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Abstract. In many healthcare applications, identifying pills given their
captured images under various conditions and backgrounds has been
becoming more and more essential. Several efforts have been devoted to
utilizing the deep learning-based approach to tackle the pill recognition
problem in the literature. However, due to the high similarity between
pills’ appearance, misrecognition often occurs, leaving pill recognition a
challenge. To this end, in this paper, we introduce a novel approach named
PIKA that leverages external knowledge to enhance pill recognition accu-
racy. Specifically, we address a practical scenario (which we call contex-
tual pill recognition), aiming to identify pills in a picture of a patient’s
pill intake. Firstly, we propose a novel method for modeling the implicit
association between pills in the presence of an external data source, in
this case, prescriptions. Secondly, we present a walk-based graph embed-
ding model that transforms from the graph space to vector space and
extracts condensed relational features of the pills. Thirdly, a final frame-
work is provided that leverages both image-based visual and graph-based
relational features to accomplish the pill identification task. Within this
framework, the visual representation of each pill is mapped to the graph
embedding space, which is then used to execute attention over the graph
representation, resulting in a semantically-rich context vector that aids
in the final classification. To our knowledge, this is the first study to use
external prescription data to establish associations between medicines and
to classify them using this aiding information. The architecture of PIKA
is lightweight and has the flexibility to incorporate into any recognition
backbones. The experimental results show that by leveraging the external
knowledge graph, PIKA can improve the recognition accuracy from 4.8%
to 34.1% in terms of F1 -score, compared to baselines.
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1 Introduction

Medicines are used to cure diseases and improve patients’ health. Medication mis-
takes, however, may have serious consequences, including diminishing the efficacy
of the treatment, causing adverse effects, or even leading to death. According
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Fig. 1. Ill-predicted medicines

to a WHO report, one-third of all mortality is caused by the misuse of drugs,
not by disease [2]. Moreover, according to Yaniv et al. [20], medication errors
claim the lives of about six to eight thousand people every year. To emphasize
the significance of taking medication correctly, WHO has chosen the subject
Medication Without Harm for World Patient Safety Day 2022 [1].

Medication errors may fall into many categories, one of which is incorrect pill
intake, which occurs when the drugs taken differ from the prescription. This is
due to the difficulty in manually distinguishing pills owing to the wide variety of
drugs and similarities in pill colors and shapes. In such a context, many attempts
have been made to assist users in identifying the pills automatically. In recent
years, machine learning (ML) has emerged as a viable technique for tackling
object classification problems. Many studies have employed machine learning in
the pill recognition challenge [3,15,19]. Some common techniques such as convo-
lutional neural networks (CNN) and Graph Neural Networks (GNN) are often
used. For instance, in [19], the authors exploited Deep Convolution Network to
identify pills. In [15], Enhanced Feature Pyramid Networks (EFPNs) and Global
Convolution Network (GCN) are combined to enhance the pill localization accu-
racy. Besides, the authors leveraged the Xception network [4] to solve the pill
recognition problem. The authors in [3] studied how to help visually impaired
chronic patients in taking their medications correctly. To this end, they proposed
a so-called MedGlasses system, which combines AI and IoT. MedGlasses com-
prises smart glasses capable of recognizing pills, a smartphone app capable of
reading medication information from a QR code and reminding users to take the
medication, and a server system to store user information. Furthermore, numer-
ous efforts have strived to improve pill recognition accuracy by incorporating
handcrafted features such as color, shape, and imprint. Ling et al. [9] investi-
gated the problem of few-shot pill detection. The authors proposed a Multi-
Stream (MS) deep learning model that combines information from four streams:
RGB, Texture, Contour, and Imprinted Text. In addition, they offered a two-
stage training technique to solve the data scarcity constraint; the first stage is to
train with all samples, while the second concentrates only on the hard examples.
In [12], the authors integrated three handcrafted features, namely shape, color,
and imprinted text, to identify pills. Specifically, the authors first used statistical
measurements from the pill’s histogram to estimate the number of colors in the
pill. The imprinted text on the pill was then extracted using text recognition
tools. The author also used the decision tree technique to determine the pill
shape. The color, shape, and imprinted text information are then used as input
features to train the classification model.
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Despite numerous efforts, pill recognition remains problematic. Especially,
pill misidentification often occurs with tablets that look substantially similar.
Figure 1 shows some of the misclassification results made by a deep learning
model. To overcome the limitations of existing approaches, in this study, we
propose a novel method that leverages external knowledge to increase the accu-
racy and, in particular, to tackle the misclassification of similar pills. Unlike the
existing works, we focus on a practical application that recognizes pills in the
patient’s pill intake picture. The external knowledge we use is the information
extracted from a given set of prescriptions. Our main idea is that by using such
external knowledge, we can learn the relationship between the drugs, such as the
co-occurrence likelihood of the pills. This knowledge will be utilized to improve
the pill recognition model’s accuracy.

