The CNN is composed of four hidden convolutional layers, four pooling layers, two fully 

connected layers and a four softmax output layer (see Table 1). After the fourth layer, all the 

output features were concatenated to get a feature vector of 54 features. Then, two fully 

connected layers were applied to those features to transform the features into a two-class 

classification. The two fully connected layers reorder the extracted features and thresholding 

is applied (via the RELU function) to arrive at the final prediction. To prevent overfitting, 

dropout was used at the fully connected layers, which randomly sets the node output to zero 

with a predefined probability (0.5 was used in this study). Dropout helps redistribute the 

weights (importance of features) to other parts of the networks, since only 50% of the 

weights are nonzero during training. Because node outputs are randomly dropped-out, only a 

few of them are essential to classification, effectively reducing the dimension of the final 

classifier (or reducing overfitting).
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Results

Hydroxyproline Levels and Lipid Percentages

Table 2 provides the hydroxyproline levels for the different injection protocols that were 

used. The data indicate that the second protocol resulted in less fibrosis of the liver. Figure 2 

shows the plots of hydroxyproline vs. lipid percentage for five different diet groups: 0, 1, 2, 

3 and 6 weeks. The blue points are the rabbits without injections and the orange points are 

the rabbits with injections. The rabbits without injections rapidly developed fat in the liver 

over an increasing number of weeks, while the lipid in the rabbits receiving the CCl4 

injections increased more slowly over the weeks on diet. For example, for the 3 weeks diet 

group, all the rabbits with CCl4 injections had lipid values less than 7% while the rabbits 

without injections had lipid values greater than 10%. These results suggest that the injections 

of CCl4 resulted in increased fibrosis of the liver but may have slowed the accumulation of 

fat in the liver, which has also been observed in a mouse model combining a high fat diet 

with CCL4 injections (Kubota et al., 2013)

QUS Parameters

Treating fibrosis as an unobserved variable, we seek to classify the rabbits into two groups 

of steatosis using the four QUS parameters. There were 26 rabbits in the low lipid group and 

30 rabbits in the high lipid group. We had to remove one rabbit from the study, which had 

very low SNR in the acquired RF, thus the segmented liver ROI was too small for the QUS 

estimation.

Figures 3 and 4 provide plots of the averaged BSC and attenuation curves for two classes 

with threshold of 5%. The attenuation curves had more differentiating power than the BSC 

curves. Figure 5 shows B-mode images of three rabbit livers for a range of lipid liver levels. 

The images show that as the lipid levels increase that attenuation in the B-mode appears to 

increase. Accompanying the B-mode figures are graphs of the BSC and attenuation 

estimates for the three rabbits. Differences in both the BSC and attenuation are observed as 

the liver lipid levels increase. Statistically significant differences (p-value < 0.05) were 

observed for the attenuation slope and attenuation midband-fit values between the high and 

low lipid livers. When incorporating rabbits with both fatty diet and CCl4 injection, ESD and 

EAC were not strongly correlated to lipid changes. Using the BSCs, or its derived features 

ESD and EAC, did not result in the ability to differentiate between the low and high lipid 

level groups. Table 3 lists the averaged ESD, EAC, attenuation slope, attenuation midband-

fit and their p-values for differentiating between the two lipid level classes.

Figure 6 plots the linear regression of the combined four QUS parameters fit to the lipid 

percentages. The estimated lipid percentage levels were typically higher than the actual lipid 

levels for rabbits with low lipid level percentage and lower for rabbits with a high lipid level 

percentage. The coefficient of determination r2 was 0.69, suggesting the QUS parameters 

can linearly track the lipid changes. On average, the predicted lipid percentage and the 

ground truth lipid percentage differed by 2%. Table 4 shows the coefficients of linear 

regression and their corresponding p-values. Attenuation slope and mid-band fit were 

linearly correlated to lipid and fibrosis (p-values < 0.05) while ESD and EAC were not.
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Similarly, Fig. 7 shows the regressed hydroxyproline output to the four QUS parameters. 

The r2 coefficient was 0.20, which indicates that the QUS parameters could not explain the 

variances in the hydroxyproline output. The lack of discrimination using the spectral-based 

QUS approaches indicates that these parameters were not sensitive to the degree of liver 

fibrosis.

