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Abstract: The land surface of Malaysia mostly constitutes forest cover. For decades, forest fires have
been one of the nation’s most concerning environmental issues. With the advent of machine learning,
many studies have been conducted to resolve forest fire issues. However, the findings and results
have been very case-specific. Most experiments have focused on particular regions with independent
methodology settings, which has hindered the ability of others to reproduce works. Another major
challenge is lack of benchmark datasets in this domain, which has made benchmark comparisons
almost impossible to conduct. To our best knowledge, no comprehensive review and analysis have
been performed to streamline the research direction for forest fires in Malaysia. Hence, this paper was
aimed to review all works aimed to combat forest fire issues in Malaysia from 1989 to 2021. With the
proliferation of publicly accessible satellite data in recent years, a new direction of utilising big data
platforms has been postulated. The merit of this approach is that the methodology and experiments
can be reproduced. Thus, it is strongly believed that the findings and analysis shown in this paper
will be useful as a baseline to propagate research in this domain.
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1. Introduction

Fire is considered an environmental factor in the Mediterranean climate, having
played an obvious evolutionary role in the structure and function of Mediterranean climate
ecosystems. In the aftermath of wildfires, accelerated erosion occurs [1,2], thus threatening
the natural regeneration process. Additionally, it is well-acknowledged that water erosion,
biodiversity, and biotic natural capital affect recovery [3,4]. To that end, emergency post-
wildfire erosion-mitigation treatments are required to enhance ecosystem sustainability
as in highly fire-prone ecosystems featuring losses of biodiversity, ecosystem function,
or services following wildfire events occurring with unnaturally high frequencies, the
magnitude of extent or intensity can result in land degradation or even the complete
transformation of the ecosystem. In addition to their impacts on the carbon cycle, such
events, usually called as megafires because of their size, reduce the amount of living
biomass, affect species composition, affect water and nutrient cycles, increase flood risk
and soil erosion, and threaten local livelihoods by burning agricultural lands and homes. In
addition, these fires have devastating impacts on local wildlife, as animals either are unable
to escape from the fires or become threatened by the loss of their habitat, food and shelter.

Climate change [5] and the wildland–urban interfaces (WUIs) [6] have increased
the frequency and devastating impacts of wildfires. The effects of global climate change
have led to a rise in temperature and a fall in precipitation, shaping a prolonged dry
and warm period that favours the ignition and spread of wildfires [5]. Radeloff et al. [6]
stated that the upsurge of new housing development in WUI areas, specifically near forest
regions, generally increases the likelihood of wildfire occurrence. The combination of the
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aforementioned conditions converts wildfires into megafires. A megafire is an extraordinary
fire that devastates a large area. Megafires are notable for their physical characteristics
including intensity, size, duration, and uncontrollable dimension, as well as their social
characteristics, including suppression cost, damage, and fatalities [7].

Forest fires recur periodically in Malaysia due to many factors, such as human neg-
ligence [8,9], topography [10], and meteorology [11]. In the last two years [12–14], haze
and forest fires caused serious environmental problems in Malaysia and its neighbouring
countries. Forests play a critical role in sustaining the human environment. Most forest
fires not only destroy the natural environment and ecological balance but also seriously
threaten the security of life and property. Thus, the early discovery and forecasting of forest
fires are both urgent and necessary for forest fire control, and they have become one of the
nation’s interests.

Forest fires and the resultant smoke-haze are not relatively new experiences in Malaysia.
Despite improved management, wildfires have not been completely eradicated and seem
to be increasing in intensity and periodically recurring due to many factors, e.g., climatic
factors, improper peatland management, traditional slash and burn activities, and poor
water management. In 2019, haze and forest fires caused a serious environmental problem
for Malaysia and its neighbouring countries, including Indonesia, Singapore and Brunei.
The forests and peatlands in Pahang caught fire in early February 2019 [15]. In August 2019,
the forest fires in Riau shrouded the entire Klang valley with dense haze. Additionally,
some major cities and towns in the state of Sarawak, including Kuching, were also affected
by the haze resulting from the Kalimantan wildfire. Subsequently, the air quality in Kuala
Baram and Miri reached hazardous levels that led to Malaysia activating its National Ac-
tion Plan for Open Burning and its existing National Haze Action Plan on 14 August 2019.
Many states were shrouded, including Pahang, Kuala Lumpur, Negeri Sembilan, Penang,
Putrajaya, Selangor, Sabah and Sarawak, by the haze [16–18]. Subsequently, 2.4 hectares
(ha) of forest were also burned in Johor in August 2019 [19]. Historical data have shown
that the incidence of forest fires are more severe in Sabah [20] and Sarawak [9] than in
Peninsular Malaysia. The worst fire in Sabah happened from 1983 to 1985 [21] due to the
severe drought caused by the El Nino phenomenon [22]. About one million ha in mostly
over-logged forests disappeared [20]. An uncontrolled forest fire can alter forest ecosystems
and lead to social, economic, and environmental losses. Moreover, pollution from fires
leads to respiratory problems in people living hundreds of kilometres away.

