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A B S T R A C T

Cardiovascular diseases (CVDs) are a group of heart and blood vessel disorders that is one of the most serious
dangers to human health, and the number of such patients is still growing. Early and accurate detection
plays a key role in successful treatment and intervention. Electrocardiogram (ECG) is the gold standard for
identifying a variety of cardiovascular abnormalities. In clinical practices and most of the current research,
standard 12-lead ECG is mainly used. However, using a lower number of leads can make ECG more prevalent
as it can be conveniently recorded by portable or wearable devices. In this research, we develop a novel deep
learning system to accurately identify multiple cardiovascular abnormalities by using only three ECG leads
which are I, II, and V1. Specifically, we use three separate One-dimensional Convolutional Neural Networks
(1D-CNNs) as backbones to extract features from three input ECG leads separately. The architecture of 1D-CNNs
is redesigned for high performance and low computational cost. A novel Lead-wise Attention module is then
introduced to aggregate outputs from these three backbones, resulting in a more robust representation which
is then passed through a Fully-Connected (FC) layer to perform classification. Moreover, to make the system’s
prediction clinically explainable, the Grad-CAM technique is modified to produce a highly meaningful lead-wise
explanation. Finally, we employ a pruning technique to reduce system size, forcing it suitable for deployment
on hardware-constrained platforms. The proposed lightweight, explainable system is named LightX3ECG. We
get classification performance in terms of F1 scores of 0.9718 and 0.8004 on two large-scale ECG datasets, i.e.,
Chapman and CPSC-2018, respectively, which surpass current state-of-the-art methods while achieving higher
computational and storage efficiency. Visual examinations and a sanity check are also performed to strictly
demonstrate the strength of our system’s interpretability.
1. Introduction

Cardiovascular diseases (CVDs) are one of the primary sources of
death globally, accounting for 17.9 million deaths in 2019, representing
32% of all deaths worldwide. Also, three-quarters of these deaths take
place in low- and middle-income countries, according to World Health
Organization.1 Therefore, it is critical to detect these heart problems
as soon as possible so that treatment may begin with counseling and
medications. Electrocardiogram (ECG) is a waveform representation of
the electrical activity of the heart obtained by placing electrodes on the
body surface. The usual structure of an ECG beat [1], as illustrated in
Fig. 1, consists of three main components: P wave, which represents
depolarization of atria; QRS complex, which represents depolarization
of ventricles; and 𝑇 wave, which represents repolarization of ventricles.

∗ Corresponding author.
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1 www.who.int/health-topics/cardiovascular-diseases.

Other parts of the signal include PR, QT intervals, or PR, ST segments.
This electrical signal is a widely used, non-invasive tool for identifying
cardiovascular abnormalities in patients. However, ECG analysis is a
professional and time-consuming task, it requires cardiologists with a
high degree of training to carefully examine and recognize pathological
patterns in ECG recordings. This challenge, coupled with the rapid
increase in ECG data, makes computer-aided, automatic ECG analysis
more and more essential, especially in low- and middle-income coun-
tries, where high-quality and experienced cardiologists are extremely
scarce.

The 12-lead ECG, which is standard for hospital and clinic usage, is
typically recorded from electrodes placed on the patient’s limbs and on
the surface of the chest. Thus, twelve ECG leads can be broken down
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Fig. 1. The usual structure of an ECG beat.

into two main types: six limb leads (I, II, III, aVR, aVL, aVF) and six
chest leads (V1, V2, V3, V4, V5, V6). Conventional 12-lead ECG has
also been demonstrated to be effective for various ECG analysis tasks
by many previous efforts [2–4]. Acquiring 12-lead ECG, on the other
hand, is heavily relied on clinical equipment with limited accessibil-
ity, particularly for medical institutes in remote areas. Over the past
decade, especially in recent years, breakthroughs in ECG technologies
have led to the development of smaller, lower-cost, and easier-to-use
ECG-enabled devices [5–8]. These advancements have paved the way
for point-of-care screening and continuous monitoring using signals
recorded by these devices [9,10]. However, these devices only produce
a subset of standard twelve leads, sometimes even just one lead. This
raises an urgent need for building ECG analysis methods that only rely
on this subset of leads rather than the entire set. Beyond monitoring,
developing and integrating analysis tools into these devices can also
aid in the early detection of CVDs, as well as support and save time for
cardiologists in their manual analysis process.

In this study, we use a combination of only three ECG leads (I, II,
and V1) as input for the proposed system to strike a balance between
high classification performance and ease of signal acquisition. Leads
I and II are used because they are easy to acquire and favored by
cardiologists for quick review. They also represent relatively enough
information for six limb leads, according to some laws and equa-
tions [11]. Lead V1 is used to incorporate information about chest
leads into the input. Importantly, the combination of three leads I, II,
and V1 resemble an orthogonal set of leads, which can constitute all
ECG leads by a good linear approximation, therefore can possibly per-
form similarly for the diagnosis of many cardiovascular abnormalities
[12,13].

