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Abstract— Background foreground separation (BFS) is a
popular computer vision problem where dynamic foreground
objects are separated from the static background of a scene.
Typically, this is performed using consumer cameras because
of their low cost, human interpretability, and high resolution.
Yet, cameras and the BFS algorithms that process their data
have common failure modes due to lighting changes, highly
reflective surfaces, and occlusion. One solution is to incorpo-
rate an additional sensor modality that provides robustness to
such failure modes. In this paper, we explore the ability of a
cost-effective radar system to augment the popular Robust PCA
technique for BFS. We apply the emerging technique of algorithm
unrolling to yield real-time computation, feedforward inference,
and strong generalization in comparison with traditional deep
learning methods. We benchmark on the RaDICaL dataset to
demonstrate both quantitative improvements of incorporating
radar data and qualitative improvements that confirm robustness
to common failure modes of image-based methods.

Index Terms— Radar, background foreground separation,
algorithm unrolling, ISTA.

I. INTRODUCTION

BACKGROUND foreground separation (BFS) is a funda-
mental task for many computer vision algorithms where

dynamic foreground components are separated from the sta-
tic background of a given scene. Successful BFS enables
applications in intelligent surveillance such as vehicular traf-
fic monitoring, industrial manufacturing, and human activity
recognition [1]. A wide variety of approaches to BFS exist
in the literature. Subspace methods and deep learning have
emerged as the dominant techniques in the past decade due
to their superior performance on popular benchmark datasets
[2], [3]. Other techniques include statistical methods, fuzzy
models, and cluster models. For a recent review, see [4].

In this work, we operate in the unsupervised BFS problem
setting where no hand-labeled data is available during training
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Fig. 1. Examples of targets or phenomena that may potentially be detected
as foreground for radar and camera sensors.

and side-information from an additional sensing modality is
used alongside camera data. To the best of our knowledge,
this is the first such work in BFS that incorporates radar
sensing into a BFS algorithm. Automotive/consumer radar
sensing has recently seen a great deal of interest due to its
affordability, compact size, and ability to sense in conditions
where cameras perform poorly. In the context of BFS, radar
does not detect some undesirable foreground components
that cameras capture. Examples include shadows, changes in
lighting, reflections and digital screens as depicted in the
Venn diagram in Fig. 1. Moreover, compared to its camera
counterpart, detecting moving targets in radar data is much
simpler. This is achieved by measuring subtle changes in the
phase of the received signal. This allows radar to detect salient
motion in as little as one frame depending on the type of
radar. A comparison between camera and radar data of the
same scene is shown in Fig. 2. Unlike cameras, radar sensing’s
shortcomings include low angular resolution, specularity, and
multipath, the first two of which can be seen in Fig. 2b.

In designing our algorithm, we make the practical consider-
ations for (1) real-time computation, (2) robustness to unseen
data, and (3) cost-effectiveness. Towards the first two points,
we leverage the advantages of both subspace and deep learning
models via the emerging technique of algorithm unrolling.
First proposed in [5] for sparse coding, an iterative algorithm
is unrolled or unfolded by representing the k’th iteration as the
k’th layer in a feedforward network. The result of the k’th layer
is fed as the input to layer k + 1 where common operations
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of iterative algorithms such as shrinkage operators function
as the non-linearities in traditional deep nets, e.g. ReLU.
Unrolled networks have been shown to achieve the same
performance as their iterative counterparts using dramatically
fewer layers. This means real-time computation is possible on
both seen and unseen data without sacrificing performance.
Furthermore, compared to state of the art deep nets, unrolled
neural networks often use far fewer parameters, require less
training data, and maintain a high level of interpretability due
to the structure imposed by its accompanying “white box”
iterative algorithm [6].

In addition to sparse coding, algorithm unrolling has also
been used to tackle a wide variety of problems employing
well studied algorithms and supplementing key assumptions
with data-driven techniques. Examples of unrolling algorithms
into feedforward networks include image deblurring [7], phase
retrieval [8], channel estimation [9], and clutter suppression in
ultrasound [10].