To summarize, our main contributions are as follows:

• We are the first to address a so-called contextual pill recognition problem,
which recognizes pills in a picture of a patient’s pill intake.

• We build a dataset containing pill images taken in unconstraint conditions
and a corresponding prescription collection.

• We propose a novel deep learning-based approach to solve the contextual
pill recognition problem. Specifically, we design a method to construct a
prescription-based knowledge graph representing the relationship between
pills. We then present a graph embedding network to extract pills’ relational
features. Finally, we design a framework to fuse the graph-based relational
information with the image-based visual features to make the final classifica-
tion decision.

• We design loss functions and a training strategy to enhance the classification
accuracy.

• We conduct thorough experiments on a dataset of drugs taken in real-world
settings and compare the performance of the proposed solution to existing
methods. The experimental findings indicate that our proposed model out-
performs significantly the baselines.

The remainder of the paper is organized as follows. We introduce the related
works in Sect. 2. Section 3 describes our proposed solution. We evaluate the effec-
tiveness of the proposed approach in Sect. 4 and conclude the paper in Sect. 5.
Our code and pre-trained deep learning models will be made publicly available
on our project webpage (http://vaipe.io/) upon the publication of this paper.

2 Related Work

The contextual pill recognition can be treated as a traditional object identifica-
tion problem. The conventional approach is to divide it into two stages. The first
stage is responsible for segmenting each pill image, and the second one treats
each pill box as a separate object and identifies it using an object recognition

http://vaipe.io/
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model. In [19], the authors employed Deep Convolution Network, Feature Pyra-
mid Networks (EFPNs), combined with GCN for pill detection. They then used
the Xception network to identify the pill. Ling et al. [9] studied the issue of
pill identification with a limited number of samples. To improve identification
accuracy, the author incorporated data from numerous sources, including RGB,
Texture, Contour, and Imprinted Text. Hand-crafted features such as shape,
color, and imprinted text were also used in the [12]. The shortcoming of these
approaches is that they handle each pill in the picture separately, without taking
use of the pill’s interaction.

Contextual pill identification is analogous to the multi-label classification
problem, which has drawn a lot of attention in recent years. Many research has
employed external information to improve recognition accuracy in this problem.
The most common strategy is to obtain the label co-occurrence relationship
and use it in the recognition task. Label co-occurrence may be retrieved using
a variety of approaches, including probabilistic models, neural networks, and
graph networks. Li et al. employed conditional graphical Lasso model in [8] to
statistically calculate the co-occurrence probability of the labels. Several works
have adopted neural networks such as LSTM to simulate the interaction of labels
to decrease the computation costs [16]. The author of [5] used the autoencoder
Graph Isomorphism Network (GIN) to represent the label association. They
also presented a collaborative training framework incorporating label semantic
encoding and label-specific feature extraction. There are also several techniques
to utilize relational information. Relational information, in particular, may be
combined with visual characteristics in the final layers, as shown in [18]. It may
also be injected into the middle CNN layers through lateral connections, as
described in [17].