From the global perspective, the explosion of machine learning and artificial intelli-
gence had undoubtedly inspired researchers to adopt machine learning and deep learning
algorithms to combat the issues of forest fires [23,24]. However, most studies have utilised
independent sets of methodology focussing on particular regions, thus preventing the repli-
cation of experiments. Since each fire incident may be triggered or promoted by different
topologies, climates, weather, forest structures, or landcover conditions [25,26], solutions
should be fine-tuned based on the study location to effectively tackle fires.

To the best of our knowledge, a comprehensive review and analysis has yet to be
conducted in Malaysia. For this reason, all relevant forest fire efforts from 1989 to 2021 for
Malaysia are described in Section 2 of this manuscript. The predominant aim of this review
is to provide future researchers with a foundation to streamline, progress, and advance
research on forest fires in Malaysia. Subsequently, all data that were exploited by the works
performed in Malaysia are compiled and reviewed in Section 3. Following the rapid increase
in the availability of public satellite data motivated by open data policies [27], traditional
computing platforms may not be able to process and analyse the newfound petabytes
of data. Additionally, the adoption of big data platforms such as Open Data Cube [28],
Google Earth Engine [29], and Planetary Computer [30] to conduct geospatial analysis
also promotes and encourages experimental reproducibility through script sharing [27].
Hence, Section 3.1 features a short discussion on the presently available big data platforms.
Through the review deliberated in Section 2, we show that no previously published works
exploited the advantage of machine learning for forest fire management in Malaysia.
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Consequently, Section 4 presents a discussion of some of the notable machine learning and
deep learning approaches used to resolve the issue of forest fires from a global perspective.
Based on all the presented discussions, some challenges, future directions, and open
research questions are described in Section 5 for future researchers that wish to venture into
the journey of combating forest fires in Malaysia. A general methodology utilising remote
sensing data to perform forest fire research is also described in Section 6. Additionally,
a discussion of the need for a forest fire benchmark dataset and general techniques of
forest fire detection are elaborated in Sections 7 and 8. Towards the end of the manuscript,
some commonly employed fire spread models that have yet to be adopted in Malaysia
are presented in Section 9. Finally, Section 10 provides the concluding remarks for this
entire review.

2. Related Forest Fire Studies in Malaysia

Though several reviews have previous been conducted [23,24,31–33], none of them
were dedicated to forest fires in Malaysia. Hence, a detailed description for each of the
published works is provided three subsections based on their primary objectives followed
by an in-depth review of each of the efforts. The first subsection discusses the initial
research directions, which is intended to reveal the root causes and impacts of forest fires.
The main objective of the second subsection is to generate a fire susceptibility map for
predicting or locating fire incidents by utilising remote sensing information. In the third
subsection, some of the efforts closely associated with forest fires such as estimating burnt
areas, assessing the amount of pollutants discharged from forest fires, and analysing the
relationship between haze events and mortality rate are discussed. To reiterate, the reviews
provided in this section only encompass the efforts that have been performed in Malaysia.

2.1. Root Causes and Impacts of Forest Fire

The 1983 El Nino Southern Oscillation phenomenon caused a severe drought condition
that ignited horrendous wildfires in the tropical forests of Borneo [22]. Despite the dry
scenario precipitated by El Nino, Woods [21] mentioned that a large-scale forest fire was
not triggered when severe droughts were previously encountered. He speculated this
disastrous fire might have been caused by forest logging, which resulted in the forest
becoming more fire prone. Approximately one million ha of forest were burnt in Sabah,
Malaysia, according to Beaman et al. [20]. The incident sparked interest in researchers and
communities around the world to measure the severity of the disaster. Additionally, several
studies have also been conducted to theoretically investigate the root causes of forest fires.

Woods [21] studied the effect and impact of forest fires on primary tropical forests and
over-logged forests in Sabah. He reported that the tree mortality rate in a logged forest
is higher than in a primary forest. Regarding the recovery of forest structure, a primary
forest can recover from fires but a logged forest’s structure recovery greatly depends on the
secondary tree species grown across the burnt areas.

Following the devastating forest fire that occurred in 1997 and 1998, the International
Tropical Timber Organisation Mission visited in September 1998 to review the causes and
implications of the forest fires in Kalimantan, Indonesia, and Sarawak, Malaysia [9]. They
reported that primary forests (i.e., undisturbed natural forests) were considerably less
likely to ignite than logged forests and industrial plantations in the possession and control
of humans. They reported an estimated 6~7 million ha of land and 800 thousand ha of
forests were burnt in the incident. A total financial damage of approximate 5~6 billion US
dollars was assessed. Apart from the economic damage, the health of the communities
in Malaysia, Indonesia, and neighbouring countries was also severely affected due to the
air pollution caused by the smoke discharged from the forest fires. Haze events occurred
in neighbouring countries during that period, and the atmospheric pollution index was
higher than 850 for certain locations in Malaysia and Indonesia. It should be noted that an
air pollutant index value exceeding 300 is considered hazardous to humans based on the
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standard air pollutant index in Malaysia [34]. The importance of utilising remote sensing
technology to detect and predict forest fire activity was also highlighted and stressed.

