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ABSTRACT Private integer comparison has been an essential computation function for many applications,
including online auction, credential identification, data mining, and joint bidding. In the setting of two-party
computation, two parties with private inputs (x and y) want to jointly compare them without revealing the
value of those inputs to others (also known as the Millionaires’ problem) while the output should ensure
correctness and preserve data privacy. The private inputs only can be revealed if they are equal, i.e., x = y.
Many relatedworks have been proposed to solve the integer comparison problem in various settings, focusing
on different properties such as round and computation complexity. Most solutions decompose integers
into bitwise representation and then securely evaluate the function in a Boolean circuit on encrypted bits.
However, this type of solution is costly (especially for large integers) as each bit requires encryption and
decryption. In this paper, we transform the private integer comparison into a block comparison problem.
In particular, we employ a block vectorization mechanism to encode the private inputs into blocks. We show
the security of our two-party protocol in the semi-honest model. Also, we implement the protocol to demon-
strate its efficiency using block vectorization mechanism and homomorphic encryption. The experimental
result proves that our proposed solution achieves high efficiency, particularly for large integer comparisons.

INDEX TERMS Private integer comparison, data privacy, secure two-party computation, semi-honest
protocol.

I. INTRODUCTION
Secure two-party computation has been an important area of
research in cryptography. The idea is to allow two parties to
securely evaluate a function on their private inputs without
leaking extra information to any party. This scenario was first
studied and introduced by Yao in the millionaires’ problem
(often abstracted as ‘‘Greater Than’’ or GT problem) [1]
where two individuals are allowed to compare their richness
without revealing their wealth to each other. TheGT problem
plays an important role in a variety of privacy-preserving
protocols, such as privacy-preserving data mining [2], [3],
private e-voting systems [4], [5] and secure e-commerce [6].

Private integer comparison is fundamental to GT problem
such that given two private integer inputs x and y, the pro-
tocol outputs true if x > y, false otherwise. When privacy
is not a concern, the integer comparison problem becomes
straightforward to implement. Each party can send their
private inputs to a trusted third party (TTP) that functions
as the central repository or data warehouse to perform the
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comparison. This is an ideal approach to support secure com-
putations if the data being used is not sensitive information
(e.g., sharing of project member’s names, email addresses,
and contact numbers). With privacy concerns, none of them
should reveal their private data to any party, including the TTP
(e.g., sales analysis, product costs, and stocks information).
However, in practice, a TTP does not exist in the real world.
In the two-party setting, secure integer comparison allows
two mistrusting parties to jointly compare their private inputs
without the presence of a trusted third party (TTP).

The usage of a two-party integer comparison is essen-
tial in many applications such as online auction, credential
identification, data mining, and joint bidding. For example,
in the sealed-bid auction system, a group of bidders simul-
taneously (or within an agreed period) submit their sealed-
bid to the auctioneer without knowing the bidding price of
the others [7]. In particular, the sealed-bid auctions require
submitted bids to remain private to protect the privacy of
the losing bidders. To ensure bid privacy, the auctioneer can
utilize a private integer comparison protocol to filter those
who submitted a bid lower than the minimum bidding price
(assuming the price is correct to the nearest integer). Also,
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the private integer comparison can be used to prevent collu-
sion between bidders and auctioneer in public procurement
and project tendering operations.

In general, this paper addresses two goals. First, we want
to protect the privacy of the private inputs from two parties
before and after the computation except when they are equal.
This goal is essential in many applications to prevent other
parties, e.g., competitors, from gaining an advantage. For
example, the leakage of bidding price in sealed-bid auctions
allows the attacker to use such information in future auctions
and negotiations for similar products or services. To achieve
this, we utilize homomorphic encryption to hide the private
inputs in our protocol design. Second, we propose an efficient
two-party protocol to compare the private inputs, especially
for large integer comparisons. The existing works in the
literature are not efficient for large integer comparison.

A. OUR CONTRIBUTIONS
Our contributions can be summarized as follows:

1) Motivated by the vectorization method proposed in [8],
we transform the private integer comparison into a
block comparison problem. We encode the private
inputs into blocks to improve the protocol efficiency
for large integers comparison.