Existing approaches for automatic ECG analysis can be divided into
two categories: traditional methods and deep learning-based methods.
In traditional methods, which are also known as two-stage methods,
human experts hand-craft meaningful features from raw ECG signals
such as statistical features (e.g., mean, standard deviation, variance,
and percentile) or time- and frequency-domain features, referred to as
expert features [14,15]. Then, these features are concatenated and fed
into some kinds of machine learning algorithms. The performance of
these methods significantly depends on the capability of the machine
learning algorithms applied and the hand-crafted feature extraction
stage, which requires expertise to select optimal features. The sec-
ond approach is to use end-to-end deep learning models that offer a
2

high model capability without the need for domain knowledge and
an explicit feature extraction stage [16]. These types of models have
gained significant improvements compared to the former approach [4].
Deep learning models have dramatically improved the state-of-the-art
in speech recognition, visual object recognition, object detection, and
many other areas such as drug discovery and genomics [17]. Despite
their superior performance, deep learning models are plagued by two
well-known drawbacks: their black-box nature and increasingly large
model size which limit their applicability in real-world scenarios. In
this study, we aim to design an accurate ECG classification system that
also overcomes these two issues.

In almost all previous works on deep learning-based 12-lead ECG
classification, all twelve leads are standardized to the same length,
then vertically stacked together to form a unified input and fed into
a followed deep learning model [3,4]. This strategy works well when
dealing with 12-lead ECG. However, when dealing with a smaller num-
ber of leads, such as three, we propose to use three distinct models as
separate backbones to handle three input ECG leads separately, which
will be demonstrated in this study to give us better performance. This
multi-input strategy is reasonable since these kinds of signals usually
require separate treatment. In more detail, we employ three distinct re-
designed One-dimensional Squeeze-and-Excitation Residual Networks
(1D-SEResNets) [18], an improved version of ResNet architecture with
the Squeeze-and-Excitation modules, which are highly effective for
dealing with ECG data, to extract features from three input signals.
Then, inspired by the attention mechanism [19,20], we design a novel
Lead-wise Attention module as our aggregation technique to explore
the most essential input lead and merge outputs of these backbones,
resulting in a more robust representation that is then sent through an
FC layer to perform classification.

Although deep learning models can achieve state-of-the-art per-
formance in a range of predictive tasks, they are often viewed as
black boxes. In many applications, especially in the medical domain,
understanding the model’s behavior is as important as the accuracy of
its predictions since it is difficult for cardiologists or pathologists to
accept unexplainable decisions [21]. This makes Explainable AI (XAI)
become a highly active research topic in the past few years [22].
In this study, we also construct an XAI framework for our 3-lead
ECG classification task using class activation maps. Our XAI technique
called Lead-wise Grad-CAM provides three different class activation
maps for three input ECG leads, giving more clinical interpretabil-
ity to our system. Another disadvantage of deep learning models, as
previously discussed, is the expansion in model size. The majority
of existing ECG classification research is primarily concerned with
enhancing classification performance while paying little attention to
model size, leading to memory-intensive models that are impractical
for hardware-constrained platforms deployment [23]. To improve the
proposed system’s suitability for point-of-care screening and remote
monitoring deployment on these platforms, we apply a pruning tech-
nique to make the system lightweight and easy to distribute while just
slightly sacrificing its performance.

To summarize, our main contributions are as follows:

• We propose an accurate deep learning system for 3-lead ECG classi-
fication which consists of three redesigned 1D-SEResNet backbones
followed by a novel Lead-wise Attention module and an FC layer, as
shown in Fig. 2.

• A novel XAI technique named Lead-wise Grad-CAM is introduced,
which is adapted from the common Grad-CAM technique on the
system’s architecture, giving a better explanation for the made pre-
diction.

• We further employ a pruning technique to reduce the system’s space
on memory while mostly preserving its classification performance.

• Extensive experiments are conducted on two large-scale multi-lead
ECG datasets, i.e., Chapman and CPSC-2018 where our system shows
superior performance in both multi-class and multi-label classification

manners while enhancing compactness and clinical interpretability.
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Fig. 2. An overview of the proposed system. Dashed arrows indicate the interpreting stage.
The rest of this article is organized as follows. Section 2 provides a
survey of literature related to our work. In Section 3, we present the
components of the proposed system in detail. Section 4 describes the
experimental setup and our results. An ablation study is performed in
Section 5. Finally, we give further discussions and conclude this work
in Section 6.

2. Related works

In this section, we discuss some research directions and existing
works that are highly related to our work, including deep learning-
based ECG analysis, reduced-lead ECG classification, and explainable
AI for ECG classification.