Abdullah et al. [8] investigated plausible factors instigating forest fires that occurred
from 1991 to 2001 in Peninsular Malaysia. The researchers identified that most of the
incidents were caused by human activity such as smoking, hunting, and land preparation
by farmers involving open burning. Intensified by the elongated draught condition, a fire
broke out at each of the specified locations. In their study, they discovered there was no
correlation between natural events and each of the forest fire incidents. The authors also
emphasised that peat swamp forests were more susceptible to fire due to their unique
characteristics. One possible reason deduced by them was the formation of thick humus
layers in the ground that materialised over several years, becoming a potentially suitable
fire fuel. From 1991 to 2001, the Selangor State of Malaysia was reported have the highest
frequency of forest fire incidents.

Musa and Parlan [35] further studied the rationalisation suggested by Abdullah et al. [8]
regarding the primary factor accountable for forest fires, i.e., human activity. Some of the
activities mentioned include land operations to prepare for agricultural plantations and
recreational activities such as hunting, picnicking, and camping. Musa and Parlan [35] also
considered other natural phenomenon factors such as lightning and combustion. Akin to
the observation disclosed by Woods [21], Musa and Parlan [35] wrote that primary forests
were rarely affected by fires and that rates of fire spread were low even when they were
affected. The authors backed their observations with the following three reasons: (i) the
lower presence of fuel due to efficient ecological recycling, (ii) the availability of diversified
plants, and (iii) the higher level of humidity in primary forests. Additionally, they also
described three categories of fire: underground fires, surface fires and crown fires. Of these,
underground and surface fires commonly occurred in Malaysian forests. They expressed
that underground fires usually occur in peat swamp areas and that the detection of such fire
activity is very challenging since such fires will burn and spread out very slowly through
the underground. By the time a fire can be observed by a nearby community, the fire might
have spread across the entire region and require huge resources to extinguish.

Diemont et al. [36] aimed to learn the root causes of forest fires for peat forests (i.e.,
peat swamp areas) in Southeast Asia, and they proposed some solutions to resolve the
issue. Although their study location was not fixated on Malaysia, it was interesting that
the authors explored the problem from a different perspective. Undeniably, several of the
studies mentioned in this subsection showed that most forest fire incidents originate from
human negligence. Diemont et al. [36] further investigating human activity related to land
clearing associated with agriculture, and they discovered that most peat fires transpired
near poor communities in Southeast Asia. Hence, international funding was suggested
by the authors to replace the income of the communities from peat forests to curb forest
fire incidents.

Table 1 summarises the initial related works that primarily focus on examining the
effect and root causes of forest fires in Malaysia. According to the literature discussed
in this subsection, it is obvious that human activity is the principal factor leading to
forest fires. However, it is uncertain whether environmental conditions could advance the
likelihood of forest fire occurrence in Malaysia. Thus, the next subsection on literature
will be supplemented with information on related work that utilised remote sensing to
understand forest fire incidents in Malaysia.
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Table 1. Summary of the research efforts into the causes and effects of forest fire.

Year of
Publication References Year of

Studies Location Objective

1989 [21] 1983–1985 Sabah Study the tree mortality rate and canopy loss of forest fires in
over-logged forest and primary tropical forests in Sabah.

1998 [9] 1997–1998 Sarawak
Indonesia

International Tropical Timber Organisation (ITTO) aimed to
investigate the effects of forest fires in Indonesia and Sarawak.
Human activity was found to be primary cause.

2002 [8] 1991–2001 Peninsular
Malaysia

Explore the root causes of forest fire incidents, particularly for
peat swamps in Malaysia. Human negligence was the
predominant factor. It was reported that Selangor, Malaysia had
the highest number of forest fire incidents from 1991 to 2001.

2002 [35] 1992–1998 Peninsular
Malaysia

Discuss the causes of the forest fires from 1992 to 1998. Human
activity was the biggest element constituting forest fire incidents.
It was emphasised that peatland fires (underground fires) are
difficult to detect.

2002 [36] - Southeast Asia

Show that peatland forest fires are a major issue in Southeast
Asia, as well as reveal that most of the forest fires were ignited in
the vicinity of poor communities. Authors recommended
international funding as a solution to prevent forest
fire incidents.

2.2. Fire Susceptibility Mapping Utilising Remote Sensing

Remote sensing is defined as the procurement of information about an object without
requiring any kind of physical contact [37]. In the geoscience domain, it is commonly
referred to as the acquisition of data from satellites (i.e., remote sensing imagery). A
Geographic Information System (GIS) is a software tool that exploits a computer’s capability
of storing and processing a large amount of data to capture, store, retrieve, analyse, and
display spatial information [38,39]. Some frequently used GIS software include proprietary
Esri Products (e.g., ArcMap, ArcGIS Pro, and ArcView) [40] and the opensource QGIS
software [41].