2) We propose an efficient two-party integer comparison
protocol in the semi-honest model. By using a block
vectorization mechanism, our protocol significantly
reduces the execution time of the protocol in [8] and
achieves low communication and computational com-
plexities for large integer inputs. The computational
complexity of our protocol is 2(

√
M + 2) lgN modular

multiplications, where M is the size of the original
encoding vector.

B. PAPER ORGANIZATION
The rest of this paper is organized as follows. We discuss
the related work in Section II and technical preliminaries
are presented in Section III. We present our solution in
Section IV, followed by security and performance analysis in
Section V. We then provide our discussions and conclusions
in Section VI.

II. RELATED WORK
Private integer comparison has been a popular research topic
in cryptography. A large body of related works has been
proposed to solve the integer comparison problem in vari-
ous settings and focus on different properties such as round
and computation complexity. In general, we can classify the
existing works based on the employed techniques such as gar-
bled circuits [9], oblivious transfers [10], [11], homomorphic
encryptions [12], and secret sharing.

The garbled circuit is a cryptographic protocol that was
first proposed to solve private integer comparison. The idea
is to decompose integers into bitwise representation and
then securely evaluate the function in a Boolean circuit [1].
Garbled circuit-based solutions are somehow inefficient

because they require many rounds of interaction between the
two parties to output the comparison result. As proved by
Micali et al. in [13], there exists a secure solution for any
function which can be represented as a combinatorial circuit.
However, the circuit evaluation is somehow inefficient for
many parties because the cost for large input can be very high.

In contrast to bitwise comparison, Carlton et al. [14]
proposed a scheme that is based on a special RSA modu-
lus to compare multiple input bits simultaneously within a
single ciphertext. However, a plaintext equality test (PET)
subprotocol is required to determine the comparison outcome
and causes the increase of the computational cost. Later,
Bourse et al. [12] improved the scheme in [14] by replac-
ing PET subprotocol with a control value sent to one party,
i.e., for Alice to determine the comparison result. However,
the upper bound of the private inputs in this scheme is signifi-
cantly small compared with the solution proposed by Carlton.

Homomorphic encryption (e.g., Paillier [15] and
ElGamal [16]) is another essential approach that can be used
to compare integers without revealing their actual values.
The implementation of homomorphic encryption is straight-
forward. Hence, it can lower the overall communication
costs as compared to the garbled circuit approach. However,
it is typically less computationally efficient because of the
additional cryptosystem used. Fishlin first introduced this
approach in [17] to compare two integers using a Boolean
circuit and semantically secure cryptosystem [18]. Lin and
Tzeng [19] proposed a protocol for integers comparison by
combining multiplicative homomorphism of the ElGamal
encryption scheme with 0-encoding and 1-encoding. While
their solution is efficient but only works when the bit num-
bers of x and y are the same, which is impractical in real-
world applications. Blake and Kolesnikov [20] employed the
additive homomorphism of the Paillier encryption scheme to
construct a GT protocol for Boolean evaluation of bitwise
encrypted values. However, these solutions cannot classify
between x = y and x < y. Various homomorphic encryption-
based solutions have been proposed in the literature by
using fully homomorphic [21], and somewhat practical fully
homomorphic encryption [22]. However, these solutions are
still inefficient and unpractical. Note that some works require
encryption on both inputs and outputs [23], [24] while some
only deal with encrypted inputs and allow the output in
clear [25].

In another work, Liu et al. [8] propose a secure two-party
protocol for integer comparison problem using the vector-
ization method and Paillier cryptosystem. This work aims
to encode the private inputs into two vectors and then trans-
form the integer comparison problem into a vector-element-
selection problem. The computational complexity of the
protocol in [8] depends on the encoding vector size to encode
both x and y, i.e., |U |. The authors claimed that the domain
size is usually small in practical applications, but it is not
always the case for some real-world applications. For exam-
ple, two similar companies can have huge value differences
(e.g., revenue and asset valuation). Therefore, it requires a
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large vector to encode the two values. The authors also con-
firm that their protocol becomes impractical when the vector
size is large.