Deep learning-based ECG Analysis. In the research community, deep
learning-based methods have been the preferred approach for ECG
analysis over the last few years [16]. Specifically, 1D-CNNs have be-
come popular when dealing with ECG data because of their one-
dimension structure. Acharya et al. [24] early developed a 9-layer
1D-CNN to identify 5 different types of cardiovascular abnormalities.
Recently, researchers have begun to use more sophisticated 1D-CNN
architectures, particularly ones whose 2D version achieves high im-
age classification accuracy. For instance, Zhang et al. [25] proposed
using 1D-ResNet34, Zhu et al. [26] ensembled two 1D-SEResNet34s
and one set of expert rules to respectively identify 9 and 27 types
of abnormalities. Furthermore, in order to capture both spatial and
temporal patterns in ECG signals, Yao et al. [27] constructed Time-
Incremental ResNet18 (TI-ResNet18), a combination of a 1D-ResNet18
and an LSTM network, Murugesan et al. [28] combined an Inception
and an LSTM network to constitute ECGNet, identifying 9 and 3 types
of abnormalities, respectively. Other than CVD detection, deep learning
models have been employed on ECG data for other variety of tasks.
Li et al. [29] combined a sparse Autoencoder and Hidden Markov
Model for diagnosing obstructive sleep apnea. Moreover, Santamaria-
Granados et al. [30] focused on emotion, classifying the affective state
of a person. Attia et al. [31] performed a proof of concept study on non-
invasive drug assessment based on ECG signals. Rahman et al. [32] and
Özdemir et al. [33] tried to early diagnose COVID-19 using ECG trace
images. Deshmane et al. [34] designed an ECG-based biometric human
3

identification using machine learning and deep learning techniques in
smart health applications.

Reduced-lead ECG Classification. In recent years, some small, low-
cost, and easy-to-use ECG-enable devices with different advantages
have been introduced in the market [6–8]. These devices are different
from clinical equipment in that they only provide a subset of standard
twelve ECG leads, sometimes just one. Thus, in most cases, newer meth-
ods are being developed to do ECG classification based on single- or
reduced-lead data rather than standard 12-lead data. While single-lead
ECG is currently limiting in performance, early studies have suggested
that reduced-lead ECG may hold potential. Hannun et al. [35] used
single-lead ECG data from Zio Patch devices to identify atrial fibril-
lation. Drew et al. [36] demonstrated that interpolated 12-lead ECG,
which is derived from a reduced-lead set (limb leads plus V1 and V5), is
comparable to standard 12-lead ECG for diagnosing wide-QRS-complex
tachycardias and acute myocardial ischemia. Xue [37] used the same
set of leads to evaluate the changes in morphology due to a matrix-
based 12-lead conversion and the possibility of adapting the changes
with the new criteria trained with a large ischemia ECG database.
Green et al. [38] also found that the leads III, aVL, and V2 together
yielded a similar performance as the full 12-lead ECG for diagnosing
acute coronary syndrome. Cho et al. [39] claimed that myocardial
infarction could be detected not only with a conventional 12-lead ECG
but also with a limb 6-lead ECG. Although the potential of reduced-
lead ECG was verified, there has not been much research done in this
area yet. Our work provides further support to demonstrate the ability
of reduced-lead ECG for identifying a wide range of cardiovascular
abnormalities, not just a few.

Explainable AI for ECG Classification. While the black-box nature
of deep learning models may be ignorable in many contexts, it leads
to a lack of responsibility and trusts in decisions made in sensitive
areas like medicine and healthcare. Hence, researchers have started to
bring popular XAI techniques applied to image data into ECG data.
Hughes et al. [40] proposed to use of Linear Interpretable Model-
Agnostic Explanations (LIME). Zhang et al. [25], Anand et al. [41]
applied SHapley Additive exPlanations (SHAP) analysis to test the
interpretability of an ECG classification model. LIME and SHAP are
both perturbation-based techniques that provide explanations based on
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Fig. 3. The architecture of 1D-SEResNet backbones.
the variation of output after applying perturbations to input. Some
disadvantages of these techniques are combinatorial complexity ex-
plosion and producing explanations by very concrete class activation
maps [42]. Due to inherent smoothing in provided explanations, some
XAI techniques such as Grad-CAM [43] and its variants are recently
more preferred. Vijayarangan et al. [44], Raza et al. [45] employed
Grad-CAM on 1D-CNN for single-lead ECG classification. Ganeshkumar
et al. [46] further applied Grad-CAM on a multi-lead circumstance but
generated the same class activation map for multiple input signals. In
this work, we leverage the system’s architecture with a multi-input
strategy and our Lead-wise Attention module to adapt Grad-CAM and
provide one different informative class activation map for each of the
three input leads.

3. Proposed system

In this section, we present the whole proposed system in detail.
Firstly, the architecture of 1D-SEResNet backbones is described. Next,
we sequentially introduce our novel Lead-wise Attention module and
XAI technique, Lead-wise Grad-CAM. The pruning technique, which is
used to establish LightX3ECG, is briefly discussed last. An overview of
our LightX3ECG is shown in Fig. 2.

