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ABSTRACT

Effective understanding of a disease such as cancer requires

fusing multiple sources of information captured across phys-

ical scales by multimodal data. In this work, we propose a

novel feature embedding module that derives from canon-

ical correlation analyses to account for intra-modality and

inter-modality correlations. Experiments on simulated and

real data demonstrate how our proposed module can learn

well-correlated multi-dimensional embeddings. These em-

beddings perform competitively on one-year survival clas-

sification of TCGA-BRCA breast cancer patients, yielding

average F1 scores up to 58.69% under 5-fold cross-validation.

1. INTRODUCTION

In a complex disease such as cancer, the interactions between

the tumor and host can exist at the molecular, cellular, tissue,

and organism levels. Thus, evidence for the disease and its

evolution may be present in multiple modalities across scale

such as clinical, genomic, molecular, pathological, and ra-

diological imaging. An improved disease understanding re-

quires bridging scales of observation through multimodal fu-

sion and is the focus of recent cancer research in survival pre-

diction [1–3] and disease understanding [4, 5]. The majority

of multimodal techniques focus on representation, alignment,

and fusion of modalities. These include deep learning meth-

ods [1–3] and linear analyses [4–6].

Our focus in multimodal fusion is to identify the shared

(common) information present across modalities for obtain-

ing a robust characterization of the underlying problem.

Accurate quantification of the shared information should

account for the correlations within and across modalities

that capture the underlying dependencies. Of the different

fusion techniques, the classical formulation of canonical cor-

relation analysis (CCA) [6] has been useful in discovering

cross-modality correlations by identifying highly-correlated

features from two modalities as a set of canonical variates.

When applied to cancer, we have earlier shown that CCA en-

ables the discovery of genotype-phenotype associations [4,5].

Although the classical CCA formulation can model the cor-

relations across modalities, it does not explicitly capture the

correlations and dependencies of features within each modal-

ity. To account for these intra-modality correlations, group

and graph structures can be incorporated [7,8] within a sparse

CCA framework (SCCA) [9] to yield higher real data corre-

lations. Further, while CCA-based feature fusion has been

applied for downstream prediction tasks in image recogni-

tion [10] and autism [11], the utility of the learnt canonical

variates is yet to be investigated under cancer settings and

with sparse variants of CCA.

In this work, we capture intra-modality correlations

through modality-specific graph representations and inter-

modality correlations through the CCA objective to develop

a linear feature embedding module. We propose an iterative

scheme to generate projections of the two modalities’ features

onto multi-dimensional well-correlated spaces which can be

used for downstream prediction tasks such as cancer survival,

as outlined in Fig. 1.

2. METHOD

In this section, we review a graph-structured variant of sparse

CCA and present how to generate multi-dimensional embed-

dings using an iterative approach. Finally, we present our pro-

posed two-modality feature embedding.

2.1. Graph-based SCCA (1-GCCA)

The CCA formulation [6] considers matched observations of

n samples X ∈ R
p×n and Y ∈ R

q×n from two views. The

goal of CCA is to identify embedding directions u ∈ R
p and

v ∈ R
q to maximize the correlation coefficient, between re-

sulting 1-dimensional embeddings uTX and vTY:

ρ∗ = max
u,v

uTXYTv, s.t.
∥∥XTu

∥∥
2
=

∥∥YTv
∥∥
2
= 1.

Sparse CCA (SCCA) [9] further imposes sparsity in the

entries of the embedding directions u and v as additional

constraints. The different features of X and Y often demon-

strate intra-modality correlations/dependencies which can
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Fig. 1: Overview: We make use of intra-modality and

inter-modality correlations to learn embedding matrices U
and V which project to well-correlated spaces. The

projections are used for downstream prediction tasks.

be estimated using sample covariance matrices and repre-

sented as underlying graphs for each modality. It is then

additionally desired that the entries of embedding direc-

tions u and v weigh well-connected features on the graph

similarly, such that underlying properties captured by these

well-connected features are highlighted. This is enforced in

the 1-dimensional graph-based CCA (1-GCCA) formulation:

max
u,v

uTXYTv s.t.
∥∥uTX

∥∥
2
≤ 1, ‖u‖1 ≤ c1,u

TL1u ≤ c0,∥∥vTY
∥∥
2
≤ 1, ‖v‖1 ≤ d1,v

TL2v ≤ d0,

where c0, c1, d0, d1 are constants, L1 and L2 are the graph

Laplacian matrices corresponding to the two respective

modalities’ underlying graphs.