In this work, we aim to bridge the gap between secure
two-party computation and efficient protocol for large integer
comparison problem. We improve the two-partyGT protocol
in [8] by using a block vectorizationmechanism. Our protocol
significantly reduces the size of the encoding vectors and can
classify between x > y, x = y, and x < y. We will present
our proposed solution in Section IV.

III. TECHNICAL PRELIMINARIES AND DEFINITIONS
A secure two-party computation must ensure the correctness
of the output while protecting data privacy. The primary
cryptography tool we use to construct our protocol is a
homomorphic cryptosystem (e.g., Paillier cryptosystem) and
a ciphertext comparison approach. We will briefly describe
them in this section to give some ideas on how they can be
used to perform computation in an encrypted form. Also,
we will formally define the adversary model we use in our
protocols design and the definition of privacy for secure two-
party computation.

A. SEMI-HONEST ADVERSARY MODEL
In our protocol design, we assume both the client and the
server are semi-honest (‘‘honest-but-curious’’) [28] parties.
They follow the prescribed actions in the protocol but might
be interested to learn some extra information from the data
or intermediate outputs they received during the protocol
execution or from the final output.

B. SECURITY MODEL
In most of the computation protocols, the test output is either
kept private to only one party (active player) or shared with
all other parties. Fair exchange is needed in some two-party
computation protocols to ensure that both parties will receive
the same result. The protocol is said symmetric if both parties
receive the same information or result.

Generally, a two-party computation problem is cast by
specifying a random process that maps pairs of inputs to pairs
of outputs [26]. However, this paper considers the asymmetric
case where only one party receives the output at the end of the
protocol execution while the other party learns nothing. In the
setting of a two-party computation, the client (with input X )
and the server (with input Y ) jointly compute for the function
f (X ,Y ) while preserving some security properties such as the
correctness of the output and the data privacy [27].

Let 5 be a protocol between Alice (with input X ) and
Bob (with input Y ). Then, we can denote Alice’s output
by 5A(X ,Y ) and Bob’s output by 5B(X ,Y ). Since only
Alice gets the output in our case, we can simply denote
5(X ,Y ) = 5A(X ,Y ). The perspective of Alice and Bob
during the execution of protocol 5 on input (X ,Y ) can be
denoted as VIEW5

A (X ,Y ) and VIEW5
B (X ,Y ), respectively.

Note that each party’s view includes their local input, their
output, and their messages received from the other party.

We now formally define our usage of the term privacy in our
protocol (adapted from [28]) as follows:
Definition 1 (Privacy w.r.t. Semi-Honest Behavior): Let

f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a probabilistic
polynomial-time function. We say that a two-party computa-
tion protocol5 securely computes f in the presence of semi-
honest adversaries if the following holds:
• For every X ,Y ∈ {0, 1}∗ : 5(X ,Y ) = f (X ,Y ).
• There exists a probabilistic polynomial-time algorithm
SA, such that

{SA(X , f (X ,Y ))}X ,Y∈{0,1}∗
c
≡ {VIEW5

A (X ,Y )}X ,Y∈{0,1}∗ (1)

• There exists a probabilistic polynomial-time algorithm
SB, such that

{SB(Y )}X ,Y∈{0,1}∗
c
≡ {VIEW5

B (X ,Y )}X ,Y∈{0,1}∗ (2)

where
c
≡ denotes computational indistinguishability accord-

ing to families of polynomial-size circuits. We refer
the reader to [29] for the definition of computational
indistinguishability.

We can simulate each party’s view using a probabilistic
polynomial-time algorithm, only given access to the party’s
input and output. Thus, we only need to show the existence
of a simulator for each party that satisfies the requirements of
Eq.1 and Eq.2.