In this paper, we extend the work of CORONA [10],
which is an unrolled Robust PCA technique. We combine
radar side-information with camera data into the Robust
PCA objective to re-weight the penalty of the sparse fore-
ground. We present the ISTA algorithm for this radar-modified
objective and refer to this procedure as RISTA. We then
unroll RISTA into a feedforward convolutional neural network
we call Radar Unrolled Shrinking and Thresholding Incor-
porating Convolutions, or RUSTIC. To ensure our method
is cost-effective and practical, we use frequency-modulated
continuous wave (FMCW) radar for our experimentation.
FMCW radar is low cost (the Texas Instruments IWR1443
we use costs $12 USD) and small in size (can be put
on a single PCB). FMCW radar can transmit and receive
simultaneously thus allowing detection of targets at very close
range. We perform quantitative evaluation on the RaDICaL
dataset1 [11] and demonstrate that RUSTIC delivers com-
petitive and sometimes superior performance to its iterative
counterpart on both seen and unseen data while enabling real-
time computation. We also compare RUSTIC to the CORONA
model that only utilizes camera data and a conventional deep
learning segmentation model in the U-Net [12]. We show a
clear improvement in quantitative performance by incorpo-
rating radar side-information for shallower unrolled models
and demonstrate these unrolled models generalize far better
to unseen scenes than the U-Net while using orders of mag-
nitude fewer parameters. Furthermore, we provide qualitative
examples illustrating the effectiveness of both the camera and
radar modalities to correct errors from one another through
the RUSTIC framework.

The rest of the paper is organized as follows. In Section II,
we discuss prior work in BFS involving subspace and deep
learning approaches. Section III defines our problem set-
ting and motivates the incorporation of radar data into the
RPCA objective to form our iterative RISTA algorithm.
In Section IV, we explain how RISTA is unrolled into

1The dataset can be accessed at https://databank.illinois.edu/datasets/IDB-
3289560

our RUSTIC model. Section V details our quantitative and
qualitative experimental results for RUSTIC and related works
on the RaDICaL dataset. Finally, we conclude in Section VI
and provide suggestions for future work using RUSTIC and
sensor fusion in BFS.

II. RELATED WORK

A. Unsupervised Subspace Methods

Unsupervised subspace methods seek to decompose an
image sequence into the sum of a low-rank background and
sparse foreground. Robust PCA (RPCA) [13] is one highly
influential method which solves the convex Principle Compo-
nent Pursuit (PCP) program to perform this separation. While
effective in many settings, PCP can take hundreds of iterations
to converge using popular solvers such as ISTA or ADMM,
and subspaces must be recomputed when new data is made
available. These shortcomings have been explored in papers
proposing faster optimization algorithms [14] as well as with
more significant changes to the algorithm to enable real-time
RPCA [15]–[19].

An additional shortcoming of pure subspace methods is that
they do not take into account the spatial-temporal constraints
of real-world moving objects. For example, with a sufficiently
high video frame rate, one can assume foreground objects
will not move drastically between consecutive frames. In
[20]–[22], this constraint is addressed in the objective function
in order to estimate a foreground more robust to noise and
identify dynamic backgrounds like moving water.

Another method for improving the performance of subspace
methods, as done in this paper, is to include an additional
sensor. Much of the published research in this area uses depth
information in the form of RGB-D data because of ease of
use with RGB data, especially when the data comes from a
single device. While [23], [24] do demonstrate improvements
in performance with RGB-D data compared to RGB data
alone, depth data is rather limited in its application because
of its restrictive maximum sensing depth and its ability to
accurately estimate depth in nonideal conditions such as low
lighting. Unlike depth sensors, such problems do not curb the
performance of radar.

In addition to these drawbacks, subspace methods are also
sensitive to changes in lighting and camera alignment. For
example, a small translation of the camera defines a completely
new low-rank subspace for the background. Because there is
no feature learning in subspace methods, such subtle changes
cannot be recognized or properly discarded without explicitly
imposing greater structure on the subspace model.

B. Supervised/Unsupervised Deep Learning Methods

Supervised deep learning techniques [3], [25] have been
shown to address the aforementioned limitations and even pro-
vide human-level performance on supervised learning bench-
marks like CDnet14 [26] and Scene Background Initialization
2015 [27]. With hand-labeled ground-truth examples, Convo-
lutional Neural Networks (CNNs) learn rich features that focus
on salient changes in a scene and are robust to changes like the
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aforementioned camera shift due to the translation-invariance
of the convolution operator. Deep learning algorithms often
require an expensive fitting or training process like subspace
methods; however, they are able to be deployed immedi-
ately on unseen data without the re-fitting that subspace
methods require. Example models include FgSegNet [28],
CascadeCNN [29], the Deep Difference Network [30], BSUV-
Net [31], and [32] which leverages Graph CNNs. Further-
more, [33] and [34] focus on efficient implementations of
using deep learning for such BFS tasks. Additional research
in deep learning has also addressed the task of intelligently
fusing early stage and minimally processed radar data with
RGB data [11], [35].