This bi-convex problem and can be solved to a local opti-

mum using alternate optimization as shown in Algorithm 1.

Algorithm 1 takes as input the correlation matrices Σx =
XXT ∈ R

p×p,Σy = YYT ∈ R
q×q, cross-correlation ma-

trix Σxy = XYT ∈ R
p×q, and graph Laplacians L1 ∈ R

p×p

and L2 ∈ R
q×q , and returns embedding vectors u and v.

2.2. Multi-dimensional Embeddings (K-GCCA)

The 1-GCCA algorithm provides a way to identify embed-

ding directions u and v which maximize the correlations of

the 1-dimensional embeddings uTX and vTY. However,

1-dimensional embeddings are often too restrictive and result

in information loss. We extend the idea of 1-GCCA to iden-

tify K embedding directions U = {u1 . . .uK} ∈ R
p×K ,

V = {v1 . . .vK} ∈ R
q×K using the Hotelling’s deflation

scheme, similar to K-factor penalized matrix decomposi-

tion [9]. We obtain 1-dimensional embeddings repeatedly,

subtracting the contribution of already found embedding di-

rections using projections followed by normalization. The al-

gorithm for multi-dimensional graph-based CCA (K-GCCA)

is described in Algorithm 2.

Algorithm 1: 1-Graph-based SCCA (1-GCCA)

Input: Correlation matrices Σx,Σy,Σxy , graph

Laplacian matrices L1,L2

Parameters: Θ = (α1, β1, λ1, α2, β2, λ2)

Output: Embedding directions u and v

Initialize u(0) = 1p/p,v(0) = 1q/q, i = 1

while not converged do
Du ← diag(1/|u(i−1)|), Dv ← diag(1/|v(i−1)|)
u(i) ← (α1Σx + β1Du + λ1L1)

−1Σxyv(i−1)

v(i) ← (α2Σy + β2Dv + λ2L2)
−1ΣT

xyu(i)

i ← i+ 1
end

u ← u(i−1)

uT
(i−1)Σxu(i−1)

, v ← v(i−1)

vT
(i−1)Σyv(i−1)

.

Algorithm 2: K-Graph-based SCCA (K-GCCA)

Input: Data matrices X ∈ R
p×n, Y ∈ R

q×n, graph

Laplacian matrices L1, L2

Parameters: K,Θ = (α1, β1, λ1, α2, β2, λ2)

Output: Embdedding direction matrices

U = {u1 . . .uK}, V = {v1 . . .vK}
Σx = XXT , Σy = YYT , Σxy = XYT

for k ∈ 1 . . .K do
uk,vk ← GCCAΘ(Σx,Σy,Σxy,L1,L2)

Σxy ← Σxy − 〈Σxy,u
k(vk)T 〉

‖uk(vk)T ‖2
.uk(vk)T

Σxy ← Σxy/ ‖Σxy‖F
end

2.3. Feature Embedding Module

We propose a feature embedding module that utilizes the K-

GCCA algorithm. The module generates embedding matri-

ces U and V, from which embeddings Xe ∈ R
K×n,Ye ∈

R
K×n of data matrices X and Y are generated as linear com-

binations Xe = UTX,Ye = VTY and the final embedding

of the two modalities is obtained as Ze =

[
Xe

Ye

]
∈ R

2K×n.

3. EXPERIMENTS AND RESULTS

We first compare the 1-GCCA method with 1-SCCA on simu-

lated data and breast cancer data to show that 1-GCCA learns

better correlations than 1-SCCA. Next, we present correla-

tions resulting from the multi-dimensional extensions, with

K = 100. Finally, we employ the 100-GCCA embedding

module to embed breast cancer data for one year survival pre-

diction. All code and data is made available1.

1https://github.com/svaishnavi411/cca_fusion
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In our experiments, we consider two different ways of

defining the underlying graph structures in the algorithm:

(i) using the squared correlation between features within the

same modality as edge weights, and (ii) directly from prior

knowledge.

3.1. Correlations on Simulated Data (1-GCCA)

Following previous works [7,8], we generate data as follows.

