
On the Trade-off Between Privacy Protection and
Data Utility for Chest X-ray Images

Truong Giang Vu
College of Engineering
and Computer Science

VinUniversity
Hanoi, Vietnam

20giang.vt@vinuni.edu.vn

Nursultan Makhanov
Department of Computer Science

Nazarbayev University
Nur-Sultan, Republic of Kazakhstan

nursultan.makhanov@nu.edu.kz

Nguyen Anh Tu
Department of Computer Science

Nazarbayev University
Nur-Sultan, Republic of Kazakhstan

tu.nguyen@nu.edu.kz

Kok-Seng Wong
College of Engineering
and Computer Science

VinUniversity
Hanoi, Vietnam

wong.ks@vinuni.edu.vn

Abstract—The rising advancement in deep learning (DL)
techniques has enabled machine learning (ML) models to assist
practitioners in performing medical tasks with high accuracy.
However, it also poses privacy concerns regarding how such
models will proceed with medical data containing protected
patient health information. Therefore, some efforts have been
made to anonymize medical data to preserve data privacy while
keeping the model performance high enough to avoid wrong
decisions in the medical field. Nevertheless, the adversary can
develop an ML model to re-identify a patient’s identity by
matching an arbitrary chest X-ray image with a public or leaked
image dataset with high accuracy. This paper aims to find a trade-
off between our privacy protection method and data utility for
medical images. Specifically, we propose a solution to anonymize
chest X-ray images by directly adding noise to the images to
prevent verification attacks and evaluate how well those images
can maintain good performance in the lung disease classification
task. Simulation results on real-world datasets show that the
proposed solution achieved a good trade-off between privacy
protection and data utility.

Index Terms—Data Privacy, Medical Image Classification,
Differential Privacy, Data Utility

I. INTRODUCTION

Chest X-ray is considered as the most common and ac-
cessible type of radiological examination procedure as it
accounts for at least one third of all exams in a typical
radiology department [1]. It enables scientists and medical
professionals to observe the health condition of human lungs
and diagnose our respiratory systems. In the time of Covid-19,
X-ray examination has allowed medical personnel to identify
the existence of Covid-19 on human lungs. For instance,
several studies have shown some relationships between the
lung abnormalities found on chest radiographs of Covid-19
positive patients and their disease severity [2], [3]. Moreover,
for the ML/DL community, chest X-ray serves as a wealthy
data source to build ML/DL models [4], [5] that can assist
medical practitioners to diagnose patients.

To build ML/DL models, various public medical chest X-
ray image datasets [5], [6] have been published online for
academic or medical usage with personal information stripped
off to protect patients’ privacy. However, millions of medical
images with sensitive patient information are exposed online,
including X-rays, ultrasounds, and Computed Tomography

(CT) scans. Moreover, as experimented in [7], publicly avail-
able medical chest X-ray datasets are not entirely anonymous.
Unfortunately, privacy protection for these unstructured data
is much more complex than that for structured data because
data attributes of images are implicitly represented by sets of
pixels covering irregular shapes and sizes [8].

This work is motivated by [7] where the authors raise the
question of how publicly available X-ray images can remain
anonymous. In this paper, we aim to decrease the patient
verification performance by adding various type of statistical
noises to the images and observe how well they can maintain
their utility, i.e., for the disease classification task. We propose
a method to anonymize chest X-ray images by modifying those
images directly with noise. We conducted experiments to find
the trade-off between the amount of noise to be added with
the reduction in performance of the patient verification task,
and the performance of the lung disease classification task.

The paper is structured as follow: In Section II, we briefly
present background and previous work related to image clas-
sification task for X-ray images and differential privacy. Our
proposed methodology is written in detail in Section III. In
Section IV, we present our experiment setup, empirical results
and evaluation in the patient verification task and X-ray disease
classification task after applying our method. We discuss and
summarize our findings in Section V and VI.

II. BACKGROUND AND RELATED WORKS

In this section, we provide the background on image clas-
sification approaches, differential privacy and related works.

A. Background

Deep learning has emerged to dominate the Computer
Vision field since 2012 when Krizhevsky et al. introduced
Deep Convolutional Neural Networks (CNNs) called AlexNet
showing tremendous results in image classification task. It
led to the development of deeper models such as VGG,
GoogleNet, ResNet, SENet, etc. and becoming the state-of-
the-art algorithms in the image classification problem. Supe-
riority of finding such complex relationships in images was
due to various convolution operations which use pooling and
sampling strategies. Typical CNNs are composed of different
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Fig. 1. Overview of the proposed framework. Chest X-ray images and their lung segmentation masks from the same patient have the same border color.

layers such as convolution, pooling, fully connected layers.
Deep convolutional neural networks are the main choice when
dealing with various image understanding tasks. However,
CNNs are weak at encoding relative spatial information of
certain features in the image. Recently, attention-based models
[9] have shown superior results by addressing this encoding
issue compared to many deep CNN-based models in Computer
Vision tasks.