Contextual pill identification, on the other hand, differs from traditional
multi-label classification in that the multi-label classification task tries to recog-
nize the global information offered by the picture rather than finding and rec-
ognizing each item featured in the image. The second problem lies in modeling
the label’s relation. Indeed, traditional multi-label classification systems mainly
construct label relationships based on the semantic meaning of the label’s name.
This strategy, however, does not work with medicine names since they often have
no meaning. Furthermore, extracting correlations between medicine names from
public data sources is difficult.

3 Proposed Approach

In this section we propose a novel pill recognition framework named PIKA (which
stands for Pill Identification with medical Knowledge grAph). We first present
the main components of the PIKA framework (Sect. 3.1). We then describe how
the prescription-based medical knowledge graph is built (Sect. 3.2) and explain
how pill visual features are extracted (Sect. 3.3). Next, we combine the built med-
ical knowledge graph and extracted visual features to enhance pill identification
performance (Sect. 3.4). Finally, we introduce an auxiliary loss and a training
strategy to improve the effectiveness of the proposed learning model (Sect. 3.5).
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3.1 Overview

Fig. 2. Overview of the Proposed Framework. Firstly, the Input Processing
Procedure is used to generate a non-directed Medical Knowledge Graph (MKG)
G = <V, E ,W> from given prescriptions, and crop the input images into pill boxes.
Secondly, the MKG is fed into a Graph embedding network to extract pills’ relational
features, while the cropped pill images are passed via a backbone network to retrieve its
visual representations. At this stage, the graph-based relational features are combined
with the pseudo-class scores produced by the visual backbone to make up its condensed
version. Thirdly, the visual embedding get projected to the same hyper-plane as their
counterparts in the graph space, with the aid of the Projection Module. Following,
the projected visual features, coupled with graph-based relational information, are the
input for the Context Attention Module to provide the context vector. Finally, the
enriched visual features, which combine the context vector and the visual features, are
fed into the final classifier to identify the pill.

As illustrated in Fig. 2, the proposed model comprises four major components:
input processing, visual processing, graph processing, and information fusion.
The first block, i.e., input processing, is in charge of locating and retrieving pill
images and creating a graph modeling drug interactions. The visual processing
block is used to extract visual features of the pills, while the graph processing
module attempts to depict the relationship between the pills. The fusion layer
then combines the visual characteristics of the pills with their graph-based rela-
tional features to generate the final classification decision. The overall flow is as
follows.

• Step 1. The original image containing multiple pills is passed through an
object localization model to identify and cut out bounding-box images of
every pill. Note that we do not focus on the object detection problem in this
work; thus, we can use any object detection model for this step.

• Step 2. We construct a graph from a given set of prescriptions, with nodes
representing pills and edges reflecting drug linkages. We name this graph
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the Prescription-based Medical Knowledge Graph or PMKG for short. The
PMKG is then passed through a Graph Neural Network (GNN) to yield
embedding vectors. Each embedding vector conveys information about a node
and its relationship to the neighbors. The detailed algorithm is presented in
Sect. 3.2.

• Step 3. The pills’ images will then be put into the Visual processing module
to extract the visual characteristic. On the one hand, these features will be
fed into the data fusion block to make the classification decision. On the
other hand, these features are put in a projection module. The objective of
the projection module is to generate a representation similar to that of the
graph processing block. The projected features are then utilized to learn the
relationship between the pill images and the PMKG’s nodes. The detail of
the visual processing module will be described in Sect. 3.3.

• Step 4. The Graph embedding vector retrieved in Step 2 and the projected
features acquired in Step 3 will be passed through an attention layer to gen-
erate a context vector. Finally, the context vector will be concatenated with
the Visual feature before being fed into the final classifier, which will pro-
duce prediction results. The details of our losses functions are presented in
Sect. 3.5.