To construct u, we generate a random fully-connected graph

with all edge-weights as 1. The eigenvectors corresponding

to the first l non-zero eigenvalues of the corresponding graph

Laplacian are combined using randomly generated weights,

and normalized to unit-norm to generate u. The vector v is

set to be {10 3s, 10 -1.5s, 10 1s, 10 2s, 60 0s} and normalized

to unit-norm. The data matrices X and Y are then gener-

ated such that columns Xi ∼ N (uwi, σ
2Ip×p) and Yi ∼

N (vwi, σ
2Σv), where Σv[i, j] = exp(−|vi − vj |) and wi ∼

N (0, 1). Data is generated for n = 1000 samples with p =
q = 100, l ∈ {5, 10, 25, 50} and σ ∈ {0.5, 0.75}, 25 times

for each setting. Across settings and repetitions, v is fixed,

while u and L1 change. For each setting and each repetition,

the simulated data is and split into 50%-10%-40% train, vali-

dation and test sets.

We compare 1-SCCA and 1-GCCA, with the best hyper-

parameters chosen on the validation set. For 1-GCCA, we

consider two methods of computing L1: (i) from samples (1-

GCCA), and (ii) feeding the true underlying L as prior knowl-

edge (1-GCCA-Prior). Table 1 shows the mean and standard

deviation of different error metrics on the test set across dif-

ferent parameters (l ∈ {5, 10, 25, 50} and σ ∈ {0.5, 0.75}).

1-GCCA-Prior has the advantage of the true graph and out-

performs 1-SCCA and 1-GCCA across all error metrics. 1-

GCCA performs better than 1-SCCA in the estimation of v
and correlation ρ.

Table 1: Simulated data: Overall mean and standard

deviations of absolute cosine distance dcos in estimation of

vectors u, v, absolute error in correlation ρ and relative

spectral frequency uTL1u. Lower values desired.

Error 1-SCCA 1-GCCA 1-GCCA-Prior

dcos(u, û) 44.54 ± 34.26 44.24 ± 24.31 31.95 ± 20.64

dcos(v, v̂) 43.89 ± 41.42 15.83 ± 20.61 11.86 ± 16.17

|ρ− ρ̂| 13.56 ± 13.37 10.19 ± 8.61 6.30 ± 6.75

|uTL1u− ûTL1û|
|uTL1u| 124.24 ± 142.92 105.74 ± 105.81 42.32 ± 60.02

3.2. Correlations on Breast Cancer Data (1-GCCA)

We work on histology imaging and gene expressions from the

TCGA breast adenocarcinoma (BRCA) dataset of n = 974
patients to demonstrate the potential on real data.

The imaging data was acquired from the National Cancer

Institute’s Genomic Data Commons portal. For the histology

Table 2: TCGA-BRCA: Mean and standard deviations of

correlation coefficients on test set across folds. p denotes

number of genes used in the correlation analysis.

p SCCA 1-GCCA 1-GCCA-Prior

500 0.39 ± 0.11 0.50 ± 0.09 0.51 ± 0.08

800 0.41 ± 0.11 0.55 ± 0.09 0.52 ± 0.06

1000 0.46 ± 0.02 0.55 ± 0.09 0.49 ± 0.04

3000 0.36 ± 0.18 0.56 ± 0.09 0.40 ± 0.13

Table 3: TCGA-BRCA: Mean and standard deviations of the

sum of correlations across the first 100 variates. p denotes

number of genes used in the correlation analysis.

p K-SCCA K-GCCA K-GCCA-Prior

500 19.75 ± 3.66 9.01 ± 0.81 8.84 ± 0.44

800 20.52 ± 5.49 9.42 ± 2.47 9.59 ± 3.01

1000 20.79 ± 5.87 11.66 ± 1.78 10.97 ± 1.45

3000 25.56 ± 3.73 11.85 ± 3.60 12.65 ± 1.62

images, we downloaded the nuclei segmentations from a re-

cently published adversarial learning framework [12]. The

nuclei segmentations are provided each patient in patches.

We randomly selected 25 patches of size 2000 x 2000 pix-

els for each patient and fed the histology patch and segmen-

tation mask to the CellProfiler tool to extract area, shape and

texture properties for each nuclei and cell in the patch. Av-

eraging these features across different patches yielded 213-

dimensional imaging feature vectors for each patient.