3.1. 1D-SEResNet backbones

To achieve high performance and low computational cost back-
bones, we redesign 1D-SEResNet18 [18], which consists of 18 main
layers, in two steps as follows.

First, Convolution (Conv) layers are modified with a much larger
kernel size to expand those receptive fields in order to capture longer
patterns in ECG signals. This strategy has been suggested as more
effective for ECG data in specific [47], and time-series data, in gen-
eral, [48]. Second, we replace all of the standard Conv layers with
Depth-wise Separable Conv (DSConv) layers for reducing the number
of parameters of the model. Introduced in MobileNets [49,50], DSConv
splits the computation of standard Conv into two parts. The first part
is depth-wise, in which each filter only convolutes each input channel.
Another part is point-wise, using a 1 × 1 filter to combine multi-channel
outputs of depth-wise layers. This design reduces the total number of
parameters of our system by 80%. This architecture is used for all three
backbones and is illustrated in Fig. 3.
4

Fig. 4. The proposed Lead-wise Attention module.

3.2. Lead-wise Attention

To achieve an end-to-end classification system, the outputs, also
known as features or embeddings, extracted from backbones, must
be combined. Typically, one can combine these features by simply
applying a summation or concatenation operation to them, but this is
usually ineffective due to their simplicity. Inspired by the success of
the attention mechanism in many areas [20], we propose a Lead-wise
Attention module to more effectively ensemble these features together
and acquire a final robust feature which is then routed to the last FC
layer, the classifier, to perform classification. Our Lead-wise Attention
module is described in Fig. 4.

Firstly, features from backbones are concatenated and sent through
a sequential list of layers including an FC, a BatchNorm, a Dropout,
followed by another FC layer and a Sigmoid function to determine the
attention score, or importance score for each feature. Subsequently, the
final feature is obtained by taking a weighted sum over these features
by corresponding generated scores. This module can be formulated:

fmerged =
3
∑

𝑖=1
𝜶𝑖f𝑖, (1)

𝜶 = 𝚂𝚒𝚐𝚖𝚘𝚒𝚍(𝙵𝙲(𝙵𝙲(𝙲𝚘𝚗𝚌𝚊𝚝[f𝑖|𝑖 = 1, 3]))). (2)
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3.3. Lead-wise Grad-CAM

A class activation map, or CAM, is a heatmap that highlights class-
specific regions of an image that the model looked at to classify that
image. In the domain of imaging, Grad-CAM [43] is one of the most
famous techniques to provide interpretability to 2D-CNNs which uses
values of gradients flowing into the final Conv layer to produce a
CAM [51,52]. In this work, we subtly adapt Grad-CAM to our system
for the same aim, which we refer to as Lead-wise Grad-CAM, in the
following steps.

First, similar to standard Grad-CAM, we employ values of gradients
flowing into the final Conv layers of three backbones to gather three
distinct CAMs 𝐶𝑖,𝑖=1,3 corresponding to three input ECG leads. In ad-
dition to CAMs provided by Grad-CAM, the proposed system has an
additional source of interpretability, the importance scores 𝜶𝑖,𝑖=1,3 gath-
ered from the Lead-wise Attention module that show the contribution
of each backbone’s feature to the prediction of the system, therefore,
show the contribution of each input signal. To take advantage of this
insight from our Lead-wise Attention module, we multiply three CAMs
by corresponding importance scores to get more informative heatmaps.
Finally, for visualization, these heatmaps are normalized and overlaid
on corresponding input ECG lead:

𝑀𝑖 = 𝚗𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(𝜶𝑖𝐶𝑖) (3)

3.4. Pruning

A deep learning-based method often involves a large model and
massive computation. Hence, when operating the proposed system on
portable or wearable devices, issues such as insufficient memory or
computational resources are noticeable. As a direct solution, we apply
the weights pruning [53,54] technique to compress the system and
make it can be executed completely on these devices.

Weights pruning is a post-training model compression technique to
make a trained model more sparse. This is accomplished by increasing
the number of zero-valued elements present in the model’s weights.
In this work, we prune 80% weights of the system with the lowest
𝐿1-norm in order to reduce the system’s space on memory 3 times
while mostly maintaining its classification performance, and finally
establishing LightX3ECG as a result. The idea is that weights with small
𝐿1-norm, or absolute value, contribute little to the prediction of the
system, so they are less important and can be zeroed out.

4. Experiments and results

In this section, we comprehensively describe our study design and
all experimental results. Two datasets and implementation details are
introduced first, then we report the performance of LightX3ECG and its
interpretability.

4.1. Datasets

To benchmark the performance of the proposed system, we conduct
experiments on two of the largest public real-world datasets for ECG
classification, i.e., Chapman and CPSC-2018. Diagnosis class frequency
and patient characteristics of these two datasets are shown in Table 1.