3.2 Prescription-Based Medical Knowledge Graph

The key idea behind the proposed approach is to utilize the information on
the relationship between pills via their corresponding prescriptions to enhance
image-based pill recognition. To this end, a prescription-based medical knowl-
edge graph is constructed. Our intuition is that all the medicines are prescribed
to cure or alleviate some diseases or symptoms in actual pill captures. Hence,
we can formulate that implicit relation through the direct relations between
pills and diagnoses. This information contains in the prescriptions provided by
pharmacists to their patients. This section covers our detailed methodology for
knowledge graph modeling and our framework for embedding this graph.

Knowledge Graph Modelling. The Medical Knowledge Graph (MKG) is
a weighted graph, denoted as G = <V, E ,W>, whose vertices V represent pill
classes, and the weights W indicate the relationship between the pills. With
prescriptions as the initial data, two factors can be used to formulate graph
edges E , which are diagnoses and medications. As the relationship between pills
is not explicitly presented in prescriptions, we model the relation representing
the edge between two nodes (i.e., pill classes) Ci and Cj based on the following
criteria.

• There is an edge between two pill classes Ci and Cj if and only if they have
been prescribed for at least one shared diagnosis.

• The weight of an edge Eij connecting pill classes Ci and Cj reflects the
likelihood that these two medications will be given at the same time.
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Instead of directly weighting the Pill-Pill edges, we determine the
weights via Diagnose-Pill relation. In particular, we first define a so-called
Diagnose-Pill impact factor, which reflects how important a pill is to a diag-
nosis or, in other words, how often a pill is prescribed to cure a diagnosis. Inspired
by the Term Frequency (tf) – Inverse Dense Frequency (idf) often used in NLP
domain, we define the impact factor of a pill Pj to a diagnose Di (denoted as
I(Pj ,Di)) as follows.

I(Pj ,Di) = tf(Dj , Pi) × idf(Pi) =
|S(Dj , Pi)|

|S(Dj)| × log
|S|

|S(Pi)| , (1)

where S represents the set of all prescriptions, S(Dj , Pi) depicts the collection
of prescriptions containing both Dj and Pi, and S(Dj) illustrates the set of
prescriptions containing Dj . After calculating the impact factors of the pills and
diagnoses, we derive the weights between two pills by averaging their impact
factors against all diagnoses, as shown below

W(Pi, Pj) =
∑

D∈D

I(Pi,D) + I(Pj ,D), (2)

where W(Pi, Pj) depicts the weight between pills Pi, Pj , and D denotes the set
of all diagnoses.

Knowledge Graph Embedding. As the MKG is sparse, we will not utilize it
directly but pass it through a graph embedding module to extract the condensed
meaningful information. Specifically, the graph embedding module helps project
from the graph space into a vector space. Each vector corresponds to a node
(i.e., a pill class) and conveys information about that node and its relationships
with the neighbors. With the graph embedding module, we want to preserve the
co-occurrence property of the pills, i.e., if two nodes Vi, Vj are neighbors in the
original MKG, their corresponding presentations ui and uj should also have small
distance in the vector space. To this end, we leverage the walk-based approach,
which will train a graph embedding network using the skip-gram model with the
following loss function

Lg = −
n∑

i=1

⎡

⎣
∑

uj∈N(ui)

σ (ui · uj) −
∑

uk /∈N(ui)

log (euk·ui)

⎤

⎦ , (3)

where n denotes the total number of nodes in the graph, ui represents the embed-
ding vector of node Vi, and N(ui) depicts the set of Vi’s 1-hop neighbors. By min-
imizing Lg, we can reduce the distance between representations of neighboring
nodes while increasing that of non-neighboring nodes.

3.3 Visual Processing Procedure

The Visual Processing block is responsible for retrieving two types of informa-
tion. The former refers to the visual characteristics of individual pill images;
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Fig. 3. Illustration of the Context Attention Module

meanwhile, the latter relates to the relational feature that represents the inter-
action between pills. We employ a conventional Convolutional neural networks
such as VGG [14] or ResNet [6] to extract the visual features. Concerning the
relational features, our idea is to distill knowledge from MKG into the represen-
tation of each pill using a projection layer. Besides, the Visual Processing block
also contains a pseudo classifier module that helps to provide rough classifica-
tion results. These results are then used to filter out condensed information from
MKG (the details will be presented in Sect. 3.4).