CCA analysis

Table 5 lists the CCA analysis results of QUS parameters and lipid/fibrosis scores: their 

weights wx and wy and the correlation between their linear combination. There is a strong 

correlation between the linear combinations of QUS parameters and the linear combination 

of lipid and fibrosis in the first canonical dimension (correlation of 0.71). The linear 

combination of QUS parameters in the first canonical dimension is

Xcca = wxxT = 1.73x1 + 0.58x2 + 0.0123x3 + 0.0098x4, (9)

where x1 is the attenuation slope and x2 is the attenuation midband fit, x3 is the ESD, and x4 

is the EAC. This variable Xcca is the horizontal axis in Fig. 8. The output linear combination 

is 0.2408 × y1 (lipid percentage) −0.1285 × y2 (hydroxyproline score), which is the vertical 

axis in Fig. 8. This linear transformation of four QUS parameters and two output scores 

gives the maximum correlation of the two axes in Fig. 8. The second canonical dimension 

had a low correlation coefficient of 0.26 and is not plotted.

Figure 8 plots the first canonical correlation of the weighted QUS parameters and weighted 

lipid and hydroxyproline level. The opposite signs of the weights of the lipid percentage and 

hydroxyproline level in Table 4 suggest the competing effect between lipid and fibrosis, 

similar to Fig. 2.

CNN for lipid classification

The QUS parameters correlated well with the lipid changes, but not with the fibrosis 

changes. Thus, to be comparable to the QUS approach, the CNN was trained only on the 

task of fatty liver classification. It is understood that the fibrosis induced in the liver would 

affect the accuracy of the CNN classifier, and will be the subject of future work. Table 6 

shows the classification results of 1D CNN for classifying two classes: low and high lipid 

with a threshold of 5%. Table 7 lists the accuracies when using the QUS approaches with 

four parameters: ESD, EAC, attenuation slope, attenuation midband fit. To classify the lipid 

classes using QUS approaches, a kernel support vector machine (SVM) was used. The 

results indicate that the CNN outperforms the QUS approach for classification of lipid 

changes. Figure 9 plots the ROC curves for the six folds training on the test data. The ROC 

curves reflects that the CNN did not generalize well to the some testing fold due to our 

limited dataset.

Discussion

The objective of the study was to investigate the relationship between QUS parameters and 

liver fibrosis and steatosis through noninvasive ultrasonic interrogation and the application 

of a CNN to the problem of liver classification allowing both a model-free analysis and 
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reference-free scanning configuration. The rabbits were divided into different groups based 

on different levels of CCl4 injections and five groups maintained on a fatty diet over 

different durations. The hydroxyproline and lipid results reported in Fig. 2 indicate that the 

injection of CCl4 inhibited the fat accumulation in the liver from the fatty diet but also 

produced fibrosis. According to histological analysis from the pathologist, none of the 

rabbits developed cirrhosis or heavy fibrosis. Some of the injections were small dose, which 

allowed the rabbits to recover from toxicological insult before observable fibrosis occurred. 

The fibrosis scored for the rabbits ranged from zero to mild to moderate.

Attenuation increased for both increased fibrosis and increased steatosis, indicating that the 

combined effects of both in general will make the attenuation increase. However, attenuation 

slope and midband fit were more sensitive to lipid liver percentages and much less so to 

fibrosis. ESD and EAC were not sensitive to lipid and fibrosis. Comparing the results of this 

study with our previous study on in vivo QUS analysis of fatty livers in rabbits showed 

similar trends but important differences (Nguyen et al., 2019). Specifically, in the previous 

study, the ESD decreased from 167 μm to 119 μm and the EAC increased from 21.1 dB to 

31.8 dB between low and high lipid livers. These trends match the absolute numbers in the 

current study and are similar to results provided in Table 3, i.e., ESD decreased from 127 μm 
to 117 μm and EAC increased from 33.9 dB to 35.5 dB. Similar trends were observed with 

the attenuation estimates where in the previous study the attenuation slope increased from 

0.6 dB/MHz/cm to 1.09 dB/MHz/cm and in the present study the attenuation slope increased 

from 0.69 to 0.97 dB/MHz/cm. An important difference between the current study and the 

previous study was the threshold set between the high and low lipid levels. In the previous 

study half of the rabbit livers were above 9% lipid liver content and half below. In this study, 

half of the rabbit livers were below 5% threshold and half above. These findings suggest that 

QUS techniques perform better at differentiating between a high and low lipid liver level if 

that threshold is higher. However, in order to maintain a balanced number of samples in the 

high and low lipid level groups and to reduce bias in the classifier we used the 5% threshold 

in the current study. Hence, QUS techniques could be used to identify and characterize 

steatosis noninvasively but would be less successful at detecting fibrosis, which has also 

been observed in other studies (Suzuki et al., 1992; Treacher et al., 2019). It is worth noting 

that in a recent study QUS parameters were able to identify changes in liver fibrosis in the 

same rabbit model but when using high ultrasonic frequencies, i.e., 20 MHz and 40 MHz 

probes in excised liver samples (Franceschini et al., 2019). On the other hand, because the 

QUS parameters at clinical frequencies are much less sensitive to fibrosis, they can be used 

to identify steatosis and be combined with other diagnostic approaches that are sensitive to 

fibrosis, such as TE or shear wave elastography.