Chapman [55]. Chapman University and Shaoxing People’s Hospital
collaborated to establish this large-scale multi-class ECG dataset which
consists of 10.646 12-lead ECG recordings. Each recording is taken over
10 s with a sampling rate of 500 Hz and labeled with 11 common
diagnostic classes. The amplitude unit is a microvolt. These 11 classes
are grouped into 4 categories including AFIB, GSVT, SB, and SR.
AFIB consists of atrial fibrillation and atrial flutter, GSVT contains
supraventricular tachycardia, atrial tachycardia, atrioventricular node
5

reentrant tachycardia, atrioventricular reentrant tachycardia, and sinus
Table 1
Description of two datasets. Mean and standard deviation are reported for age.

Chapman

Class Frequency (%) Male (%) Age

AFIB 2225 (20.90) 1298 (58.34) 72.90 ± 11.68
GSVT 2307 (21.67) 1152 (49.93) 55.44 ± 20.49
SB 3889 (36.53) 2481 (63.80) 58.34 ± 13.95
SR 2225 (20.90) 1025 (46.07) 50.84 ± 19.25

CPSC-2018

Class Frequency (%) Male (%) Age

NSR 918 (13.35) 363 (39.54) 41.56 ± 18.45
AF 1221 (17.75) 692 (56.67) 71.47 ± 12.53
IAVB 722 (10.50) 490 (67.87) 66.97 ± 15.67
LBBB 236 (03.43) 117 (49.58) 70.48 ± 12.55
RBBB 1857 (27.00) 1203 (64.78) 62.84 ± 17.07
PAC 616 (08.96) 328 (53.25) 66.56 ± 17.71
PVC 700 (10.18) 357 (51.00) 58.37 ± 17.90
STD 869 (12.64) 252 (29.00) 54.61 ± 17.49
STE 220 (03.20) 180 (81.82) 52.32 ± 19.77

atrium to atrial wandering rhythm, SB only includes sinus bradycardia,
and SR includes sinus rhythm and sinus irregularity.
CPSC-2018 [56]. In 2018, the first China Physiological Signal Chal-
lenge organized during the 7th International Conference on Biomedical
Engineering and Biotechnology released a publicly available large-
scale multi-label ECG dataset. This dataset contains 6.877 12-lead ECG
recordings with a sampling rate of 500 Hz and durations ranging from
6 to 60 s. Millivolt is the amplitude unit. These ECG recordings are
labeled with 9 diagnostic classes including NSR (normal sinus rhythm),
AF (atrial fibrillation), IAVB (first-degree atrioventricular block), LBBB
(left bundle branch block), RBBB (right bundle branch block), PAC (pre-
mature atrial contraction), PVC (premature ventricular contraction),
STD (ST-segment depression), STE (ST-segment elevation).

4.2. Implementation details

To ensure the reproducibility of our results, the experimental setup
is described in detail below.

Data Preprocessing : As a deep learning system requires inputs to be of
the same length, all ECG recordings are fixed at 10 s in length in both
datasets. This is done by truncating the part exceeding the first 10 s for
longer recordings and padding shorter ones with zero. We take leads
I, II, and V1 from each ECG recording to construct the input with the
shape of 3 × 5000 and feed it into our system.
ata Augmentation: To reach a better generalization, we additionally

propose the DropLead augmentation technique which randomly drops
one of three input signals with a probability of 50% during training.
This is accomplished by masking the selected signal with all of zero.
DropLead is not applied during the inference stage.
Training and Evaluation: For evaluation, we apply a 10-fold cross-
validation strategy following some previous works [25,55]. We stratify
and divide each of the two datasets into 10 folds and perform 10 rounds
of training and evaluation. At each round, 8 folds; 1 fold; and 1 remain-
ing fold are used as training, validation, and test set, respectively. In the
multi-label classification manner, the optimal threshold of each class is
searched in a range (0.05, 0.95) with a step of 0.05 to achieve the best
F1 score on the validation set. We report the average performance of
10 rounds on the test set in terms of precision, recall, F1 score, and
accuracy. For training, the proposed system is optimized from scratch
by Adam optimizer [57] with an initial learning rate of 1e–3 and a
weight decay of 5e–5 for 70 epochs. We use the Cosine Annealing
scheduler [58] in the first 40 epochs to reschedule the learning rate
to 1e–4 and then keep it constant in the last 30 epochs. Cross-entropy
and binary cross-entropy are utilized as loss functions in multi-class
and multi-label manners, respectively. Finally, after weights pruning
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Table 2
Performance detail of LightX3ECG on two datasets.