V2G Projection Layer. The V2G projection layer obtains a pill’s visual fea-
ture vector as the input. It passes through several layers to generate a rep-
resentation with the same dimension as the MKG’s node embedding vector.
This layer can be mathematically represented as vV 2G

i = θ(vi), where vi and
vV 2G
i are the representations in the visual and graph spaces, respectively; and

θ(·) : V −→ U is a non-linear mapping. In the implementation, we formulate this
mapping as a stack of Fully Connected (FC) layers, with tanh as the middle
activation function. Through the training processing, the θ(·) will be optimized
so that the probability distribution of the projected vectors is similar to that of
the MKG’s embedding vectors. This is accomplished by introducing the Linkage
loss as described in Sect. 3.5.

Pseudo Classification Layer. The pseudo classifier produces temporary iden-
tification results. This rough classification result will be used as a filter layer
responsible for extracting from the MKG only information related to the pills in
the image (and omitting information from the nodes that are not associated with
the pills in the picture). In our implementation, pseudo classification is currently
implemented as a fully connected layer.

3.4 Data Fusion

In the Data Fusion block, we first extract the condensed information from the
MKG and integrate it with the visual features using an attention mechanism
to create the context feature. The context feature are then concatenated with
the visual features before being fed into the final classification layer to make the
final decision.
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Condensed Relational Feature Extraction. The idea of the Condensed
Feature Extraction module is to extract from the MKG only information related
to the pills in the input image. Let N be the number of pill classes and M be
the number of pills in the input image. Suppose P = [pij ]M×N is the matrix
whose row vectors represent the logits produced by the pseudo classifier, and
U = [ukl]N×H denotes the embedding matrix, whose each row represents a pill
class’ embedding vector. The condensed relational features, denoted as R is a
set of M vectors, each depicts the condensed relational information of a pill (in
the input image), extracted from the MKG. R is calculated by multiplying the
softmax of P to U as follows.

R = σ(P ) · U. (4)

Here the symbol σ denotes the Softmax activation function. Intuitively, R is
a matrix consisting of M rows. The i-th row of R is a weighted sum of all
the MKG’s node embeddings, whose weights are the classification probabilities
corresponding to the i-th pill in the input image.

Attention Module. To avoid misclassification and improve the model’s accu-
racy, besides the pure visual information extracted by the visual extractor
described in Sect. 3.3, we leverage the attention mechanism to create a con-
text vector that integrates both visual and relational features. The details of
the attention module are illustrated in Fig. 3. Specifically, we use the projected
features (i.e., produced by the Visual Projection module) as the key and value,
and the graph embedding vectors as the query. The attention module first calcu-
lates the attention weights as the similarity of each projected feature to all the
graph embedding vectors. The final context vector is then generated by taking
the weighted sum of the projected features. The context vector is then fused
with the visual features and passed to the final classifier.

3.5 Loss Functions

With additional modules for different purposes mentioned above, we also provide
auxiliary losses for aiding the optimization process of the modules. This section
is dedicated for presenting those losses.

Classification Loss. Our first objective function is the classification loss, which
is composed of two terms. The first term’s functionality is to bring the final
output of PIKA’s Classifier close to the actual result. The following one deal
with the output of the Pseudo Classification layer. It is expected to produce
the result that is best closed to ground truth also. Since we are dealing with
multi-label problems, cross-entropy is used.