In a specific case where the QUS parameters did not track well the lipid changes (rabbit IDs 

12 and 45) might be due to the hidden variable of fibrosis. Rabbit 12 had a hydroxyproline 

value of 0.93 mg/g and moderate to marked periportal fibrosis with occasionally bridging 

fibrosis. Rabbit 45 had a hydroxyproline level of 1.84 mg/g of liver and mild but extensive 

fibrosis. If the number of weeks (0, 1, 2, 3, 6) and injection indicator information (with 

injection = 1, without injection = 0) were included as additional explanatory variables in the 

linear regression, the r2 coefficient was increased to 0.76 compared to 0.69 without 

including injection.
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Although the fibrosis has a limiting effect on the lipid development which implicitly impacts 

the predictive power of the QUS parameters, there was still a positive correlation of the QUS 

parameters to lipid changes. A median of the lipid percentages of 5% was chosen as a 

threshold for classification between low liver lipid and high liver lipid. This threshold was 

chosen because the value placed an equal number of rabbits in the high and low liver lipid 

classes. However, CCA analysis in Fig. 8 suggested a more appropriate threshold of 9% for 

determining two classes.

We also employed a 1D CNN to characterize the liver state using the raw RF signals 

acquired from the liver. It was empirically shown that the CNN can classify steatosis without 

using a model for scattering and without using the reference phantom when the system 

settings of all the scans were the same. The CNN was not used to detect fibrosis because 

there was no correlation using the QUS approach and consequentially we had no baseline for 

comparison.

To test the feasibility of the CNN in classifying the lipid without using the reference 

phantom, a general convolutional architecture commonly used in computer vision tasks was 

adapted to classifying the RF signal. An LSTM network (Zeyer et al., 2017) is hypothesized 

to be more capable of capturing temporal dependency such as speech signals or in our case 

RF data. However, we observed lower accuracy when using a LSTM network on our RF 

data. This might be due to the shorter gated window lengths that we used in our CNN for 

fair comparison with the QUS approach. More recent developed architectures like ResNet 

(He et al., 2016) or DenseNet (Huang et al., 2017) might be tested in future work; however, 

those newer methods require more data to train. Clinical translation of a reference-free CNN 

approach at this time would require a manufacturer to train their system, settings and probe 

on liver data from patients with known labels. In the future, transfer learning from one 

system to another could occur. However, additional study needs to be conducted to 

determine under what conditions results from one system and settings will transfer to 

another. Finally, the CNN loses some of its interpretability due to the general structure of 

stacking convolutions. To include the reference phantom as additional input to the CNN, a 

fusion mechanism can be used in the network where a separate convolution network could 

be used to extract features from the reference signal, and the features of the liver and the 

reference could be merged before feeding into the fully connected layers. This will be the 

subject of future work.

To test the robustness of the proposed CNN, we performed two ablation experiments: 

reduced the number of RF lines in one ROI and downsampling the RF line closer to the 

Nyquist frequency. For the first experiment where only 50% of the RF lines were randomly 

chosen for testing and this process was repeated 5 times, the average test accuracy was 71 % 

and the accuracy standard variation was 1% (across 5 times). For the second experiment 

where the RF data was downsampled to 10 MHz, the average testing accuracy was 65%. 

This suggests that the CNN is more robust to missing RF lines than missing higher 

frequency information when performing classification.

The CNN approach outperformed the traditional QUS approach when classifying steatosis 

(74% versus 59%). The misclassification might be caused by the fibrosis slowing the lipid 
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progression, or by unaccounted-for transmission losses caused by tissue layers, such as the 

skin, muscle and fat layers, between the transducer and the liver.

Conclusions

Rabbits were induced to have liver disease by placing them on a fatty diet for a defined 

duration and/or periodically injecting them with CCl4. Rabbits were scanned ultrasonically 

in vivo and livers were classified based on the ultrasonic backscattered signals from the liver. 

Ground truth liver state was based on lipid liver percents using the Folch assay and 

hydroxyproline concentration to quantify fibrosis. Use of QUS parameters with linear 

regression and CCA demonstrated that the QUS parameters could differentiate between high 

and low lipid levels. However, the QUS parameters were not sensitive to fibrosis. Next, a 

CNN was implemented that took in raw RF signals and output classification of liver class in 

terms of a 5% lipid level threshold for the liver. The CNN outperformed classification using 

the QUS parameters combined with an SVM to classify liver state, 74% versus 59%. 