The key shortcoming of deep learning methods is that they
require expensive pixel-level ground truths for hundreds of
images. These deep CNNs typically have on the order of
millions of learnable parameters. Thus, when limited ground
truths are available, they are prone to overfitting and poor
generalization to unseen data. Unsupervised deep learning
approaches have been suggested to alleviate the labeling
burden; however, they lag considerably behind their supervised
counterparts [36]. Recent works including BSUV-Net [31] and
BSUV-Net 2.0 [37] have improved the performance of super-
vised models on unseen scenes by designing augmentation
policies, but still require detailed annotations on many training
scenes.

Accordingly, in this paper we seek to leverage the strong
capabilities of modern deep learning methods with the struc-
ture of iterative subspace methods in order to achieve an
unsupervised solution to BFS.

III. SENSOR FUSION FOR BFS

A. Problem Setup

We consider the scenario where M radar frames and M
camera frames, each separated by �t , observe the same scene
and are synchronized in time. Using both the camera and radar
data, we aim to separate the camera data into its background
and foreground components. Let Dm ∈ RH×W be a single
frame in our video sequence for a given scene. For the radar
data, we assume the radar transmits a constant amplitude
sawtooth waveform such that for a given chirp interval, 0 <
t < T , the frequency can be expressed as fc + Bt where fc

is the starting frequency and B is the chirp slope. This yields
the following transmitted waveform

St x = At x cos

(
2π

(
fct + B

2
t2

))
(1)

where At x is the signal amplitude. After the transmitted signal
is reflected from a target back to the radar’s receivers, the
signal is subsequently mixed with the transmitted signal and
low-pass filtered to obtain the intermediate frequency (IF)
signal. The IF signal is then sampled Ns times during the
chirp’s interval. We also assume that T � �t allowing us
to include multiple radar chirps in each radar frame. Accord-
ingly, we consider one complete radar frame to contain Nc

sequential chirps each received and sampled at Na receivers.
This results in a single frame of radar data taking the form
Rm ∈ CNs ×Na×Nc .

Next, we follow the RPCA [13] subspace method for
BFS closely and seek to separate our camera data D into
its low-rank and sparse components, L and S, respectively.
We accomplish this by first vectorizing each frame of D such
that D, L and S all belong to R

H W×M . The low-rank+sparse
decomposition objective is commonly stated as follows:

min
L,S

rank(L) + ||S||0, s.t. D = L + S. (2)

Since this program is non-convex, we use the popular convex
relaxation

min
L,S

||L||∗ + λ||S||1, s.t. D = L + S (3)

where || · ||∗ and || · ||1 are the nuclear and l1 norms,
respectively. In the following section, we describe how radar
side-information can be incorporated into (3) and then present
the resulting iterative solver that will become the foundation
for our unrolled feedforward network.

B. Incorporating Radar

One of the many advantages that radar systems have over
cameras is their ability to easily localize motion within a frame
and remove any static clutter. Here, we perform this relatively
simple operation first and then incorporate the clutter-free
radar return in the BFS of the camera data. We assume that
the clutter-free radar returns can provide useful information
on where foreground is likely to exist in the camera data.
Although the camera’s low rank component is a function of its
own sparse component, we do not use the radar data directly
with the low rank prediction. We make this choice because
the radar data does not provide informative cues like it can
for the foreground component. For example, specularity and
the physical properties of common construction materials can
prevent portions of walls from being detected. These impacts
are seen in Fig. 2b where the walls have many undetected
patches. Conversely, moving targets are consistently detected
as depicted in Fig. 2b and 2c after clutter suppression. Thus,
we do not use the extracted static clutter and choose only to use
the moving targets’ radar reflections to convey the locations
and associated likelihoods of foreground in the camera images.

Intuitively, we seek to modify the RPCA objective in (3)
to make sparse foreground contributions less costly in regions
where the clutter-free radar return is high and make contri-
butions in regions where it is low more difficult to admit.
We therefore modify (3) and suggest solving

min
L,S

||L||∗ + λ||S ◦ F(R)||1, s.t. D = L + S (4)

where F(·) : CM×Ns ×Na×Nc �→ RH W×M maps the radar
data to a clutter-free, real-valued weight matrix and ◦ is
the element-wise Hadamard product. We will make the radar
processing pipeline that forms F(·) concrete in the following
subsection.

The program in (4) can be solved efficiently using a number
of solvers such as ADMM or ISTA. We choose to closely
follow the derivation presented in [10] and select ISTA with
the addition of the radar side-information. We introduce the
equality constraint in (3) and (4) from the objective function as
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Fig. 2. Example range-azimuth heatmaps for a particular scene (scene B in the appendix). As a reference, there are two stars at the back corners of the lobby
in both (a) and (b). Notice in (b) the wall is not represented by a continuous line of reflections. Figure (c) shows the resulting clutter-free heatmap using the
methods described in Sec. III-C. With the clutter suppression, the humans (highlighted by the bounding box) become much more visible within the heatmap.