C. PAILLIER CRYPTOSYSTEM
The Paillier cryptosystem [15] is defined as follows. Let p
and q are prime numbers where p does not divide q − 1 and
p < q. The public key pk is set to N = pq and the private
key pr is set to (λ,N ) such that λ is the lowest common
multiplier of p−1 and q−1. To encrypt amessagem, a random
number r is chosen from 1 to N − 1 and the encryption is
computed as Encpk (m) = (1+ N )mrN mod N 2. The decryp-
tion of the ciphertext c1 = Encpk (m1) can be computed as

m1 =
(cλ1 mod N 2)

−1

N λ−1 mod N where λ−1 is actually the
inverse of λ in modulo N .

1) ADDITIVE PROPERTY
Given two ciphertexts Encpk (m1) and Encpk (m2), we can
compute Encpk (m1 + m2) as follows:

Encpk (m1)+h Encpk (m2) mod N 2

= ((1+ N )m1rN1 )+h (1+ N )m2rN2 ) mod N 2

= ((1+ N )m1+m2 (r1 + r2)N mod N 2

= Encpk (m1 + m2) mod N 2 (3)

2) SCALAR MULTIPLICATION
Given a constant c1 and a ciphertext Encpk (m1), we can
compute Encpk (c1 · m1) as follows:

c1 ·h Encpk (m1)

= Encpk (m1)c1 mod N 2
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= ((1+ N )m1rN1 )c1 mod N 2

= (1+ N )c1m1rc1N1 mod N 2

= Encpk ((c1 · m1) mod N 2) (4)

The security of the Paillier cryptosystem is based on the
difficulty of factorizing N . Therefore, for simplicity, we will
omit the modulus and keys representation hereafter in this
section.

D. NOTATION USED
The notations used hereafter in this paper are summarized
in Table 1.

TABLE 1. Notations Used.

IV. PROPOSED SOLUTION
In this section, we first explain the vectorization method
and the idea of our blocking mechanism. Next, we discuss
the selection criteria to determine the parameters (ki and s)
followed by the stopping condition of our protocol. Last,
we give the full protocol of the proposed solution.

A. PROTOCOL IDEA
1) VECTORIZATION METHOD
The main idea of the vectorization method [8] is to encode
a private input into a vector. For instance, given an input
a ∈ U = {u1, u2, . . . , ud }, a will be encoded into an
d-dimensional vector m1,m2, . . . ,md such that

mi =


α if 1 ≤ ui < x
γ if ui = x
β if ui > x

(α 6= β 6= γ )

2) BLOCK PREPARATION
For formulation purposes wewill consider the original encod-
ing vector U as an ordered set U = {u1, u2, . . . , uM } ⊂ N of
length |U | = M <∞, with u`+1 = u`+1, ` = 1, . . . ,M−1.
The secret values x and y are members of the set, x, y ∈ U .
Then, we partition U into subsets Ui = {u

(1)
i , . . . , u

(ki)
i } of

length |Ui| = ki such that U = ∪si=1Ui with Ui ∩ Uj = ∅ for
i 6= j, u(1)1 = u1, u

(1)
i+1 = u(ki)i + 1 and u(ks)s = M =

∑s
i=1 ki.

We denote the subsetsUi as blocks. Apparently, we generally
have x ∈ Ui and y ∈ Uj. If x and y are in the same block,
then i = j. The next step is to optimize the values of the s+ 1
involved parameters, {s, k1, . . . , ks}, in order to automatize
our algorithm and achieve higher efficiency. For simplicity,
we require ki = kj = k , reducing the parameter set to {s, k},
and M = ks. The latter condition is generally not satisfied
sinceM cannot always be exactly divided by k . Thus, a more
accurate requirement would beM = k(s− 1)+ ks. However,
in both cases, the optimization procedure yields the same
results. Thus, we choose here to present the simplest case,
i.e., M = ks.