GIS, in conjunction with remote sensing data and machine modelling, has been com-
monly adopted for the task of forest fire detection [10,38]. Remote sensing imagery (i.e.,
satellite data) provides additional information such as vegetation, land-cover types, to-
pography (e.g., elevation, aspect, and slope), historical hotspot data, and meteorological
information to cost-effectively analyse forest fire incidents [38]. By utilising GIS technology
and remote sensing data, a fire susceptibility map can be generated to suggest whether a
region falls in a highly fire-prone zone or a lowly fire-prone zone. When combined with
meteorological information (i.e., weather information), such a model may be able to deliver
superior forecast accuracy. Early warning prediction modelling allows an authority to
allocate resources for battling fires depending on the location and severity of the forecasted
fire incident [11]. In this subsection, all efforts to analyse or detect forest fire through fire
susceptibility mapping in Malaysia are reviewed.

Setiawan et al. [10] proposed a spatially weighted fire susceptibility model by combin-
ing or aggregating the risk score of several factors affecting forest fires in Pekan, Pahang.
They considered the five following elements: land use, distance to road, slope, aspect,
and elevation. For each of the factors, the authors categorised them into four different
risk levels, whereby a higher level of risk score indicates a greater risk of fire hazard. For
instance, the risk score was set to four if the distance from the forest to the road fell between
0 and 500 m, a risk score justified by the fact that convenient accessibility may indicate a
higher rate of human activity. Once the fire risk map was generated, the authors validated
it according to the hotspot occurrences in 1997 in the study location. Setiawan et al. [10]
learned that most of the locations that were classified as very high or high-risk regions by
the model were also recognised as actual fire hotspots in 1997. Thus, they concluded that
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the model was able to effectively generate a fire risk map, and they recommended it to be
adopted in other areas by considering other factors in the model at the same time.

The first work of Dymond et al. [42] involved mapping and classifying fuel into eight
types and two soil modifiers for Malaysia and western Indonesia by utilising land-cover [43]
and tree-cover [44] information. The reclassified eight fuel types were grassland, seasonal
agriculture, shrublands, slash from land clearing, slash from agroforestry, secondary forest,
forest plantation, and primary forest, and the two soil modifiers were mineral and peat.

Following their previous work, Dymond et al. [45] attempted to calibrate the Fine
Fuel Moisture Code and fire weather index parameters from the Canadian Forest Fire
Weather Index System (CFFWIS) components in the Canadian Forest Fire Danger Rating
System (CFFDRS) [46] to generate a fire danger rating system in Malaysia and Western
Indonesia. Fine-tuning the original index was necessary because most of the fire models
were developed based on a particular region that is affected by distinct physiographic
or environmental factors that contribute to the tragedy of forest fires [25]. The study of
Dymond et al. [45] was probably the first effort to incorporate meteorological data to
generate a fire rating system for proactively detecting fires in Malaysia and Indonesia. They
validated their models by verifying the occurrence of hotspots detected from the Along
Track Scanning Radiometer (ATSR) World Fire Atlas [47] in 2001. It is worth pointing out
that the index proposed in this work does not consider human activities such as distance
from road.

Peng et al. [48] aimed to resolve the issue of the imprecise meteorological data required
to calculate the relative humidity parameters in the fire weather index from the CFFDRS [46].
The authors mentioned that if one meteorological station was located more than 20 km away
from an adjacent station, standard interpolation techniques may be ineffective for delivering
precise meteorological information for the regions between each of the stations [49]. To
tackle this problem, they proposed the utilisation of remote sensing information from
MODIS levels 1 and 2 to estimate the relative humidity parameter. Because they validated
the estimated results with relative humidity data obtained from 10 meteorological stations
in Peninsular Malaysia for 30 days in August 2004, with a mean absolute error of only 5%,
it is safe to assume that the employed technique is suitable for performing such estimations.
Hence, in the absence of meteorological stations, particularly in remote areas, the proposed
method can be used as an alternative to evaluate relative humidity.

Patah et al. [11] developed a forest fire risk index model that considered the topo-
graphic danger index, weather danger index, and fuel danger index. The topographic
danger index can be calculated by using the slope, aspect, and elevation parameters, while
the fuel type risk index was adopted from the Indonesia “Forest Fires Prevention and
Control Project” [50]. For instance, grassland with scrub was assigned an extreme fire index,
while the natural and manmade forest was assigned a lower fire index. Apart from the
topographic and fuel index, the authors also accounted for vegetation density to compute
the fuel hazard index since a greater density of vegetation implies a larger availability of
fuel. Due to the absence of complete weather information, the weather danger index only
considers the temperature and relative humidity. It was calculated by taking the mean
temperature of the month, dividing it by the relative humidity of the month, and multi-
plying it by 100. The calculated weather danger index was further categorised into five
groups, in which lower values denote lower risks and higher values indicate higher risks
of fire occurrence. By adding the value of the fuel hazard index (static elements) and the
weather danger index (dynamic element), the forest risk index was evaluated and can be
subsequently used to construct a fire susceptibility map. The model was applied in Kuala
Selangor, Selangor, for data obtained in June 1999. The authors highlighted the flexibility of
the model, in which dynamic information (e.g., weather data) can be accordingly altered to
manipulate the model output depending on the supplied meteorological information.