Fig. 3. On the left is a depiction of a single layer of our RUSTIC architecture. On the right, we show the three options we consider for how to incorporate
the radar into the unrolled network based on Alg. 1. While incorporating the radar in the shrinkage operator is the most accurate interpretation of Alg. 1,
we also experiment with two looser interpretations, namely using the radar before and after the shrinkage operator.

a quadratic penalty and add measurement matrices {Hi }2
i=1 for

the low-rank and sparse components. We also multiply the
radar input with its own measurement matrix, H3 to account
for proper scaling and filtering as it corresponds with the
camera data. This results in the problem

min
L,S

||D − H1L − H2S||2F + λ1||L||∗ + λ2||S ◦ H3F(R)||1
(5)

where λ1, λ2 > 0. We set λ1 and λ2 according to the
conditions used in the original RPCA paper [13]. The choice
of measurement matrices {Hi }3

i=1 is application-dependent.
We make the simplifying assumption that each measurement
matrix is identity since we have no prior knowledge of a more
informed choice. We still leave the operators in place since
they will be further abstracted to enrich our unrolled model
described in Section IV.

Following [10], the modified radar-ISTA, RISTA, is shown
in Alg. 1 where XH is the Hermitian transpose, I is an
appropriately sized identity matrix, Sτ (x) := sgn(x) max(|x |−
τ, 0), and SVTτ (X) := USτ (�)VT where X = U�VT is the
singular value decomposition of X. The constant μ represents
the step size for the proximal gradient operator and is given

Algorithm 1 RISTA for Minimizing (5)

by the spectral norm of HH H where

H =
[

H1
H2

]
. (6)

When computing Sk+1 in Alg. 1, we use a different threshold
in the shrinkage operator for each column based on the
processed radar data F(R) along with the terms μ, λ2, and
H3. As such, for frame m, row h, and column w the threshold
in the shrinkage operator can be taken as the hW +w’th entry
in μλ2H3F(Rm) ∈ RH W .
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Fig. 4. Depiction of a pinhole camera model.

C. Radar Processing

As mentioned in Section III-B, radars allow for easy clutter
suppression compared to cameras. Unlike cameras, clutter
suppression for radar only requires data from a single radar
frame and, as a result, each radar frame can be processed inde-
pendently. We will drop the m subscript and let R := Rm ∈
CNs ×Na×Nc for notational brevity in this section.

The first step in processing the raw samples from the radar
is to compute the range of the reflections in each chirp from
each antenna [11]. This is performed by taking the Fast Fourier
Transform (FFT) along each chirp’s IF signal, or along the first
dimension of R such that

R̂ks na nc = FFTns {Rns nanc } (7)

where ks is a frequency domain index. After the range infor-
mation is computed, we remove the clutter by computing the
mean across the chirps within the frame and then subtract it
from the range information data

μks na = 1

Nc

Nc∑
nc=1

R̂ks nanc (8)

R̃ks na nc = R̂ks na nc − μks na . (9)

Once the static clutter is removed, we use the multiple
antennas to determine the received power at each bearing. The
data used for our experiments was taken with a 1D uniform
linear array with resolution along the azimuthal axis because
of the low resolution in the elevation axis. We use the standard
pinhole camera model with focal length f and camera center
column xc e.g. xc = xW/2 to map a point in space to its
horizontal pixel coordinates. As such, a point with horizontal
coordinate X and depth Z is mapped to

(X, Z) �→ xw := f X

Z
+ xc (10)

as shown in Fig. 4. Since our data assumes the radar and
camera are coplanar and stacked vertically on top of each
other, we may compute the bearing θw corresponding to each
of the image’s columns xw for w = 1, . . . , W as

θw = arctan

(
xw − xc

f

)
. (11)

To compute the power at each θw, we use Minimum
Variance Distortionless Response beamforming [38]. This is
accomplished by first computing the covariance matrix �ks

for each range slice R̃ks such that

�ks = 1

Nc
R̃ks R̃H

ks
. (12)

The received power at each range and angle is computed as

P(ks, θw) = 1

a(θw)�−1
ks

aH (θw)
(13)

where the steering vector a(θw) simplifies to
[1, e− jπ sin(θw), . . . , e− j (Na−1)π sin(θw)] because the antennas
are spaced half a wavelength apart. We then take the log(·)
in (13) since the data often spans many orders of magnitude.
Finally, we sum over the range dimension because the camera
data lacks any depth information:

P(θw) =
Ns∑

ks =1

log[P(ks, θw)]. (14)

We use the associated bearing θw for each column in the
image data according to (11) to compute the received power at
each column and form P ∈ R

W . Although P has no elevation
data and can therefore be expressed as a 1D vector, we assert
its size to be the same as each camera image so it can be
multiplied elementwise with the camera data in Alg. 1. Thus,
we expand P (with a slight abuse of notation) to be of shape
(H, W ) by making each row identical. To summarize, P
represents the result of F(R) that is computed independently
for each radar frame m ∈ [M].