Differential privacy (DP) [10] is a strong notion of privacy
that guarantees privacy protection in the presence of arbitrary
auxiliary information. Intuitively, it aims to limit the informa-
tion leakage from the output by making a small change on
the inputs. It is a data-perturbation approach founded on the
idea that systematically randomized modifications to a dataset
or algorithm can reduce the information of a particular indi-
vidual while preserving the statistical reasoning capabilities
of the dataset [11]. DP offers a solution to protect against re-
identification attacks such as linkage attacks while maintaining
the dataset’s utility. In the literature, DP has been applied in
the input, output, or model updates during training.

One of DP’s significant trade-offs lies in the perturbation
process, i.e., data manipulation can possibly degrade the data.
In the field of medical imaging, where the data is scarce
and the results are sensitive to the human patients’ outcomes,
ill-formed data may be detrimental to the performance of
algorithms [11]. This raises a question: how should we modify
the data so that it can protect patients’ privacy while still
retaining good use for medical imaging tasks?

B. Related Works

Along with X-ray radiography, the recent development of
machine learning techniques has allowed computers to detect
abnormalities on chest X-ray images with high accuracy, aim-
ing to assist medical doctors in diagnosing patients’ conditions
while avoiding human error and biases. For example, several
pre-trained CNN models such as ResNet, VGG, XCeption, etc.

have been utilized to extract features from chest X-ray images
to detect pneumonia [4]. Notably, many researchers try to take
advantage of these CNNs since they show huge potential. For
instance, Wang et al. [6] proposed a large scale X-ray dataset
to classify 8 chest pathologies. Further, it was modified with 6
more pathologies and Rajpurkar et al. [12] proposed ChexNet
model to detect Pneumonia. Irvin et al. [5] proposed CheXpert
datasets with 14 pathologies. Authors applied DenseNet121
architecture as a baseline and achieved pretty good results.

Medical images are an essential resource for diagnosing,
monitoring, and treating diseases. There are several efforts to
preserve the privacy protection of medical images while main-
taining data utility in the literature. Ziller [13] implemented
the Differential Privacy Stochastic Gradient Descent (DP-
SGD) algorithm, which modifies user-supplied neural network
architecture and adds noise to per-sample gradient to provide
a formal privacy guarantee regardless of the dataset, learning
task, and of model selection. Ziegler [14] incorporated Fed-
erated Learning with Rényi differential privacy and Gaussian
noise mechanism to protect against data reconstruction attacks.

However, it is shown in [7] that chest X-ray images are vul-
nerable to linkage attacks. By retraining a pretrained ResNet-
50 model [15], the attacker can detect whether two chest X-
ray images belong to the same patient with high accuracy; and
compare a given radiograph with public datasets to retrieve a
list of chest X-ray images that are considered to be similar
with. In case that the adversary has a chest X-ray image of a
patient and has access to an arbitrary chest X-ray dataset, that
patient is at risk of having his/her health conditions (over a
period of time) exposed; since such a dataset usually contains
the patient’s history of chest radiography.

III. PROPOSED METHODOLOGY

As our work protects users’ lung images and maintains
utility, we divide our framework into two parts (as shown
in Fig. 1). The first part (Patient Verification) considers the
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methodology for applying noise to the X-ray images and
use those noisy images for patient verification task through
Siamese network [16]. The second part (Disease Classifica-
tion) considers image classification approaches to show the
impact of noisy images on the classification performance.

A. Applying Noise on Chest X-ray Images

Our work involves the use of noise following one of
the three statistical distribution: Gaussian, Exponential and
Laplacian distributions.