Pradhan et al. [51] built a forest fire risk index model based on a frequency ratio
(i.e., likelihood ratio) statistical approach in Sungai Karang and Raja Muda Musa Forest
Reserve in the Selangor State. A higher frequency ratio between the hotspot location and
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each of the forest fire factors implies a larger correlation between the hotspot and each
factor, while a lower ratio signifies a lower correlation. The risk index was computed by
accumulating each of the factors’ frequency ratios, whereby a higher risk index denotes that
a forest is more susceptible to fire incidents. Advanced Very-High Resolution Radiometer
(AVHRR) National Oceanic and Atmospheric Administration (NOAA) remote sensing
images were employed to identify the historical forest fire occurrence in the two-study
locations in Selangor State from 2000 to 2005. The factors scrutinised in the authors’ work
included (i) land cover (extracted from Landsat-7), (ii) NDVI (processed from Landsat-7),
(iii) slope (processed from Digital Elevation Map (DEM)), (iv) aspect (processed from
DEM), and (v) soil map (extracted from agroclimate dataset obtained from MACRES). They
reported that the model was able to achieve 73.18% accuracy, a preeminent result for fire
risk mapping. However, it should be noted that the validation procedure to attain the
prediction accuracy was not made available by the authors in the manuscript.

Due to the limitations of the CFFWIS, Peng et al. [52] devised a fire risk index that
considers forest-cover types by exploiting the concept of pre-ignition heat energy [53] and
can be calculated using the woody fuel moisture content (FMC) and fuel temperature pa-
rameters. In their work, they measured the ignition probabilities by estimating the amount
of heat energy essential to flare up a fuel from its current temperature. With the five-thermal
spectrum in Advanced Spaceborne Thermal Emission Reflectance Radiometer (ASTER), the
authors were able to estimate the live land surface temperature (LST) parameter needed to
compute the FMC. The model was tested over nine days before the fire incidents arose with
the hotspots detected from ASTER in 2004 and 2005 in Peninsular Malaysia. According
to the results, the proposed fire risk index significantly increased four days before the fire,
demonstrating that the model was able to provide an early warning (i.e., four days) before
the fire broke out.

De Groot et al. [54] were the first team of researchers to deploy a fully functional fire
danger rating system (FDRS) in Malaysia and Southeast Asia in 1999, and the system is still
in operation today; the system can be directly accessed from the Malaysia Meteorological
Department website [55,56]. Akin to the work in Dymond et al. [45], De Groot et al. [54]
calibrated the CFFWIS specifically for grass and peat fuel types, as both of them can be
abundantly found across the Southeast Asia region [57]. The modified FDRS preserved a
similar structure to that of the original CFFWIS. The FDRS fire weather index provides a
numerical value to assess fire ignition risk, and it can be computed with the Initial Spread
Index and Buildup Index. The Initial Spread Index takes the Fine Fuel Moisture Code
(comprising temperature, relative humidity, wind speed, and rain) as the input parameters
to anticipate the rate of fire spread, while the Duff Moisture Code and Drought Code are
provided for the Buildup Index to evaluate the available combustible fuel. Because the
system relies on weather information, present meteorological data will affect the generated
fire risk maps. Depending on the availability of forecasted weather data, the FDRS can
be used as a fire forecasting system by employing the forecasted data as the input data to
the model. The accuracy of this forecasting model to provide an early warning heavily
relies on the reliability of the forecasted weather information. The authors pointed out that
the FDRS can be adopted as a decision-making tool to assist fire managers in planning
resources before a fire is instigated.

Ainuddin and Ampun [58] adopted the Keetch-Byram Drought Index (KDBI) pro-
posed by Keetch and Byram [59] as an alternative index to the CFFWIS. While the CFFWIS
combines the weather, fuel, and topography to predict the occurrence of forest fires, the
KDBI measures the soil moisture deficit (i.e., the volume of water required to maximise
the soil moisture capacity) to achieve the same goal. A larger KDBI value implies a higher
deficit of soil moisture, i.e., it denotes that the amount of water present in the soil for evap-
oration or plant transpiration is lesser [60]. On the other hand, a high KDBI value implies
that the soil is very dry and may increase the probability of wildfires. In this study, the
authors utilised the daily maximum temperature and total rainfall (i.e., precipitation) data
obtained from the Malaysia Meteorological Department as the input parameters to compute
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the KDBI value. They employed the model and tested it in four weather stations located
in different states in Malaysia, namely, (i) Kota Bahru, Kelantan; (ii) Kuching, Sarawak;
(iii) Sandakan, Sabah; and (iv) Subang, Selangor. The four regions were selected as they
represent the distinct climate and weather variations in Malaysia. Furthermore, forest fire
incidents have also been reported in the vicinities of the selected areas. They presented
the results of model for five years from 1 January 1990 to 31 December 1995. Based on the
results, they stated that the highest mean KBDI value was recorded in the month of January
in Kota Bahru, Kelantan (i.e., the region is more susceptible to forest fire in January). The
authors highlighted that this was the first work to adopt the KDBI in Malaysia for the task
of forest fire detection.