The gene expression data was downloaded from the Fire-

Browse platform. We evaluated the most variant genes using

the coefficient of variation (σ/μ) of the log2-transformed ex-

pression values. We selected the top 500, 800, 1000 and 3000
genes and the corresponding z-scores of the genes serve as

the genomic feature vector for each patient. To extract prior-

knowledge dependencies between genes we used the protein-

protein interactions from the STRING database which cap-

tures biologically meaningful physical and functional inter-

actions between proteins and assigned weights between any

two interacting proteins’ corresponding genes.

We evaluate the methods with 5-fold cross validation us-

ing 544-137-292 patients in training-validation-test sets re-

spectively. Table 2 reports results on the test set across folds.

It is observed that 1-GCCA and 1-GCCA-Prior reveal higher

correlations across different number of most variant genes (p).

Further, as number of genes p increases, 1-GCCA is able to

learn higher correlated embeddings.

3.3. Correlations on Breast Cancer Data (K-GCCA)

Next, we evaluate the K-GCCA proposed in Algorithm 2.

Employing a similar approach with respect to SCCA, we ob-

tain K-SCCA. The sum of the correlation coefficients of the

first 100 directions {u1 . . .u100} and {v1 . . .v100} are re-
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Table 4: TCGA-BRCA: Mean and standard deviations of

different metrics on F1 % scores of one year survival

prediction problem using single modalities, early fusion, late

fusion and CCA-based fusion modules.

Method 500 800 1000 3000

Genomics 55.44 ± 1.90 58.39 ± 2.56 54.85 ± 2.80 58.36 ± 2.29

Imaging 60.92 ± 1.17 60.92 ± 1.17 60.92 ± 1.17 60.92 ± 1.17

Early Fusion 57.06 ± 5.55 58.61 ± 3.53 58.98 ± 1.01 60.97 ± 1.75

Late Fusion 53.44 ± 2.19 53.80 ± 3.20 52.02 ± 3.73 53.64 ± 4.04

100-SCCA 57.52 ± 2.91 59.09 ± 3.27 58.23 ± 2.57 56.53 ± 4.53

100-GCCA 56.36 ± 3.16 57.11 ± 3.02 57.92 ± 0.97 58.69 ± 2.16

100-GCCA-P 56.23 ± 2.23 58.52 ± 4.75 57.42 ± 1.84 57.71 ± 2.45

ported in Table 3. It is observed that K-SCCA yields higher

sums across number of genes. Increasing the number of genes

considered improves the sum of correlations for all methods.

3.4. Survival Prediction on Breast Cancer (K-GCCA)

We make use of the proposed K-GCCA fusion module with

K = 100 to generate the embedding Ze to predict one-year

survival of the TCGA-BRCA patients as a binary classifica-

tion problem. We feed Ze to a random forest of 100 estima-

tors with maximum depth d = 50. For baselines, we compare

these features to X only (Genomics), Y only (Imaging) and

[XT ,YT ]T (Early fusion). Further, we combine the predic-

tions of genomics and imaging in a simple late fusion module

(Late fusion). We further utilize the embeddings from 100-

SCCA as features for the random forest (100-SCCA). As ear-

lier, we compare the construction of graphs from data (100-

GCCA) and those from prior knowledge (100-GCCA-P).

The accuracy, support-weighted F1 and support-weighted

AUC scores for the same test set as before are reported in

Table 4. Among all CCA-fusion methods, we observe that

100-SCCA works best for the lower number of genes (p =
{500, 800, 1000}), while 100-GCCA and 100-GCCA-P work

best for the largest number of genes (p = 3000).

4. CONCLUSION

In this work, we proposed a novel feature embedding mod-

ule for multi-modality fusion with two modalities which gen-

erates well-correlated low-dimensional embeddings by tak-

ing into account intra-modality correlations. We first demon-

strated the importance of accounting for intra-modality cor-

relations in the CCA formulation. We showed that our pro-

posed feature embedding module generates low-dimensional

embeddings of the two modalities while preserving the infor-

mation important for one-year survival prediction of breast

cancer patients. In the future we will investigate the use of

better deflation schemes for generating higher-dimensional

embeddings, and conduct an extensive study across differ-

ent cancers to comprehensively evaluate CCA-based fusion

methods for cancer survival prediction.
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