Chapman

Class Precision Recall F1 score Accuracy

AFIB 0.9750 0.9662 0.9706 0.9878
GSVT 0.9510 0.9612 0.9561 0.9807
SB 0.9823 0.9987 0.9904 0.9930
SR 0.9860 0.9550 0.9703 0.9878

Average 0.9736 0.9703 0.9718 0.9873

CPSC-2018

Class Precision Recall F1 score Accuracy

NSR 0.6903 0.8342 0.7554 0.9266
AF 0.9344 0.9461 0.9402 0.9789
IAVB 0.9014 0.8828 0.8920 0.9775
LBBB 0.9038 0.8704 0.8868 0.9913
RBBB 0.9454 0.9428 0.9441 0.9702
PAC 0.6972 0.5758 0.6307 0.9353
PVC 0.8796 0.7197 0.7917 0.9637
STD 0.7870 0.7824 0.7847 0.9469
STE 0.6486 0.5217 0.5783 0.9746

Average 0.8209 0.7862 0.8004 0.9628

is applied, our system is fine-tuned for 5 epochs with the same setting
except the learning rate is held constant at 1e–4. All experiments are
run on a machine with an NVIDIA GeForce RTX 3090 TURBO 24G.

4.3. System performance

We get F1 scores of 0.9718 and 0.8004 on two datasets, i.e., Chap-
man and CPSC-2018, respectively. Overall, accuracy for each class
exceeds 0.92 and the average exceeds 0.96 in both. However, we also
observe that F1 scores of PAC and STE classes are limited, which could
be due to the insufficiency of these diagnosis classes in the CPSC-2018
dataset. Detailed performance is presented in Table 2.

For benchmarking, we compare LightX3ECG with some popular
ECG classification methods, which can be considered state-of-the-art
including 1D-ResNet34 [25], 1D-SEResNet34 [26], TI-ResNet18 [27],
InceptionTime [48], and ECGNet [28]. For fair comparisons, all of these
methods are implemented and trained using 3-lead ECG as input and
settings similar to our system. Comparisons of F1 scores, complexity,
and compactness are shown in Table 3. LightX3ECG outperforms other
methods in both datasets while achieving the lowest computational cost
with FLOPs at 1.34B. In terms of storage, our system only takes up
6.52 MB on disk, which is much less than the other three methods.
Additionally, the performance of the system without applying weights
pruning shows that effectively using this technique helps reduce the
system’s space significantly with a negligible side-effect.

4.4. System interpretability

A comprehensive validation is conducted to demonstrate
LightX3ECG’s interpretability, including a visual check and a methodi-
cal check.

4.4.1. Visual examinations
For visual check, we carefully review the explanation from the

system for a sample ECG recording, drawn from the CPSC-2018 dataset,
belonging to each of the diagnosis classes and compare it with some
cardiological evidence collected from a variety of sources [59–64] and
the LITFL ECG Library [65].

(1) NSR (normal sinus rhythm). An NSR ECG recording has a normal P
wave preceding each QRS complex, which is also standard, as seen in
Fig. 1. Also, P waves upright in leads I and II. From activation maps in
Fig. 5, we can see that system strongly focuses on regions of P waves
in leads I and II. Thus, the explanation is consistent with the diagnostic
6

Fig. 5. The explanation for a sample NSR ECG recording.

Fig. 6. The explanation for a sample AF ECG recording.

criteria of NSR. The importance scores indicate that lead I contributed
more to the system’s prediction than others.
(2) AF (atrial fibrillation). An AF ECG recording has irregular QRS
complexes with the lack of P waves. Also, fibrillatory waves are usually
visible in lead V1. From activation maps in Fig. 6, we can see that
system recognizes the lack of P waves in leads I and II, and fibrillatory
waves in lead V1. Thus, the explanation is consistent with the diag-
nostic criteria of AF. The importance scores indicate that three leads
contributed roughly equally to the system’s prediction.
(3) IAVB (first-degree atrioventricular block). An IAVB ECG recording has
prolonged PR intervals. Also, P waves are buried in the preceding 𝑇
wave. From activation maps in Fig. 7, we can see that system recognizes
the prolonged PR intervals in leads I and II. Thus, the explanation is
consistent with the diagnostic criteria of IAVB. The importance scores
indicate that three leads contributed roughly equally to the system’s
prediction.
(4) LBBB (left bundle branch block). An LBBB ECG recording has broad
QRS complexes. Also, S waves are fairly deep in lead V1. From acti-
vation maps in Fig. 8, we can see that system recognizes broad QRS
complexes in lead I, and deep S waves in lead V1. Thus, the explanation
is consistent with the diagnostic criteria of LBBB. The importance
scores indicate that leads I and V1 mostly contributed to the system’s
prediction.
(5) RBBB (right bundle branch block). An RBBB ECG recording has wide
slur S waves in lead I. Also, ‘‘M-shaped’’ QRS complexes are visible
in lead V1. From activation maps in Fig. 9, we can see that system
recognizes wide slur S waves in lead I, and ‘‘M-shaped’’ QRS complexes
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Table 3
Comparison of the proposed system to other methods.