Similar to the work in Peng et al. [52], Pradhan [61] adopted the fire susceptibility
index based on the concept of pre-ignition heat energy designed by Dasgupta, Qu and
Hao [53]. In addition to the LST and FMC parameters necessary for computing the original
index, Pradhan [61] further enhanced the model by incorporating other remote sensing
data (e.g., fuel maps) and weather information (e.g., temperature and relative humidity) to
evaluate the risk index. As opposed to the work of Peng et al. [52], Pradhan [61] estimated
the LST parameter by utilising MODIS instead of ASTER. Additionally, Pradhan [61]
also considered live FMC and dry/dead FMC, while Peng et al. [52] only accounted for
dry woody FMC. Furthermore, an enhanced vegetation index and fuel map extracted
from MODIS were further integrated to fine-tune the fire risk index to reflect the true
phenomenon in accordance with the local parameters. Then, the fire susceptibility map
could finally be generated based on the computed risk index. The author validated the
fire risk map with the hotspots collected from ASEAN Specialised Meteorological Center
(ASMC), and they discovered that most of the hotspots were identified in high risk (i.e.,
a risk index of greater than 20) regions of the fire risk map while no/low risk regions
were recognised as urban areas and dense forests. Pradhan [61] speculated that the model
had effectively assimilated the multiple parameters, and the model was deemed to have a
significant spatial sensitivity and accuracy.

Mahmud et al. [62] used the analytic hierarchy process (AHP) [63] in GIS software to
weigh and rank the factors influencing forest fires in Pekan, Pahang. The primary goal of
this study was to generate a simple interface in ArcView software to enable inexperienced
GIS users to seamlessly use and navigate the tools. Hence, the authors designed an
additional menu bar inclusive of several buttons for the users to straightforwardly add and
modify the parameters. To apply the AHP, users were required to supply the weight of each
class/class range in each of the factors (attributes) by using the reclassify geoprocessing
tools (i.e., the reclassifying factors menu bar added by the authors). Once all of them were
weighted, the users could use the overlaying geoprocessing tools (i.e., overlaying factors
menu bar) that utilise the AHP to produce a fire susceptibility map. It is worth pointing out
that no validation or testing results were presented by the authors as the main intention of
the work was to provide a user-friendly interface for users with limited knowledge of GIS
software to use the tool for producing fire risk maps.

Razali et al. [64] proposed a fire susceptibility index considering fuel maps, road
buffers, and canal buffers for a peat swamp forest in Batu Enam, Pahang. Instead of em-
ploying the NDVI vegetation index, the authors adopted Tasseled Cap (TC) transformation
on a Landsat TM image retrieved on 3 April 1999 before performing supervised classifica-
tion to categorise the land cover into nine distinct classes because the authors believed that
TC was more effective at detecting peat swamp regions. Additionally, Ramsey III et al. [65]
substantiated that TC was an effective algorithm to detect forest transformation resulting
from fires. The authors found that the overall classification accuracy of detecting land
cover was 94.63%. To incorporate human activity into the proposed index, Razali et al. [64]
included the road buffer (i.e., distance to road) and canal buffer parameters. They subse-
quently assigned a risk index to each of the class/class ranges for the fuel map, distance to
road, and canal buffers. For instance, a road buffer value between 0 and 50 m was assigned
a risk index of 5, implying an extreme fire risk. This was reasonable because a nearer
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distance of a road to a forest would denote a higher rate of human activity since such forest
is more easily accessible. The fire risk index was then calculated by summing up the risk of
each pixel for all three of the factors. By utilising the index, a fire susceptibility map could
then be generated. To validate the effectiveness of the model, the authors validated their
results with the hotspot datasets retrieved from NOAA AVHRR in 1998, and the results
suggested that the model was able to accurately detect most of the lower risk fire region. It
should be noted that an acute degraded peat swamp forest fire was sparked in the study
location on 12 March 1998.

Ismail et al. [66] utilised a fire risk index based on the peat depth, stand density, bulk
density, moisture content, dryness index, water table, and species composition to produce
a fire map. Northern Selangor, Kuala Langar, and the Southeastern Pahang peatland region
were selected because they are very susceptible to forest fires, with several fire incidents
reported in each region. Although it is interesting that the authors considered so many
factors contributing to forest fires, it should be noted that the process of integrating various
factors to compute the risk index was not delineated by the authors.

Hyer et al. [67] analysed the fire distribution patterns obtained from the product of
Wildfire Automated Biomass Burning (WFABBA) from Multifunction Transport Satellite
(MTSAT) and the results from MODIS MOD14 in Malaysia and Indonesia by comparing
34 months of historical data in both satellites from September 2008 to July 2011. They ob-
served broadly similar fire pattern activity across both products. While MTSAT WFABBA’s
overall detection was lower than that of MODIS MOD14, it was able to pick up some of
the “missing fire” in Sarawak, Malaysia, that was not recognised in MODIS MOD14. As
the MTSAT was a geostationary satellite, it can provide near-real-time imagery covering
Southeast Asia and Australia. Encouraged by their results, the authors concluded that the
MTSAT WFABBA was a promising product for describing a real-time fire activity pattern
in Southeast Asia. Hyer et al. [67] highlighted that further enhancements of the MTSAT
WFABBA were obstructed by the pre-processed MTSAT data.