Gaussian noise [17] is one of the most frequently occurring
types in image processing as it happens under some reasonable
circumstances in practice such as thermal, lighting, grain, etc.
The density function of a value x in the univariate Gaussian
noise Q ∼ N(µ, σ2) with mean µ and variance σ2 is:

pQ(x) =
1

σ
√
2π

exp

(
−1

2

(x− µ

σ

)2)
(1)

The Exponential noise [17] is often used to model speckle
in images. It is drawn from the exponential distribution Q ∼
Exp(λ), which has the following density function for x > 0
and variance 1/λ2:

pQ(x) = λ exp(−λx) (2)

In the experiment, the scale parameter β = 1/λ will be used
instead. The above formula is rewritten as below:

pQ(x) =
1

β
exp(−x/β) (3)

Laplacian noise [18] is a type of noise that has the following
density function: For a noise distribution Q ∼ Laplace(µ, λ)
having mean µ and variance 2λ2 (λ > 0):

pQ(x) =
1

2λ
exp

(
− |x− µ|

λ

)
(4)

To apply noises on chest X-ray images, we have two options
to apply the noise: either to the region outside the lung, or to
the whole image. For the first option, we employed a lung
segmentation model based on U-Net architecture from the
RSNA Pneumonia Detection Challenge [19] to identify the
lung area. We created a binary mask M over an image img
to cancel the noise inside the lung. For the second option, the
binary mask M is the whole image (with all values in the
mask being 1).

The noise ε is generated as a tensor having the same
shape as img and follows one of the statistical distributions:
Gaussian, Laplace, and Exponential. The parameters for each
noise distribution is listed in Table I. In the experiment, we
denote noise distributions with λ = 0 or β = 0 as noise tensors
having values 0 (no noise).

Afterwards, we created another noise εL by cancelling the
noise ε in the masked area to avoid disturbing the actual lung,
since we assume the quality of the inside-lung image is critical
to the disease classification task. We applied an element-wise
product ⊙ of the binary lung mask tensor M and the noise

TABLE I
NOISE PARAMETERS

Distribution Parameters

Gaussian µ = 0
σ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

Exponential β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

Laplace µ = 0
λ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

tensor ε: Image points inside the mask have the value 0 in the
M, and therefore cancel the noise: εL = ε⊙M. For an image
img, it is converted from 8-bit format (value range is [0−255])
to floating-point format (with values in range [0, 1]). Then the
noise εL is added to the image by a tensor addition operation,
producing a “noisy image” imgN for img: imgN = img + εL.
The image imgN is then converted back to the 8-byte format
for model usage. Hereafter, we refer images that have noise
by using this method as “noisy images”, and “clean images”
otherwise.

B. Siamese Network Architecture for Patient Verification

The Siamese Network Architecture is designed to learn the
similarity metrics between two inputs [16]. It consists of two
CNN branches sharing the same weights to calculate the two
feature representation vectors of the input pair, a merge layer f
to merge these results, and a loss layer L to calculate the loss
value between the merged output and the label as illustrated
in Fig. 1. This architecture is used for the Patient Verification
task to match the features of a pair of chest X-ray images.
We obtained the pretrained ResNet-50 model to serve as the
backbone CNN branch for feature extraction of input images
in the Patient Verification Model (PVM).

C. Transfer Learning for Disease Classification

Many research works have shown that deep features are
useful for image classification. Extracting such features is
more robust and effective than using hand-crafted image
features. The technique based on the use of deep features is
widely recognized as transfer learning, a research problem to
store and apply knowledge or skills learned in several tasks to
a target task. Specifically, the main goal is to obtain a robust
feature representation for the target domain.

Disease classification part of Fig. 1 shows the logic behind
testing the utilization of given X-ray images. We included pre-
trained DL models as Vision Transformer (ViT), DenseNet121,
and ResNet-50 and froze the intermediate layers. We kept the
pre-trained weights of initial architectures to take advantage
of existing models in order to reduce the training time.
DL models were employed to process X-ray images and
extract useful features of diseases. The extracted features were
supplied into new network which acts as a classifier for 14
given diseases. All models share common hyper-parameters,
i.e., the classifier consists of one linear layer followed by a
sigmoid activation function. Such method is used to avoid re-
training the whole model from scratch which requires a lot of
computational power and time.
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(a) Gaussian with lung segmentation (b) Exponential with lung segmentation (c) Laplace with lung segmentation

(d) Gaussian without lung segmentation (e) Exponential without lung segmentation (f) Laplace without lung segmentation

Fig. 2. Verification performance for different setups (noise parameters, with/without lung segmentation)

(a) DenseNet with segmented lungs (b) ResNet with segmented lungs (c) ViT with segmented lungs

(d) DenseNet all noisy image (e) ResNet all noisy image (f) ViT all noisy image

Fig. 3. Mean AUROC scores for noisy images with/without lung segmentation

IV. EXPERIMENTAL EVALUATION

Dataset and Augmentations: In an effort to show fair
comparison in patient verification and disease classification
tasks, we utilize the NIH Chest X-ray dataset [6], which is
one of the largest publicly available chest X-ray datasets. It
consists of over 112,000 deanonymized X-ray images from
30,805 unique patients with 14 pathologies. For classification
task, we resized the images to 224 pixels, applied Random
Horizontal Flip and Center Crop operations. Validation and
Test images were resized to 256 pixels both for verification
and classification tasks.