IV. UNROLLED NETWORK WITH RADAR

A. Model Architecture

An iterative algorithm can be modeled as an unrolled
neural network where the k’th layer corresponds to the k’th
iteration [6], [39]. As in [10], we replace matrix multiplication
using H{1,2} with 2D convolutional layers {Pk

i }6
i=1 as well as

multiplication with H3 with 1D convolution layers Pk
7, and

learn λk
i for the shrinkage and SVT operations. The choice

of 2D and 1D convolutional operators (as opposed to fully
connected layers) promotes spatial coherence, reduces the
number of learnable parameters, and provides the network with
the desirable property of translation invariance. Altogether,
Alg. 1 can be represented as a multi-layer feedforward network
with each layer being described by

Lk+1 = SVTλk
1
{Pk

5 ∗ Lk + Pk
3 ∗ Sk + Pk

1 ∗ D}
Sk+1 = Sλk

2Pk
7∗F(R){Pk

6 ∗ Lk + Pk
4 ∗ Sk + Pk

2 ∗ D} (15)

with ∗ being the convolution operator and S0 = L0 = 0.
The shrinkage operator here follows the same notation as in
Alg. 1 where the threshold for layer k, frame m, row h, and
column w is determined by the hW + w’th entry in λk

2Pk
7 ∗

F(Rm). The image data, D, L, and S, are of shape (M, H, W ).
In order to perform the SVT operation, we vectorize the result
of the convolution and addition operations for the updated
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low-rank component and stack along the second dimension to
yield a shape of (H W, M). We undo this procedure after SVT
is performed. It is important to note here that while the iterative
algorithm uses the same thresholds and measurement matrices
for all iterations, the unrolled model learns different filters
and thresholds for each layer. This is a unique advantage of
unrolled networks with respect to their iterative counterparts.

We also experiment with looser interpretations of Alg. 1
where instead of incorporating the radar directly in the sparse
shrinkage operator as in (15), we incorporate it before or after
as described in (16) and (17), respectively, and shown in Fig. 3:

Sk+1 = Sλk
2
{(Pk

7 ∗ F(R)) ◦ (Pk
6 ∗ Lk + Pk

4 ∗ Sk + Pk
2 ∗ D)},

(16)

Sk+1 = Sλk
2
{Pk

6 ∗ Lk + Pk
4 ∗ Sk + Pk

2 ∗ D} ◦ (Pk
7 ∗ F(R)).

(17)

We designate these three variations (in (15), before (16), and
after (17)) as Radar Unrolled Shrinking and Thresholding
Incorporating Convolutions (RUSTIC). In practice, we find the
model that incorporates radar after the shrinkage operator per-
forms the best. Section V will compare these three variations.

B. Model Training

To train the RUSTIC models, we first generate low-rank
L̂ and sparse Ŝ targets corresponding to the input D. These
targets are used to train the unrolled networks via backprop-
agation with a suitable loss function. The loss function we
choose is the mean squared error (MSE) between the targets
L̂i , Ŝi and the model predictions Lm , Sm

L(θ) = 1

2M

M∑
m=1

(∥∥∥Sm − Ŝm

∥∥∥2

F
+

∥∥∥Lm − L̂m

∥∥∥2

F

)
. (18)

We use ISTA to form the targets and will describe the proce-
dure for generating L̂ and Ŝ in greater detail in Section V-A.

V. EXPERIMENTATION

A. Setup

To evaluate our models, we compare the three variations of
RUSTIC.2 depicted in Fig. 3 along with a baseline model with-
out radar (CORONA [10]) and a standard U-Net [12]. We use
data from RaDICaL, a synchronized FMCW radar, depth,
IMU and RGB dataset [11]. Each sequence contains images
downsampled to 180×320 and transformed to grayscale. Both
the camera and radar data are also downsampled in time so that
the frame rates are 3 frames per second. As described in [11],
the radar data was collected using the Texas Instruments
IWR1443BOOST and used 4 receiving antennas and 2 trans-
mitting antennas. By exploiting time division multiplexing
this configuration yields 8 virtual receiving antennas in the
horizontal axis.