Optimizing k and s: To determine the optimal values
{s∗, k∗} of {s, k} we consider the following optimization
problem. Assuming the event E that x and y are in the same
block. Then, we want to minimize the probability P(E) for
this event to occur. To calculate the probability we introduce
X1 and X2 to be random variables with X1,X2 ∈ {1, . . . , s}
describing the bock in which x and y lie, respectively. Then,
the probability is given by

P(E) = P
(

s⋃
i=1

[
{X1 = i}

⋂
{X2 = i}

])

=

s∑
i=1

P
(
{X1 = i}

⋂
{X2 = i}

)
=

s∑
i=1

P
(
X1 = i

)
P
(
X2 = i|X1 = i

)
=

s∑
i=1

(
k
M

)2

=
k
M
. (5)

If k < s, then minP leads to {k, s} = {1,M}. This is
precisely the case when the original protocol is applied on
U without any modifications. Therefore, we are looking for
a solution for k ≥ s. Formulating the former constraint as
k− s = L ≥ 0 and combining it with ks = M we can express
k and s in terms of L as

k =
2M

√
L2 + 4M − L

, s =
1
2

(√
L2 + 4M − L

)
. (6)

Substituting k into Eq. (5) we express the probability P as
a function of L,

P(L) =
2

√
L2 + 4M − L

. (7)

Due to P(L) ∈ (0, 1] we read L ∈ {0, 1, 2, . . . ,M − 1}.
Since P(L) exhibits a monotone increasing behavior with
respect to L, it attains its minimum value for L = 0. Substi-
tuting it into Eq. (6), we determine the optimal values {k∗, s∗}
of {k, s} as

k∗ =
√
M = s∗. (8)

In this solution, however, we have k∗, s∗ ∈ R+ while
k, s ∈ N. In order to overcome this difficulty, we slightly
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FIGURE 1. Proposed blocking mechanism.

modify s∗ and k∗ so that we are still as very close to their
optimal values. Then, taking into account k ≥ s, we define

s∗ :=
⌊√

M
⌋
, k∗ :=

⌊
M/s∗

⌋
, (9)

where b· · · c is the floor function. Accordingly then,
if M = k∗s∗, the set U of length M will be partitioned into
s∗ blocks of length |U1| = · · · = |Us∗ | = k∗. On the other
hand, if M > k∗s∗, then the set U will be partitioned into
s∗ + 1 blocks of length |U1| = · · · = |Us∗ | = k∗ and
|Us∗+1| = M−k∗s∗ ∈ [0, k∗). Hereafter, to keep our notation
as simple as possible, we will denote the optimum values in
Eq. (9) as s and k .

3) NEW ENCODING VECTOR
Having determined the values of the parameters k and s,
in the next step we assign a unique number to each block
as Ui → ũi, with ũi < ũi+1, e.g. Ui → ũi = i, creating
the new encoding vector Ũ = {̃u1, . . . , ũi, . . . , ũj, . . . , ũs+1}.
In this manner, the primal values x, y ∈ U have been
transformed into x ′, y′ ∈ Ũ as x ∈ Ui → ui = x ′ and
y ∈ Uj → uj = y′, and therefore (as illustrated in Figure 1),
the comparison between x and y is now transformed to the
comparison between x ′ and y′ with |Ũ | < |U |.

4) STOPPING CONDITION
We impose a stopping condition to our protocol to avoid the
worst-case scenario described as follows. Assuming that x
and y are equal, and thus, after each iteration, they are still
in the same block. Then, after many iterations, we will obtain
a block of length 1, comprised of the elements x and y. This
is an undesired situation due to privacy concerns. A way
to prevent this from occurring is to switch to the original
protocol when the length of the new encoding vector is less
than or equal to a threshold value δ, M ≤ δ.

To do so, we use the probability in Eq. (5). The value of
δ generally depends on the application area of our protocol.

In Figure 3 we demonstrate how different values of δ may
affect the execution time of our protocol.

B. OUR PROTOCOL
In our protocol design, we assume Alice and Bob hold a
secret value x and y, respectively. Both parties has knowledge
about U = {U1,U2, . . . ,UM }, partition of each block Ui =
{u(1)i , . . . , u

(ki)
i }, size of each block ki, the number of blocks s,

and the sequence Ũ = {̃u1, ũ2, . . . , ũs}. Note that the default
size of U can be pre-determined for the integer comparison
problem in different applications. Unlike the protocol in [8],
we transform the integer comparison into a block comparison
problem rather than the vector element-selection problem.
Furthermore, our approach requires block partitions before
the vectorization takes place. Thus, the vector’s size to encode
the private inputs will be reduced significantly for each execu-
tion round by employing our block vectorization mechanism.