Lc = − 1
N

N∑

i=1

yi · log (ỹi) − βloose ∗ 1
N

N∑

i=1

yi · log (pi) , (5)
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where yi denotes the one-hot vector - the ground truth of the i- pill, ỹi and pi
represent the Classifier’s and the Pseudo Classifier’s outputs, respectively. In the
formula, there is an additional parameter βloose (0 ≤ βloose ≤ 1), which helps
loosing the constraints for the Pseudo Classifier. The closer βloose approaches 1,
the more we expect that the output of Pseudo Classifier is similar to the main
one. In our case, it is set as 0.1 for additional flexibility.

Linkage Loss. For the V2G projection layer, we propose an auxiliary loss called
linkage loss, helping this module achieve its aim, i.e., mapping from the visual
space V to the graph space U . Let VV 2G be the vector spaces produced by the
Projection layer; then, our objective is to bring VV 2G close to the graph space U .
To this end, we design the linkage loss as a type of probabilistic distance instead
of a point-wise one. We believe it would loosen the constraint while also being
robust enough to help the module converge. Let the distributions of VV 2G and U
be modeled by two continuous random variables X, and G respectively. Firstly,
we have to model the geometry of the distributions. A common way to accomplish
this purpose is to investigate the pairwise interactions between sample points
(with an ample number of data samples) [7,11] via the joint probability density of
every two data samples. Let uij and vij be the joint density probability functions
of the i-th and j-th data points of variable X and G, respectively; then uij and
vij can be modeled using Kernel Density Estimation (KDE) [13] as follows.

uij = ui|juj =
1
N

K
(
gi,gj ; 2σ2

U
)
; vV 2G

ij = vV 2G
i|j vV 2G

j =
1
N

K
(
xi,xj ; 2σ2

VV 2G

)
,

(6)
in which K

(·, ·; 2σ2
)

denotes a symmetric kernel function with the width σ; gi,gj

are two data points sampled from the distribution of G, and xi,xj are two data
points sampled from the distribution of X; N is the number of samples. Ideally,
we want to minimize the divergence of the joint density probability functions
of U and V V 2G. However, learning a projection module that can accomplish
this purpose is impossible. To alleviate this issue, we choose to replace the joint
probability density function with the conditional probability distribution of the
samples. Though the divergence of both two functions has the same conver-
gence point (in case the kernel similarities are the same for both distributions),
the use of conditional probability can better describe the local regions between
data points [11] (expresses the probability of each sample to select each of its
neighbors). The conditional probability distributions for the graph and projected
visual spaces are defined as follows.

ui|j =
K

(
gi,gj ; 2σ2

U
)

∑N
k=1,k �=j K (gk,gj ; 2σ2

U )
; vV 2G

i|j =
K

(
xi,xj ; 2σ2

V V 2G

)
∑N

k=1,k �=j K
(
xk,xj ; 2σ2

V V 2G

) . (7)

We use the Cosine Similarity as the kernel. Finally, the divergence metric we
chose as our linkage loss function is the Jensen-Shannon (JS) Divergence:

Ll =
1
2

N∑

i=1

N∑

j=1,i �=j

[
uj|i log

(
uj|i

vV 2G
j|i

)
+ vV 2G

j|i log

(
vV 2G
j|i
uj|i

)]
. (8)
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Fig. 4. The visualization of several representative examples from our customized pill
dataset.

The total loss comprises of the Classification loss and Linkage loss as follows:

L = αLc + (1 − α)Ll,with α ∈ (0, 1) . (9)

4 Performance Evaluation

In this section we evaluate the performance of our proposed model, PIKA. We
perform several experiments on our custom pill images captured with mobile
phones under unconstraint environments. Details about the dataset, together
with our evaluation metrics and implementation details, would be covered in
Subsect. 4.1. The numerical results are then presented in Sect. 4.2 and 4.3.

4.1 Experimental Setup

Dataset. To the best of our knowledge, the dataset of pill images and corre-
sponding prescription set are not publicly available. That is our motivation to
build our own dataset for this work. Table 1 describes some important statistics
about it. In addition, the collecting and processing procedure is combined by the
following steps.