We generate the sparse and low-rank components for the tar-
gets by solving the RPCA objective using ISTA without radar
side-information. We assume identity measurement matrices

2https://github.com/corey-snyder/radar-rgb-bfs

I = H1 = H2, thus μ = 1, and run it for 400 iterations.
By using ISTA instead of RISTA, we avoid having to tune
additional hyperparameters (H3) that control how to properly
scale the radar data for fusion with camera data. In order
to evaluate models after training as well as the quality of
generated ISTA targets, we hand-label binary images with
each pixel labeled as either foreground or background. Only
desirable foreground components such as moving humans and
doors are labeled as foreground.

We experiment with three scenes, labeled A, B, and C, that
are all 30 frames long. Only three scenes are used in this
work because of the limited amount of synchronized cam-
era/radar data available. We believe this amount still provides
a sufficient demonstration because these three scenes have
distinct background and foreground, contain varying amounts
of undesirable foreground like shadows and reflections, and are
dissimilar enough to test each model’s propensity to overfit.
We do not train the model on scene C because the ISTA results
are quite poor as shown in Fig. 7.

For a fair comparison to the unrolled networks, the U-Net
model is trained on a single sequence where each image
is its own channel. Thus, the input to the U-Net model
is of shape (30, H, W ). This allows the U-Net to leverage
information from the entire sequence instead of single images
to predict its output. We also use the generated ISTA targets
to train the U-Net; however, it is important to note that the
U-Net outputs represent the probability of each pixel being
foreground, as is common practice in deep learning BFS
models [3]. This means the U-Net does not perform the same
low-rank+sparse separation as the unrolled networks and only
predicts the presence of foreground. To generate the U-Net
targets, we threshold the magnitude of the sparse components
from ISTA to create one-hot probability distribution targets at
each pixel. Thus, the U-Net and unrolled models work with the
same training data up to this small thresholding modification
to train the U-Net. We empirically choose 0.075 for scene A
and 0.15 for scene B as the thresholds for |Smhw| ∈ [0, 1].

B. Complexity

Like ISTA, the time complexity of each layer in RUSTIC
and CORONA is dominated by the SVD and matrix multipli-
cation operations in the SVT operation to update the low rank
component. Thus, the time complexity for a k-layer network is
O (

k[W 2 H 2M + W H M2 + M3]). The memory requirement
is also substantial due to the SVD operation because matrices
of size H 2W 2 × H 2W 2 and H 2W 2 × M need to be stored
during each forward pass through each layer. To make such
computation tractable, we process the input image sequence in
patches smaller than the image size (H, W ). During training,
each batch consists of one randomly selected patch. Then, for
test-time inference we choose a stride length in each dimension
less than or equal to the patch size and iterate over the entire
image. For cases when the stride length is less than the patch
size in either dimension, we take the mean of the regions with
overlap.
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Fig. 5. Comparison of RUSTIC, CORONA and U-Net models with their ISTA targets against various thresholds. The means from 5 trials are displayed.
(a) and (c) are trained on scene A while (b) and (d) are trained on scene B.

C. Training Details

We train the models on a single sequence of 30 frames for
50,000 image patches. Our unrolled networks use 2D kernel
sizes of 5 × 5 for the first 3 layers, 3 × 3 for all subsequent
layers, and length 5 1D convolutions for radar data in all
layers. We use the Adam optimizer [40] and a learning rate of
10−3 for the first 30,000 patches and 10−4 for the remaining
20,000. Furthermore, all models are run for five trials with
five consistent random seeds shared across all architectures.

To address the high memory requirements of performing
SVD, we use patch sizes of 80 × 80 for each input to the
unrolled network. These image patches are sampled uniformly
at random during training. To generate full image results for
evaluation purposes, we tile the image into a grid of 80 ×
80 patches with a stride length of 30 pixels in each dimension
and average prediction results where there is overlap.

D. Results

For all figures and tables in this section, RUSTIC refers to
the best performing configuration where the radar is used after
the shrinkage operator unless noted otherwise. Quantitative
results for two-layer unrolled models are presented in Fig. 5.
We see a clear gap between the two unrolled networks in favor
of the RUSTIC architecture. Notably, RUSTIC outperforms
the ISTA targets when evaluated on scene B regardless of
the scene it is trained on. Thus, RUSTIC provides real-time
computation and superior performance on this scene. Figure 6

shows example sparse outputs for scene B from models trained
on scene A. For the displayed image, only the two walking
humans in the middle and the closing door are labeled as
true foreground. From the figure, we see that the two-layer
RUSTIC model detects the true foreground similarly to ISTA
and CORONA but does a much better job of suppressing the
shadows to the right of the humans. This suggests that the
side-information from the radar successfully disagrees with
the camera data and yields a more precise foreground. When
we increase the network depth to eight layers, we see the
results from RUSTIC and CORONA become more similar as
the eight-layer RUSTIC model includes more shadows in its
foreground. This phenomenon indicates that the radar is used
less in deeper models. We also note that because no elevation
data is collected by the radar, there are no cues to reduce the
reflections below the humans. With access to elevation data,
we would expect radar side-information to further alleviate
this failure mode for camera data.