Patient Verification task: In this experiment, we repro-
duced the PVM from [7] to examine the performance of the
verification task. The model takes two chest X-ray images and
produces a boolean output: 0 if two images do not belong to

the same person, and 1 otherwise. In the verification task, the
following metrics were computed to evaluate the performance:
accuracy, F1-score, precision, and recall. To conduct the
patient verification task, we used the Kaggle service to train
and test PVM as Python notebooks with GPU enabled in one
run.

Disease Classification task: Learning rate was set to 0.001
with decay rate by 0.1 each round when learning does not
happen. We also stopped the training process when validation
shows no improvement in 3 consequent rounds. We set the
batch size as 48 for DenseNet121 and ResNet-50, but we had
to change the batch size to 16 on ViT model as it takes a
lot of hardware resources. We set epoch numbers as 50 for
all the models. To track the learning process we used Binary
Cross Entropy (BCE) loss. BCE loss is a popular choice when
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working with multi-label classification task. Mean AUROC
metric was used to test the performance of the models.

A. Patient Verification Performance

We used 400,000 clean image pairs in the training phase,
and 10,000 fixed noisy image pairs with noise parameter
values from Table I in the testing phase. While testing noisy
images were repeatedly used for different noise parameters,
there was no patient overlap between the training images and
the testing images.

As shown in Fig. 2, there is a significant drop in accuracy,
F1-score and precision metrics when noise is added to the
images. In particular, accuracy and precision have an approxi-
mate 30% drop when we increase the parameter from 0 to 0.2
for Gaussian and Laplacian noise, and 20% for Exponential
noise. F1-score experiences a 20% drop for Gaussian and
Laplacian noise and over 10% for Exponential noise. However,
for Gaussian and Laplacian noises, the recall metric gains
substantially as the noise parameter grows. In Figs. 2(a), 2(c),
2(d) and 2(f), as the noise parameter reaches 1.0, the recall
metric peaks at nearly 1.0. High recall signifies that the PVM
has a high chance of correctly detecting two images belong
to the same patient if it is true. It can also be seen that the
Gaussian noise has similar behavior as the Laplacian does, due
to the similarity between these two distributions: For the same
µ, both are symmetrical about the mean µ. However, Gaussian
distribution results in a bell-shaped curve, while Laplacian one
tends to have a sharper peak towards the mean.

On the other hand, Exponential noise behaves differently
from Gaussian and Laplacian. Figs. 2(b) and 2(e) show that the
verification accuracy, F1-score and precision reach the lowest
value of 0.6575, 0.7165, 0.6089 respectively when β = 0.2.
Meanwhile, also at β = 0.2, the recall is at its peak of
0.8705. For β > 0.2, all four metrics tends to change slowly
but in different directions. Unlike Gaussian or Laplacian noise
which continues to decrease in accuracy, F1-score, precision
and increase in the recall metric, Exponential noise does the
opposite as those three metrics gain and the recall reduces
slightly. Moreover, for each type of noise, the PVM per-
formance is similar whether to apply lung segmentation or
not. All experiment settings displayed significant changes in
performance metrics between testing without noise and with
small noise parameter values; while for larger values, the
changes were not as significant. We notice that since the PVM
is trained on clean dataset, it also focuses on some region
outside the lung; hence, it will behave poorly even with small
amount of noise on the dataset. Therefore, the performance
difference is obvious when testing between clean and noisy
datasets, and is hardly noticeable among noisy datasets of
various parameters.

B. Disease Classification Performance

In the first experiment, we trained all models on clean NIH
dataset and we tested the results on 10,000 clean images.
DenseNet121 model showed overall mean AUROC score of

0.83 which is close to ChexNet’s [12] result 0.84. ResNet-
50 model showed 0.81 mean AUROC score which is a good
comparable result. However, ViT could show mean AUROC
score of 0.64. This means that deep CNN’s still learn better
compared to Transformer architecture. Transformers need a lot
of training images to learn by default. Nowadays Transformer
based model which show state-of-the-art results in ImageNet
dataset are pretrained on Google’s private JFT-300 (300 mil.)
and JFT-1B (1 bil.) images. We observed that the shortage
of available medical data makes Transformer-based models
weaker in performance compared to deep CNN models on
clean X-ray images.