Method F1 on Chapman F1 on CPSC-2018 No. Params (M) No. FLOPs (B) Size (MB)

1D-ResNet34 [25] 0.9624 0.7684 16.61 5.91 58.18
1D-SEResNet34 [26] 0.9659 0.7845 16.76 5.91 58.75
TI-ResNet18 [27] 0.9647 0.7872 11.39 1.42 40.51
InceptionTime [48] 0.9417 0.7352 0.45 2.29 1.63
ECGNet [28] 0.9652 0.7880 1.03 1.97 3.75
LightX3ECG (Ours) 0.9718 0.8004 5.31 1.34 6.52
LightX3ECG (w/o pruning) 0.9722 0.8010 5.31 1.34 19.28
Fig. 7. The explanation for a sample IAVB ECG recording.

Fig. 8. The explanation for a sample LBBB ECG recording.

in lead V1. Thus, the explanation is consistent with the diagnostic
criteria of RBBB. The importance scores indicate that leads I and V1
mostly contributed to the system’s prediction.
(6) PAC (premature atrial contraction). A PAC ECG recording has abnor-
mal (non-sinus) P waves followed by a normal QRS complex. Also, P
waves are usually negative in lead II. From activation maps in Fig. 10,
we can see that system recognizes non-sinus P waves in leads II and V1,
specifically negative P waves in lead II. Thus, the explanation is consis-
tent with the diagnostic criteria of PAC. The importance scores indicate
that leads II and V1 mostly contributed to the system’s prediction.
(7) PVC (premature ventricular contraction). A PVC ECG recording has
some sporadic periods that are abnormal compared to surrounding
periods. Also, QRS complexes in these periods are irregular too. From
activation maps in Fig. 11, we can see that system recognizes abnormal
periods compared to surrounding periods in lead II and irregular QRS
complexes in these periods. Thus, the explanation is consistent with the
diagnostic criteria of PVC. The importance scores indicate that lead II
contributed more to the system’s prediction than others.
7

Fig. 9. The explanation for a sample RBBB ECG recording.

Fig. 10. The explanation for a sample PAC ECG recording.

Fig. 11. The explanation for a sample PVC ECG recording.
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Fig. 12. The explanation for a sample STD ECG recording.

Fig. 13. The explanation for a sample STE ECG recording.

(8) STD (ST-segment depression). As its name, an STD ECG recording has
depressed ST segments. From activation maps in Fig. 12, we can see
that system recognizes depressed ST segments in leads I and II. Thus,
the explanation is consistent with the diagnostic criteria of STD. The
importance scores indicate that leads I and II mostly contributed to the
system’s prediction.
(9) STE (ST-segment elevation). As its name, an STE ECG recording has
elevated ST segments. From activation maps in Fig. 13, we can see
that system recognizes elevated ST segments in leads I and II. Thus,
the explanation is consistent with the diagnostic criteria of STE. The
importance scores indicate that leads I and II mostly contributed to the
system’s prediction.

4.4.2. Sanity check
Recent works in the literature on XAI research have strongly em-

phasized the importance of implementing sanity checks [66] in order to
assess the quality of XAI techniques methodically [67,68]. These types
of checks verify whether or not the provided explanation is related to
the model’s parameters or the data used for training, hence, evaluating
whether an XAI technique is suitable to deploy or not.

For this purpose, we perform a simple parameter randomization
test, which is one of two forms of sanity checks, to assess our Lead-wise
GradCAM technique. In particular, by using Lead-wise GradCAM, we
compare explanations for a hundred ECG recordings from our trained
system (original system) with those from the randomized system. the
randomized system is accomplished by randomly reinitializing the final
FC layer, classifier, of the original system. Fig. 14 shows an example of
8

Fig. 14. An example of a comparison between explanations from the original system
and the randomized system.

Table 4
Spearman’s rank correlation of explanations between the original system and
randomized system.

Method Chapman CPSC-2018

SHAP [25] 0.16 0.18
Lead-wise Grad-CAM (Ours) 0.10 0.11

this comparison, as we expect, explanations differ. We also report the
average Spearman’s rank correlation of these explanations in Table 4.
Lead-wise GradCAM and SHAP analysis [25] both pass this sanity
check, but our technique gives a lower correlation score.

5. Ablation studies

In this section, we conduct two types of ablation studies to validate
the effect of three selected input leads and explore the contribution of
the Lead-wise Attention module on the performance of LightX3ECG.

5.1. Chest lead substitution

In particular, we fix leads I and II as our limb leads while substitut-
ing lead V1 with another chest lead to create a new orthogonal combi-
nation of three leads that we use as input for the system. Table 5 shows
that the performance is fairly consistent among combinations and the
combination of leads (I, II, and V1) produces the best performance in
both datasets by a slight margin.
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Table 5
Comparison with different chest leads on the performance of LightX3ECG in terms of F1 scores.
Dataset (I, II, and V1) (I, II, and V2) (I, II, and V3) (I, II, and V4) (I, II, and V5) (I, II, and V6)

Chapman 0.9718 0.9702 0.9705 0.9702 0.9714 0.9711
CPSC-2018 0.8004 0.8002 0.7997 0.7959 0.8001 0.7992
Table 6
Contribution of the Lead-wise Attention module to the whole system.