We also note in Fig. 5 the expected overfitting of the U-Net
to its training data while poorly generalizing to unseen scenes.
The U-Net is only able to match the maximum performance of
the ISTA method in 5a and 5b because the U-Net targets are
generated directly from thresholding the ISTA results. Lastly,
as seen in Fig. 6e and corroborated by Fig. 5c and Table I,
two-layer RUSTIC models perform the best qualitatively and
according to F-score on scenes with high amounts of shadow.
This is notable because such a shallow model (1) takes more
influence from the radar and (2) is faster than its deeper
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Fig. 6. Results from scene B for models trained on scene A. Images (b)-(f) contain the magnitudes of the sparse outputs. The RUSTIC models used in
(e) and (f) incorporate the radar after the shrinkage operator. The two-layer RUSTIC model with radar does the best job of suppressing the shadows and static
humans/furniture on the sides while performing just 0.57% slower than the fastest model (2-Layer CORONA). At eight layers, the models perform relatively
similarly. Moreover, the radar data seems less influential in (f) than in (e) since there is a stronger presence of shadows on the right.

Fig. 7. The human pictured above in scene C stands in front of the right vending machine for the majority of the frames (not pictured in this frame)
thus causing a ghost human to incorrectly appear in the foreground and background simultaneously as emphasized by the yellow rectangle. Here we see the
RUSTIC model in (d) is the only model to properly suppress this error. For context, the radar data is superimposed on (a).

TABLE I

THE HIGHEST ACHIEVED F-SCORES FOR TWO AND EIGHT-LAYER
MODELS OF CORONA AND RUSTIC. THE MEANS FROM 5 TRIALS

ARE DISPLAYED. THE BEST RESULTS FOR EACH NETWORK DEPTH

ARE BOLDED AND THE BEST RESULTS FOR EACH

ROW ARE UNDERLINED

counterparts. We argue for this first point in particular since
the unrolled networks with and without radar perform closely
with the deeper eight-layer architecture. Supporting numerical
results for both two and eight-layer models are presented in
Table I. For the following comparisons between RUSTIC and
CORONA, we will use models with two layers.

We also compare the number of parameters and computation
time of each method in Table II. We see the expected dramatic
gap between the unrolled models and the standard U-Net in
number of parameters. Lastly, we observe that both unrolled
models support real-time computation unlike their iterative
ISTA counterpart.

TABLE II

NUMBER OF TRAINABLE PARAMETERS AND AVERAGE INFERENCE TIME
FOR EACH METHOD USING SETUP FROM SECTION V-A. ISTA IS RUN

ON AN INTEL® CORETM I7 7TH GEN PROCESSOR WHILE THE

NETWORKS ARE RUN ON AN NVIDIA GTX 1070 GPU

1) Sleeping Foreground: In scene C, we see dramatic
qualitative results as we address a situation with sleeping
foreground. Sleeping foreground refers to the scenario where
a foreground object, in this case a human, behaves as clear
moving foreground for some frames and then remains rela-
tively still for a large portion of the remaining frames. For the
sequence depicted in Fig. 7, the human stands in front of the
vending machine on the right for the last 18/30 frames causing
both the ISTA algorithm and the two-layer CORONA network
to mistakenly absorb them into the low-rank background. As a
result, when the person isn’t standing at the vending machine
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Fig. 8. In (a), we see a camera image with no visible foreground while the
radar return after clutter suppression is overlayed on top. Because there is no
visible foreground, (b) should be entirely zero (black), which is nearly the
case. For context, the walking humans earlier in the frame had returns with
magnitudes between 1.00 and 2.75.

like the frame shown in the figure, the sparse foreground must
compensate by outputting a ghost human in the foreground
component. Yet, for the same image, we see that RUSTIC is
able to much more effectively suppress the appearance of this
ghost human. As mentioned earlier, because deeper networks
rely more on the camera data and less on the radar data,
the eight-layer models both with and without radar perform
poorly and are unable to suppress this instance of incorrect
foreground.