Another experiment we conducted is to train all models on
clean dataset and test on noisy test data. All models show
sudden drop when we apply a little noise except ViT. ViT’s
base prediction mean AUROC is 0.64 on clean X-ray images
and when we apply noise parameter of 0.1 with or without lung
segmentation algorithm, it shows 0.62-0.63 score for all types
of noises (Figs. 3(c) and 3(f)). When we increase the noise
parameter, mean AUROC scores fall gradually for images with
clean segmented lungs and for noisy lung images. We can
see that results with clean segmented lungs still higher than
applying the noise to all parts of X-ray image. As our model
trained on a clean data, we observed that all the models can
see clean segmented lungs better than the noisy images with
100% coverage. Another finding we noticed is that applying
exponential noise affects ViT model significantly. However,
Gaussian and Laplacian noises show similar performance in
both cases. Overall, we can see that ViT model is more robust
to noises compared to deep CNN models’ performance.

DenseNet121 and ResNet-50 showed the best performance
on the NIH clean testing dataset (mean AUROC scores of 0.83
and 0.80, respectively). However, when we apply different
types of noises to the images, we can see a sharp drop in
the performance. For instance, when we segmented the lungs
and applied Exponential noise (parameter 0.1), DenseNet’s
and ResNet’s performance dropped by 0.12 and 0.175 scores,
respectively. In Figs. 3(a) and 3(d), we observed that the
increase of noise parameter caun AUROC core decreases mod-
erately for Exponential noise. We noticed unusual behavior
which can be noticed in Figs. 3(a) for DenseNet and 3(b)
for ResNet models. When we increase the noise parameter
of Gaussian and Laplacian noise more than 0.4, performance
suddenly increases. Same situation applies for ResNet in Fig.
3(b) when we increase noise parameter from 0.3. Logical
conclusion that we came up is that both DenseNet and ResNet
models can distinguish better various diseases from clean
segmented lungs even if we increase the noise parameter.
When we generated lung segments and applied noise to the
outside area of the lungs, in some cases, the pre-trained, U-Net
segmentation algorithm could not identify lung areas. It led to
the application of noises to the lung areas directly where the
abnormal behavior was recorded.

In Figs. 3(d) and 3(e), we can see that the mean AUROC
scores are impacted severely when the noise parameter is
higher than 0.2. The AUROC score below 0.55 means that we
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cannot trust the results of the given models. Besides, Gaussian
and Laplacian noises impacts the performance of CNN models
more than Exponential in all cases. Overall, for CNN models
the least impact was caused by Exponential noise for all cases
and vice versa for ViT model.

V. DISCUSSIONS

In this section, we summarize the findings for our ex-
periments. Firstly, we can decrease the verification accuracy
drastically by adding noise of small parameter values. We
notice that since the PVM model focuses on some regions
outside the lung, which we have made them noisy; therefore,
the model performs poorly on our noisy dataset, and there are
no significant changes when we increase the noise parameters.

In addition, the ViT model showed great performance when
noises were added to the images. If we train the ViT model
with considerable amount of training data, we might get
better performance which is robust to the noise. This can be
attributed to the transformer architecture’s attention module
which sees the whole picture while convolution operation in
CNN’s sees only neighboring pixels. During the training phase
of disease classification task, we set the epoch number as 50,
but normally the training accuracy converged after 30 epochs.
This behavior is due to the decay rate which dropped the
learning rate by 0.1 each round when the learning ability was
stable for 3 epochs.

Another observation we found is that in some cases pre-
trained U-Net model could not segment the lung areas because
of the low X-ray image quality. Some of the X-ray images
consist too much white are on lungs which makes U-Net model
harder to understand the image and segment properly the lung
areas. This fact greatly impacted the classification accuracy
which led to low performance or even strange behaviour of the
ResNet model (Figs. 3(b) and 3(e)). Further research needs to
be done in finding better lung segmentation model.

VI. CONCLUSION

In this paper, we analyzed the trade-off between patient
verification and classification accuracy of DL models when
we applied Gaussian, Exponential, and Laplacian noises to X-
ray images. Specifically, we proposed to segment lungs and
add noises to the outside area. Unlike other solutions in the
literature, we added the noise directly into the images that
helps to protect the data privacy from the source. All the
experiments were conducted on the real-world NIH dataset.
Experimental results showed that applying a small noise pa-
rameter can significantly reduce the verification accuracy, but
slightly hurt the disease classification performance compared
to clean images. Thus, a solution that can enhance data
privacy and preserve ML/DL performance is detrimental to one
of them. Consensus towards data protection and data utility
require further research in emerging cryptographic solutions.
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