Analogous to the work of Mahmud et al. [62], Suliman et al. [68] also adopted the AHP
mathematical model to weigh the factors influencing forest fires. While Mahmud et al. [62]
aimed to build a user-friendly system, Suliman et al. [68] were devoted to weighting the
potential factors (i.e., criteria) and classes (i.e., sub-criteria) through a questionnaire survey
completed by three domain specialists from the Fire and Rescue Department Malaysia.
Topography (e.g., slope and aspect), fuel map (e.g., eight land-cover and two soil types),
and human activity (e.g., distance to road) parameters were the factors weighted by the
experts. Details of the weighting and ranking can be found in the authors’ initial work
written in Bahasa Malaysia by Mohd and Mastura [69]. Once the weighting was evaluated
by the specialist, the authors employed the AHP to produce a fire susceptibility map and
subsequently disseminated the map through a WebGIS application. Suliman et al. [68]
tested the model in Selangor, Malaysia, since a number of forest fire incidents had been
identified over the last two decades in the study location. Based on the model, a total area
of 32.83 km2 in Selangor was recognised as region with an extreme fire risk, e.g., Raja Muda
Musa Forest Reserve and Kuala Langat Forest Reserve were identified as potential fire
locations. The authors also pointed out most of the high-risk areas were in regions with
peat soils.

Ash’aari and Badrunsham [70] employed the ATSR World Atlas Fire data to explore
the spatial and temporal distribution of fire incidents in Malaysia. Aggregated monthly
hotspots generated from Algorithm 2 for ATSR World Fire Atlas from 1997 to 2008 were
collected by the authors. To understand the temporal distribution, the monthly aggregated
hotspots (i.e., number of fires) for 12 years were input onto a map of Malaysia. According
to the results, a total of three minor (June–December, July–November, and September–
October), and one major (January–April) El Nino events were observed. The authors
also reported the month of April to have the highest number of fires. To realise the
spatial pattern of fire occurrence in Malaysia, the states were distributed into six groups
by adopting clustering analysis. Some of the notable clusters included (i) a Sabah cluster
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containing the highest number of fire incidents and (ii) a Selangor cluster with the lowest
number of fire incidents. The authors justified the vast number of fires in Sabah as being
due to biomass burning sighted in the vicinity of Indonesia. According to the literature
described previously in this section, we recognise that a lot of research has exploited
Selangor State as the study location since many fire incidents have been sparked there in
the past. Therefore, it is speculated that the cluster analysis performed by Ash’aari and
Badrunsham [70] might have been impacted by the total area of each state, as Selangor was
distinguished in the cluster with the lowest number of fire incidents.

While Ash’aari and Badrunsham [70] devoted themselves to understanding the tem-
poral and spatial distribution of fire incidents in the entirety of Malaysia, Leewe et al. [71]
employed a similar technique (i.e., frequency analysis) to analyse the temporal and spa-
tial trends of fire activity for the state of Sabah from 2006 to 2010. Instead of ASTR,
Leewe et al. [71] retrieved the MODIS hotspot data from the Fire Information for Resource
Management System [72]. The authors studied the monthly and annual areas of fire dis-
tribution by using the hotspot data. The highest number of hotspots were reported at
1082 in 2010, 518 in March (five-year average), and 1159 for the interior region (five-year
average). Leewe et al. [71] stated that the fire distribution differed by year, month and
region. By understanding the patterns of hotspots, resources can be accordingly allocated
by authorities to confront fires in advance.

Jamaruppin et al. [73] utilised the raw data in thermal band 10 from Landsat 8 to
estimate the temperature (i.e., Celsius) before (28 January), during (1 March), and after
(17 March) the 2014 fire incidence for Pekan, Pahang. The temperature was then categorised
into five distinct temperature classes depending on the temperature range. For instance,
a temperature higher than 34 degrees Celsius was assigned as very high risk, while a
temperature below 16 degrees Celsius was appointed as very low risk. A fire risk map
was then produced by utilising the categorised temperature risk. When comparing the fire
susceptibility map before and during the fire incident, it could be observed that most of the
very low-risk regions had progressed to an advanced risk, as 0 km2 was reported for the
very low-risk region during the fire. The authors also evaluated the temperature changes
between pre-fire and during-fire stages, as well as between during-fire and after-fire stages.
They observed that most of the pixels in the studied region had a significant temperature
increase during the transition from pre-fire to during-fire stages, while most of the pixels
recorded a 100% decrease in temperature for the shift from during- to post-fire stages.