Our protocol consists of three phases (as shown in Protocol
1): setup, encoding, and result determination. Both parties
must complete the setup phase for cryptography keys genera-
tion and block preparation to participate in our protocol. Next,
the encoding phase is used to encode the private inputs into
blocks. Finally, in the result determination phase, Alice will
evaluate the comparison result after decryption.

V. ANALYSIS
A. SECURITY ANALYSIS
Recall that the security of our protocol is defined in the semi-
honest setting by requiring the existence of simulatorsSA and
SB which can generate the view of Alice and Bob, respec-
tively, given their input (i.e., Alice with x and Bob with y) and
output P(x, y)). If such simulation is indistinguishable from
real-world execution, it implies that the protocol does not
reveal any extra information under the semi-honest model.
In this section, we explain how to simulate the view of each
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Protocol 1 Efficient Two-Party Integer Comparison
Inputs. Alice’s input (x ∈ U ) and Bob’s input (y ∈ U ).

Goal. Both parties jointly compute P(x, y) of their inputs.

P(x, y) =


−1, x > y
0, x = y
1, x < y

The protocol:
1) Setup Phase.

a) Alice first generates the public key {g,N } and
private key {λ}. Next, she sends the public key to
Bob and keeps the private key secretly.

b) Alice retrieves the pre-determined U and divides
it into subsets Ui = {U

(1)
i , . . . ,U (ki)

i } of length
|Ui| = ki.

c) Next, Alice generates an encoding vector Ũ and
broadcasts block information (ki, s, Ũ ) to Bob.

2) Encoding Phase.
a) Alice identifies x ′, the position of ũi in sequence

Ũ that contains x. Alice then encodes x ′ into a
block vector:

X ′ = (m1,m2, . . . ,mi, . . . ,ms−1,ms)
where

mi =


α if 1 ≤ ũi < x ′

γ if ũi = x ′

β if ũi > x ′
(α 6= β 6= γ )

b) Next, Alice selects s random numbers
r1, r2, . . . , rs to encrypt the vector X ′ using
the Paillier encryption scheme to produce
E(X ′) = {E(mi, ri) | i = 1, 2, . . . s}, where
E(mi, ri) = gmi .rNi mod N 2 for i = 1, 2, . . . s.
Alice sends E(X ′) to Bob.

c) Upon receiving E(X ′) from Alice, Bob identifies
y′, the position of ũj in sequence Ũ that contains y.
Next, he selects a random number rb to compute:

E(mi, ri)× E(0, rb) = gmi .rNi mod N 2
= E(µ)

d) Bob sends E(µ) to Alice for result determination.

3) Result Determination Phase.

a) By using her private key, Alice decrypts E(µ) to
obtain µ, i.e., D(E(µ)) = µ. Alice evaluates the
comparison result P(x, y) as follows:
• If µ = α, P(x, y) = −1 and x > y
• If µ = β, P(x, y) = 1 and x < y

b) When µ = γ , Alice divides Ui, the block
that contains x and y into subsets Ũi =

{̃u(1)i , . . . , ũ
(ki)
i } of length |Ũi| =

√
M .

c) Alice and Bob repeat the same operations in the
encoding phase.

d) When the block size M ≤ δ (a threshold value),
switch to protocol [8].

player using their respective inputs and outputs as follows:

VIEW5
A (x, y) = {x,E(X ′),E(µ), µ,P(x, y)},

f1(x, y) = f2(x, y) = OUTPUT5A (x, y)

= OUTPUT5B (x, y) = P(x, y) (10)

where x, y are inputs, E(X ′) is Alice’s encryption result, µ is
Alice’s decryption result, E(µ) is Bob’s computation result,
and P(x, y) is the protocol output.