Operator/Module F1 on Chapman F1 on CPSC-2018

Averaging 0.9683 0.7846
Concatenation 0.9694 0.7881
Lead-wise Attention 0.9722 0.8010

Table 7
Integration of Lead-wise Attention module into other networks.

Network F1 on Chapman F1 on CPSC-2018

w/o Att w/ Att w/o Att w/ Att

TI-ResNet18 0.9647 0.9698 0.7872 0.7902
InceptionTime 0.9417 0.9438 0.7352 0.7412
ECGNet 0.9652 0.9703 0.7880 0.7916

Fig. 15. The explanation for another NSR ECG recording.

5.2. Lead-wise Attention analysis

We conduct a thorough investigation of the proposed Lead-wise
Attention (Att) module in order to verify two crucial questions. First,
how much does the module improve the overall performance of the
system? Second, what is the effect of the module when it is integrated
into other networks?

To address the first question, we respectively replace the Lead-
wise Attention module with two simple, common operators that are
feature averaging and concatenation to show the change in the system’s
performance. We can observe from Table 6 that the proposed module
significantly contributes to the overall system compared to the two
mentioned operators, making it surpass other networks.

For the second question, we conduct experiments by integrat-
ing the Lead-wise Attention module into other networks described
in Section 4.3 including TI-ResNet18 [27], InceptionTime [48], and
ECGNet [28], then compare the results. From Table 7, we can observe
that the module consistently gives boosts to the performance of these
networks.
9

Fig. 16. The explanation for another AF ECG recording.

Fig. 17. The explanation for another IAVB ECG recording.

6. Discussions

After illustrating the proposed system, experimental results, and
ablation analysis, we further provide comprehensive discussions to
explain the strengths and weaknesses of our system below.

When compared to previous works on the same topic, our system
performs competitively on diagnosis and interpretation. The following
reasons may contribute to improvements: (i) We propose to process
three input ECG leads separately by three distinct backbones. Also,
the backbone architecture is designed to be efficient for ECG signals.
(ii) The Lead-wise Attention module is the most important component
of the system, which significantly contributes to the system’s better
performance. (ii) Based on the attention module, the XAI technique can
provide a lead-wise explanation and explore the most important lead
contributing to the system’s prediction. However, there are still some
drawbacks to the proposed system: (i) The system might miss important
information when using reduced-lead ECG data, resulting in the impos-
sibility to detect certain types of cardiovascular abnormalities. (ii) The
multi-input architecture of LightX3ECG is not suitable for small-scale
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Fig. 18. The explanation for another LBBB ECG recording.

Fig. 19. The explanation for another RBBB ECG recording.

Fig. 20. The explanation for another PAC ECG recording.

datasets and leads to difficulty in training, as well as a high storage cost
which needs a practical technique like weights pruning to compensate.

7. Conclusion

In this article, we introduce an efficient and accurate deep learning
system that uses an orthogonal set of three 10-s ECG leads (I, II, and
V1) to identify cardiovascular abnormalities. We pose a new state-
of-the-art for the 3-lead ECG classification task, where the proposed
10
Fig. 21. The explanation for another PVC ECG recording.

Fig. 22. The explanation for another STD ECG recording.

Fig. 23. The explanation for another STE ECG recording.

system outperforms most of the existing methods available for ECG
classification in terms of F1 scores, complexity, and compactness. Addi-
tionally, we focus heavily on the XAI framework, which can give a more
meaningful and clinical explanation for the system’s prediction, making
it more valuable in medical contexts. Our system is also compressed
to be ready for the production stage. Moreover, our source code is
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Fig. 24. Some examples of comparison between explanations from the original system and the randomized system.
made available to the public to encourage further development.2 In
the future, LightX3ECG will be improved to identify wider varieties
of cardiovascular abnormalities, as well as be generalized on different
sources of data. Demographic data such as age and gender will be
incorporated to boost current performance. And a novel XAI framework
for this multi-modal input will be also developed.
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Appendix

In this section, we provide supplementary figures for Section 4.4,
including more examples for visual examinations, related to Figs. 5–13,
and more examples for the sanity check, related to Fig. 14.

A.1. Visual examinations

(1) NSR (normal sinus rhythm)
See Fig. 15.

(2) AF (atrial fibrillation)
See Fig. 16.

(3) IAVB (first-degree atrioventricular block)
See Fig. 17.

(4) LBBB (left bundle branch block)
See Fig. 18.

(5) RBBB (right bundle branch block)

https://github.com/lhkhiem28/LightX3ECG
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See Fig. 19.

(6) PAC (premature atrial contraction)
See Fig. 20.

(7) PVC (premature ventricular contraction)
See Fig. 21.

(8) STD (ST-segment depression)
See Fig. 22.

(9) STE (ST-segment elevation)
See Fig. 23.

A.2. Sanity check

See Fig. 24.
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