Table 1. Dataset statistics

Images Classes Prescriptions Train set Test set

3,087 76 168 116 prescriptions
2,058 images

52 prescriptions
1,029 images

• We collect anonymous prescriptions of 168 patients from 4 hospitals in Viet-
nam. After processing the raw data, we converted them into JSON format
for each prescriptions record; the pills are also indexed to form a dictionary,
including 76 kinds of drugs.

• Since the process of collecting pills in accordance with prescriptions takes
a great effort, time, and funding, in this current work, we have to collect
images of 76 type of drugs which is not exactly the types in our collected
prescriptions.
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• Following, the collected pills are relabeled by our pill dictionary described
above and grouped by prescriptions, with the number of images per prescrip-
tion being 5. Figure 4 illustrates the appearances of collected pills with their
mapped labels.

• Finally, we combine the retrieved sets of prescription photos into two sets,
one for the training process and one for evaluation.

Evaluation Metrics. For assessing PIKA performance across all used back-
bones, as well as other testing scenarios, Recall, Precision and F1-score metrics
are adopted altogether. The figures claimed in Sect. 4.2 and Sect. 4.3 are the aver-
aged numbers achieved over all classes.

Implementation Details. In our PIKA implementation, the dimensions of
the graph embeddings are set as 64. The Projection Module consists of 3 Fully
Connected (FC) Layers, with middle tanh activation, and the output dimensions
are 512, 256, 64 respectively. The optimizer used is AdamW [10], and the initial
learning rate is 0.001. βloose (Eq. 5) and α (Eq. 9) are set as 0.1 and 0.9 respec-
tively. During the training process, the input images is resized to 224×224, with
random rotation of 10◦ and horizontal flip for augmentation. The batch size is
set as 32. For the backbones we fuse our framework with, all are kept the same
as in the original papers [6,14], except the last classifier is adopted to output 76
scores in compliant with our 76 classes. All the implementation is performed with
the help of Pytorch framework, and the training, as well as evaluation processes,
are conducted with 2 NVIDIA GeForce RTX 3090 GPUs.

We use a two-step training approach for PIKA. We first train the graph
module to convergence with its specified loss (Eq. 3). The converged model out-
put is then utilized to train the rest of the PIKA framework. By doing so, we
ensure that the graph embeddings are reliable enough and truly reflect our design
intention of making them as references for projected visual vectors.

4.2 Comparison with Baselines

In this section, we will demonstrate the flexibility of PIKA by incorporating
it with different backbones, including VGG and RESNET. We also investigate
how significantly our proposed approach can improve the recognition accuracy
compared to the baselines. The numerical results are presented in Table 2. As
shown, PIKA, with all the backbones, enhances the performance by a large gap.
Quantitatively, PIKA outperforms all compared SOTA significantly in terms of
all metrics. Compared to VGG-16, PIKA improves the Precision, Recall, and
F1 -score by 5.36%, 11.44%, 9.49%, respectively. The performance gaps of PIKA
to ResNet(s) are even more significant. Concerning all the settings of ResNet(s),
PIKA improves the precision, recall, and F1 -score by 45.83%, 58.67%, 58.11% on
average, respectively. The most significant improvement can be found at ResNet-
18, where PIKA improves the Precision, Recall, and F1 -score by 48.41%, 68.18%,
66.20%, respectively.
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Table 2. PIKA performace over different backbones. The best results are highlighted
in bold.

Backbone Precision Recall F1 -score

VGG-16 [14] Baseline 0.58967 0.47236 0.50121
PIKA (ours) 0.6213 0.5264 0.5488

ResNet-18 [6] Baseline 0.61020 0.49880 0.51570
PIKA (ours) 0.9056 0.8389 0.8571

ResNet-34 [6] Baseline 0.58200 0.49520 0.50870
PIKA (ours) 0.8832 0.8173 0.8315

ResNet-50 [6] Baseline 0.59612 0.51142 0.52146
PIKA (ours) 0.8664 0.7909 0.8101

ResNet-101 [6] Baseline 0.59120 0.50960 0.51620
PIKA (ours) 0.8148 0.7482 0.7609

0.
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82
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1 
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Fig. 5. F1 -score of PIKA, given the Medical Knowledge Graph with different levels of
edge cutting

4.3 Ablation Study

In this section, we first study the impacts of the Medical Knowledge Graph in
Sect. 4.3. We then examine the impact of removing modules from the PIKA
architecture on overall performance in Sect. 4.3 and 4.3.