Let us assume that SA simulates all internal coin flips of
SB as described in our protocol. SA proceeds as follows:

1. By f1(x, y), SA randomly selects a number y′ ∈ U such
that f1(x, y) = f1(x, y′). Then SA constructs vector X ′.

2. SA encrypts X ′ by using Paillier encryption scheme to
produce E(X ′) = {E(mi, ri) | i = 1, 2, . . . s}, where ri
are random numbers and E(mi, ri) = gmi .rNi mod N 2

for i = 1, 2, . . . s.
3. SA selects a random number to compute:

E(mi, ri)× E(0, r ′) = gmi .rNi mod N 2
= E(µ′)

4. SA decrypts E(µ′) to obtain µ′, i.e., D(E(µ′)) = µ′.
5. SA compares µ and µ′ to determine the comparison

result P(x, y′)

{SA(x, f (x, y))} = {x,E(X ′),E(µ), µ,P(x, y)} (11)

{SA((x, f1(x, y)), f2(x, y)}x,y
c
≡ {VIEW5

A (x, y),OUTPUT5B (x, y)}x,y
(12)

Similarly, we can construct a simulatorSB which simulates
the protocol for Bob. Based on the simulation for both par-
ties, the computational indistinguishability for our protocol
appears to hold on the first inspection.

B. PRIVACY ANALYSIS
Alice computes D(E(µ)) = µ; that is, µ = mi such that
i = y. Since mi ∈ {m1, . . . ,mx−1,mx ,mx+1, . . . ,ms} =
{α, . . . , α, γ, β, . . . , β}, if mi = α which implies mi ∈
{m1, . . . ,mx−1}, so y < x. Ifmi = γ which impliesmi = mx ,
then y = x. If mi = β which implies mi ∈ {mx+1, . . . ,ms},
then y > x.
When Alice receives E(µ) from Bob, she does not know

how to compute E(µ) because she does not know rb,
so E(mi,Ri) is private for Bob. Therefore, y is private for Bob.
When Bob obtains the result x > y or x < y, he cannot know
which mi equals α or β, so x is private for Alice.

C. COMPLEXITY
We use the computational complexity measure to evaluate the
efficiency of our protocol.
For comparison, we present in Table 2 the computational

complexity of existing works for the two-party GT problem
in descending order. The computational cost of the proto-
col in [1] scales exponentially with the input size, which
makes it impractical for large x and y numbers. The modular
multiplications in [19] and [20] are (5c lgN + 4c − 6) and
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FIGURE 2. Execution time of the original protocol (blue dashed curve) and the updated protocol (red solid curve) as a function of the encoding
vector size M, for the threshold value δ = 103.

TABLE 2. Computational Complexities.

((4c + 1) lgN + 6c), respectively, where c is the bit number
of the private inputs and N is the modulus of the encryption
scheme. An improved two-party GT protocol reducing the
computational cost is presented in [8], i.e., 2(M + 2) lgN ,
where M is the size of the encoding vector being much
small than c. However, due to its linearity with respect toM ,
the protocol is associated with a high computational cost for
very large M . A significant improvement offers the current
blocking mechanism protocol, where the encoding vector
size is 2

√̀
M , with the number of iterations ` = 1, 2, . . . ,K

and 2K
√
M ≤ δ. Therefore, the computational complexity of

our protocol is
∑K
`=1 2(

2
√̀
M + 2) lgN ≈ 2(

√
M + 2) lgN

modular multiplications. From the former inequality, we can
also determine the maximum number of iterations to be
K = dlg2(lgδ(M ))e, where d· · · e is the ceiling function. For
example, for the very large encoding vector size M = 1024

and a typical encoding vector size δ = 103, we need to run
our protocol K = 3 times.