Therefore, while the CNN did not provide a physical interpretation of the tissue properties, 

e.g., attenuation of the medium or scatterer properties, the CNN had much higher accuracy 

in predicting fatty liver state.
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Figure 1: 
B-mode image of rabbit liver with segmented region.
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Figure 2: 
Hydroxyproline level (mg/g) vs. lipid percentage for 5 different diet groups. The blue circles 

are the rabbits without injection, the orange circles are the rabbits with injection.
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Figure 3: 
BSC curves for two classes : low lipid (≤ 5%) and high lipid (> 5%).
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Figure 4: 
Attenuation curves for two classes : low lipid (≤ 5%) and high lipid (> 5%).
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Figure 5: 
B-mode images of rabbit livers (top row) with lipid liver percentages from left to right of 

2.68, 5.53 and 20.66. (Second row) Corresponding BSC and attenuation curves for the three 

rabbits shown in the B-mode images.
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Figure 6: 
Linear regression of att slope, att intercept, ESD, EAC to lipid percentages. Blue bars are the 

ground truth, orange bars are the regressed values.
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Figure 7: 
Linear regression of QUS parameters to hydroxyproline levels.
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Figure 8: 
Plot of first canonical dimension correlation: the horizontal axis is the linear combination of 

inputs and vertical axis is linear combination of outputs. The blue circle denotes lipid 

percentages < 5% and the orange circle denotes lipid percentages ≥ 5%. The text next to the 

point is the actual lipid percentage.
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Figure 9: 
Average ROC curve of the six folds (grey band). The dotted red line indicates the no-

discrimation line (random guess).
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Table 1:

1D convolutional neural network architecture.

Layers Output shape Parameter numbers

1D Convolution (347,7) 126

Max Pooling (173,7) 0

1D Convolution (165, 7) 448

Max Pooling (82,7) 0

1D Convolution (78,5) 180

Max Pooling (39,5) 0

1D Convolution (37,3) 48

Max Pooling (18,3) 0

Flatten 54 0

Dense 16 1100

Dense 8 210

Dense 2 66

Activation 1 0
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Table 2:

Average Hydroxyproline values estimated for each injection group.

Injection (per week) Number of weeks Hydroxyproline level [mg/g]

 0.0 mL/kg 11 0.28

 0.2 mL/kg 11 1.24

 0.3 mL/kg 11 0.97

 0.6 mL/kg 11 1.67

 0.0 mL/kg 8 0.34

 0.035 mL/kg 8 0.90

 0.07 mL/kg 8 1.13
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Table 3:

QUS parameters for differentiating two classes with threshold of 5% lipid liver levels.

ESD EAC Attenuation slope (dB/cm.MHz) Attenuation midband-fit (dB/cm)

Low fat 127.16 ± 42.78 33.85 ± 16.14 0.69 ± 0.36 3.50 ± 0.88

High fat 117.16 ± 43.89 35.5 ± 16.75 0.97 ± 0.27 4.37 ± 1.44

p-value 0.38 0.71 0.03 0.003
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Table 4:

Linear regression coefficients and their p-values.

ESD EAC Attenuation slope Attenuation midband-fit

Hydroxyproline Coefficient −0.0062 −0.0073 −0.8773 −0.0754

p-value 0.20 0.54 0.01 0.25

Lipid percentage Coefficient 0.031 0.023 4.71 1.72

p-value 0.23 0.89 9.72e-06 3.72e-08
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Table 5:

CCA input and output weights and their correlations.

First canonical dimension Second canonical dimension

Attenuation slope weight 1.7305 −3.9614

Attenuation midband fit weight 0.5819 0.5369

ESD weight 0.0123 −0.0339

EAC weight 0.0098 −0.0048

Lipid weight 0.2408 0.1531

Hydroxyproline weight −0.1285 2.0118

Correlation 0.71 0.26
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Table 6:

Training and testing accuracy of the 1D convolution neural network.

Training accuracy Test accuracy

Fold 1 82.16 % 78.56 %

Fold 2 80.18 % 77.47 %

Fold 3 81.62 % 68.46 %

Fold 4 81.24 % 65.39 %

Fold 5 80.5% 76.29 %

Fold 6 80.49 % 76.69 %

Average accuracy across folds 81.03 % 73.81%
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Table 7:

Training and testing accuracies of an SVM classifier using four QUS parameters: ESD, EAC, attenuation 

slope, attenuation midband fit. The same rabbits in each fold were used for the CNN and the QUS with SVM 

classifiers.

Training accuracy Test accuracy

Fold 1 66.14 % 67.04 %

Fold 2 70.79 % 38.17 %

Fold 3 69.64 % 62.17 %

Fold 4 66.96 % 68.53 %

Fold 5 70.62 % 61.13 %

Fold 6 69.49 % 57.68 %

Average accuracy across folds 68.94 % 59.12%
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