2) Dealing With Radar False Positives: Many
instances of undesirable foreground in the camera data
can be thought of as false positives that are suppressed by the
incorporation of the radar data. As mentioned in Fig. 1, the
opposite may also occur when the radar mistakenly detects
motion when there is none to be seen in the corresponding
image. This could be due multipath or motion that is
occluded to the camera i.e. behind a wall or inside an opaque
container. In one instance, shown in Fig. 8, there are two
visible peaks in the radar return after clutter suppression
as shown overlayed on the image. For context, the walking
humans in this sequence have radar returns with magnitudes
ranging between 1.00-2.75. Because there actually is no
visible foreground, the sparse component in 8b should be
entirely zero (black). Despite this misleading radar return,
RUSTIC correctly suppresses the foreground component thus
demonstrating the model’s ability to suppress false positives
from either sensing modality.

3) Comparison of the Models With Radar: Thus far, all
results generated using RUSTIC incorporate the radar after
the shrinkage operator. In Fig. 9, we offer a comparison of
the three different models described in (15), (16), (17) and
depicted in Fig. 3. All three models were trained on scene A
and tested on scene B.

In Fig. 9a, we see nearly identical performance for the
before and after models. We also see a relatively high peak in
training performance for the in model but at a higher threshold.
This suggests the in model produces sparse foregrounds with
lower precision.

Furthermore, during our experimentation, we noticed that
certain training runs for the in model resulted in models that
incorrectly predict the sparse components as all zeros. Thus,
the results in Fig. 9 only include the models that do not suffer
from this instability. We address this issue during training in
the following subsection.

Fig. 9. A comparison of the in, before, and after two-layer RUSTIC models.
The means from 5 trials are displayed.

4) Ablation Study With Cosine Similarity Loss: As men-
tioned above, the models that incorporate the radar in the
shrinkage operator are prone to local minima where the low
rank outputs are learned correctly and the sparse components
give all zeros. To rectify this, we add to the loss function
a scaled cosine similarity term between the l1 norm of the
columns in Sm and Rm

α
�∑H

h=1 |Smh |, Rm	∥∥∥∑H
h=1 |Smh |

∥∥∥
2

Rm
2

(19)

where α ∈ [0, 1]. This loss term assumes the amount of
sparse foreground in a given column is proportional to its
radar return. The absolute value ensures that negative and
positive foreground intensities are treated identically. In our
experiments, we empirically set α = 10−3 to appropriately
balance the MSE loss. With this choice, we observe that all
runs avoid any local minima and the performance is otherwise
unaffected for better or worse.

VI. CONCLUSION

In this work, we present a number of contributions to BFS.
First, we motivated the incorporation of radar data into the
RPCA objective and introduced an associated iterative solver
called RISTA. We then unrolled our iterative algorithm into
our RUSTIC model and tested our approach in the unsuper-
vised setting where no ground-truth is available. We found that
RUSTIC provided real-time computation without sacrificing
the performance from the associated iterative solver. While
we do notice some convergence issues with incorporating the
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Fig. 10. Sample images and radar data from scene A.

Fig. 11. Sample images and radar data from scene B.

Fig. 12. Sample images and radar data from scene C.

radar in the shrinkage operator, we mitigated this issue with
the addition of a cosine similarity loss term during training.

We also demonstrated strong performance in scenarios when
the camera data and radar disagree. We showed that the
two-layer RUSTIC network is able to effectively suppress
shadows and ignore sleeping foreground objects. Moreover,
in the case with improper radar returns, we saw that the sparse
output did not contain strong unwanted foreground when the
radar incorrectly encouraged otherwise.

Finally, we saw in Fig. 6 that deeper models performed more
closely to ISTA and seemed to incorporate radar information
less. This phenomenon was most pronounced for quantitative
results with two-layer unrolled networks as RUSTIC clearly
outperformed CORONA. This provides evidence that deeper
unrolled models may not always be best, especially when
additional modalities are available.

While this work does demonstrate the efficacy of using
radar reflections at a given bearing for BFS, much of the radar
information remains unused. For example, with priors on the
types of targets that may be observed in a scene, the radar’s
range and magnitude information could provide insight on how
much area in pixels the targets might occupy. Furthermore,
additional processing on the velocity information could also
prove useful in extracting desirable foreground. This velocity

information could be incorporated into a tracking scheme
that yields more reliable and consistent foreground concepts.
Moreover, in some cases users may only be interested in
viewing foreground targets that fall within a certain range
of Doppler velocities. This might be useful in distinguishing
between moving vehicles and walking pedestrians.

Finally, we believe that the sensor fusion methods presented
in this work are not limited to radar. Other sensors such
as sonar and lidar likely could also be used as long as the
processing can eliminate static clutter reliably.

APPENDIX

SAMPLE IMAGES

See Figs. 10–12.
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