D. PERFORMANCE ANALYSIS
In order to analyze the efficiency improvement of our updated
protocol compared to the original one, we record in Figure 2

the execution time of both protocols as a function of the
encoding vector size M for the worst-case scenario, x = y,
with the randomly chosen threshold value δ = 103. The sim-
ulations were conducted with an Intel Xeon W-1250 (VGA
2GB Nvidia Quadro P620) with 16GB of Ram. The curves
in Figure 2 represent the ensemble average of 200 experi-
ments for each value of M . The position of x = y in each
experiment was randomly determined. We observe two main
features. First, the execution time of the updated protocol
(solid red line) is at least two orders of magnitude faster
than the original protocol (blue dashed line), and second,
the update protocol’s increase rate is lower than the origi-
nal one. These features combined unveil that the proposed
updated protocol reduces the execution time a great deal
compared to the original one for large encoding vectors. This
is because the blocking mechanism reduces the size of the
encoding vector in each iteration, from M to

√
M . In partic-

ular, instead of comparing x and y in a set of M numbers
with computational cost of the order ∼ M , the updated
protocol compares x ′ and y′ in a set of

√
M numbers with

computational cost of the order∼
√
M . This explains why the

execution time of the updated protocol increases at a slower
rate compared to the original one, which is also numerically
verified in Figure 2. Therefore, the updated protocol is proved
to bemore efficient than the original one in terms of execution
time, especially whenM is large.

In Figure 3 we plot the ensemble average execution
time of 200 experiments with respect to the encoding vec-
tor M for different values of the threshold size δ =

{102, 103, 104, 105}. Here, again, we observe two main pat-
terns: the execution time itself and its behavior as a function
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FIGURE 3. Execution time of the updated protocol as a function of the encoding vector size M for various values of δ.

of M strongly depend on the value of δ. It becomes apparent
that the execution time increases as δ increases. Therefore,
it is recommended to keep δ relatively small. Then, depending
on δ, we may observe sudden drops of an infinite slope.
This phenomenon depends on the number of iterations of our
protocol, or equivalently it depends on how many times the
vector U is divided into

√
|U | blocks. The execution time

drops when for each M the number of divisions increases.
When δ ≥ M , we switch to the original protocol for one
last iteration. For the threshold δ = 102 in Figure 3(a),
the execution time drops 2 times when M = 102 and M =
104, corresponding to the first time and the second time
of division, respectively. However, since the scale of M is
large (up to 107), it is difficult to see the execution time
drops. Similarly, for the threshold δ = 103 in Figure 3(b),
the execution time drops twice when M = 103 and M =
106. For the last two thresholds δ = 104 and δ = 105

in Figures 3(c) and 3(d), the execution time drops only once
when M = δ.

VI. DISCUSSIONS AND CONCLUSION
In our protocol design, the computational complexity will
not be restricted by the size of the encoding vector. Instead,
the encoding vector size will be reduced to the number of
block partitions for each consecutive iteration. Hence, our

protocol can achieve high efficiency even with a large vector
size. This property made our solution valuable for applica-
tions that required large integer comparisons.

For instance, to check if an IP address is within a certain
range, we can convert the IP address into a decimal format and
then apply our protocol to determine the result. The IP address
with the formatD.C .B.A can be converted to A+ (B×256)+
(C × 256 × 256) + (D × 256 × 256 × 256) where 265 is
just a weight chosen for each part of the IP address. After
the conversion, the decimal format of an IP address can be a
large integer. For example, given 192.168.55.1, the decimal
conversion will be 1 + (55 × 256) + (168 × 256 × 256) +
(192 × 256 × 256 × 256) = 3232249600. Then the server
and client can jointly compare two IP addresses to find out
if they are within a specific range in a privacy-preserving
way.

This work introduced a block vectorization mechanism to
deal with the private integer comparison problem under a
two-party semi-honest setting. Our protocol achieves high
efficiency compared to the original protocol. Furthermore,
our protocol can support large integer comparison with fast
execution time for both two-party and multi-party settings.
Specifically, the same blocking mechanism can be applied
before the execution of the multi-party GT problem (secure
sorting problem) presented in [8].
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We plan to extend our protocol for multi-party settings in
malicious and rational adversary models. This future work
will require an additional secure mechanism to prevent two
or more parties from colluding.
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