Impacts of the Medical Knowledge Graph. When working with a graph,
we should ensure that all the information from it is really beneficial for the
model performance (containing no noise element). Since we built the Knowledge
Graph by information from the set of prescriptions (Sect. 3.2), there are cases
in which adding edges between some pills cause potential conflicts. We observe
that while most edges have small weights, there are some with very large val-
ues. Those with small weights suggest they are potential noise that might hurt
overall performance. With that in mind, we carry out an additional experiment
for cutting edges and employ the F1 -score for evaluation, which is plotted in
Fig. 5. We first exclude 5% of edges with the lowest weights and increase the
exclusion ratios up to 75%. The experiment results are shown in Fig. 5. As can
be observed, some edges actually cause a negative impact on the overall result.
The performance reaches its peak when excluding around 20% of edges with low
weights and starts degrading afterward.
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Table 3. PIKA performace with the Pseudo Classifier removal

Model Precision Recall F1 -score

ResNet-50 [6] 0.59612 0.51142 0.52146
PIKA 0.86640 0.79090 0.81010
PIKA Without Pseudo Classifier 0.67608 0.79778 0.69887

Impacts of the Pseudo Classification Layer. As declared in Subsect. 3.3,
The Pseudo Classifier layer assists in removing redundant information from the
MGK while retrieving condensed information about the pills in the input images.
For this experiment, we use ResNet-50 as the backbone, and do training PIKA
without Pseudo Classification Layer. The result is compared with the full version
as well as our backbone. Specifically, employing the Pseudo Classifier improves
the overall precision and F1 -score by roughly 28% and 16%. The details of the
result is presented in 3.

Impacts of the Projection Module, and Context Attention Module.
Following, we study the performance of PIKA’s when both Projection Moud-
ule as well as Context Attention Module are removed. Instead of generat-
ing context vector ci as the weighted sum of all condensed graph embeddings
qi, i ∈ (0, . . . , n), we directly take the mean over all qi. For compliant with previ-
ous experiment, we also use ResNet-50 as our backbone as well as our baseline.
As shown in Table 4, removing of the two modules leads to a degradation of 6%
in the performance of PIKA.

Table 4. PIKA performace without Projection and Context Attention Modules.

Model Precision Recall F1 -score

ResNet-50 [6] 0.59612 0.51142 0.52146
PIKA 0.86640 0.79090 0.81010
PIKA w/o the Project and Attention Modules 0.82750 0.74700 0.76630

5 Conclusion and Future Work

In this study, we presented a novel approach to addressing challenges in image-
based pill recognition. Specifically, we investigated a practical scenario aiming
to identify pills from a patient’s intake picture. The proposed method leverages
additional information from prescriptions to improve pill recognition from pho-
tos. We first presented a method to construct a knowledge graph from prescrip-
tions. We then designed a model to extract pills’ relational information from the
graph, and a framework to combine both the image-based visual and graph-based
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relational features for identifying pills. Extensive experiments on our real-world
pill image dataset showed that the proposed framework outperforms the base-
lines by a significant margin, ranging from 4.8% to 34.1% in terms of F1 -score.
We also analyzed the effects of the prescription-based medical knowledge graph
on pill recognition performance and discovered that the graph’s accuracy is crit-
ical in boosting the overall system’s performance. We are actively developing
this study by gathering more pill and prescription datasets required to verify
the suggested technique and prove its usefulness in different clinical settings. We
believe that leveraging the external knowledge will improve the accuracy of pill
identification significantly.
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