Miettinen et al. [74] studied the temporal and spatial distribution of peatland fire in
Malaysia and Indonesia (Sumatra and Borneo Island) by utilising the MODIS hotspot de-
tection count retrieved from the Fire Information for Resource Management System in 2015.
They selected the study locations because a severe fire was ignited there in 2015 [75–77],
and the fire was further aggravated by the drought conditions caused by El Nino. Based on
the authors’ previous work [78], they discovered that the land cover of the study locations
was vastly affected by deforestation activities from 1999 to 2015 (i.e., peat swamp forests
covered up 75% of the peatlands in 1999, while only 29% of peat swamp forests covered
the study location in 2015). To analyse the relationship of peatland (i.e., peat soil type) with
the distinct land cover (i.e., managed peatland areas, undeveloped degraded peatlands,
and degraded peat swamp forest), Miettinen et al. [74] employed a peatland land-cover
map created before the fire began in 2015 [78] to evaluate the fire severity in each peatland
land-cover type. Two metrics, (i) the number of hotspots and (ii) fire density (i.e., fire
counts relative to the area, as measured by the number of hotspots identified per 1000 km2),
were utilised by the authors to compare the fire counts between peatland and mineral soil,
as well as to pinpoint the locations with high fire concentration activities. They revealed
that more of the fires occurred in deforested, undeveloped peatlands (~831 hotspots per
1000 km2) compared with pristine (i.e., undisturbed) peat swamp forests (30 hotspots per
1000 km2). Additionally, fire density was reported to be from approximately four to ten
times higher in peatland areas in contrast to mineral soils for all the studied locations. To
shrink the risk of forest fire disaster in degraded undeveloped peatland, Miettinen, Shi and
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Liew [74] recommended rewetting and rehabilitation (e.g., canal drainage blocking [79])
as the solutions to preserve a consistent water level for maintaining the soil moisture.
The authors stated that these options were more desired than the solution involving the
conversion of area to a managed agricultural. It should be noted that the authors excluded
Singapore and Brunei from their work since both countries were relatively small and rarely
confronted by acute fire incidents.

All the studies in this subsection are summarised and chronologically sorted based
on the publication year in Table 2. Discussions in this subsection advocate the idea that
the application of remote sensing to detect forest fire in Malaysia is not new since many
researchers have attempted to utilise these technologies to provide unique solutions. How-
ever, the solutions presented in this section can be further enhanced and improved by
adopting more advanced techniques that will be elaborated on in Section 4.

Table 2. Summary of the efforts for forest fire susceptibility map generation.

Year of
Publication References Year of

Studies Location Objective

2004 [10] 1997 Pekan District,
Pahang

Categorise the factors (e.g., land use, slope risk, aspect risk,
elevation risk, and distance to road) into risk scores from 1 to
4. The sum of the risk score for all the factors was used to
generate the fire susceptibility map.

2004 [42] 2000 Malaysia/Western
Indonesia

Classify the fuel types and soil types for Malaysia and
Western Indonesia based on global vegetation data.

2005 [45] 1995–2001 Malaysia/Indonesia

Calibrate the parameters of Fine Fuel Moisture Code (FFMC)
and fire weather index (FWI) of the Canadian Forest Fire
Weather Index System (CFFWIS) to provide early warnings
of forest fires.

2006 [48] 2002–2003

Peninsular
Malaysia (10

Meteorological
Station)

Utilise MODIS level-1 and level-2 data to estimate the
relative humidity parameters necessary to calculate the fire
weather index from the CFFDRS.

2006 [11] June 1999 Kuala Selangor
To compute a fire risk index model by considering the
topography, weather (atmospheric conditions), and fuel
types as the input for mapping fire risk.

2007 [51] 2000–2005

Sungai Karang,
Selangor/Raja
Muda Forest

Reserve, Selangor

Estimate the probability of forest fires by measuring the
likelihood ratio (i.e., frequency ratio) between fire hotspots
and forest fire factors. To compute the forest risk index, the
summation of each frequency ratio for each pixel was
calculated.

2007 [52] 2004–2005 Peninsular
Malaysia

Devise a fire risk index by exploiting the concept of
pre-ignition heat energy that assesses the ignition
probabilities by estimating the amount of heat energy
necessary to burn the fuel from its current temperature.

2007 [54] Implemented
in 1999

Southeast Asia
(ASEAN)

The first fire danger rating system (FDRS) was successfully
implemented to provide forecasts and early warnings for fire
occurrences. The FDRS is still in operation to date, and it is
publicly accessible from the Malaysia Meteorological
Department [55] and Indonesia Meteorological
Climatological and Geophysical Agency [80].

2008 [58] 1990–1995
Kelantan, Sarawak,

Sabah, and
Selangor

Predict the probability of fire occurrence by measuring soil
moisture (i.e., the volume of water) by adopting the
Keetch–Byram Drought Index (KDBI).
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Table 2. Cont.

Year of
Publication References Year of

Studies Location Objective

2009 [61] 1995–1999 Peninsular
Malaysia

Enhance the original pre-ignition heat energy risk index
model by incorporating temperature, relative humidity,
vegetation index, and fuel map to generate the fire
susceptibility map.

2009 [62] 1995–1999 Pekan, Pahang

Develop a system (interface) in ArcView to simplify the
user–system interaction for generating a fire map. The
authors employed the analytical hierarchy process (AHP)
tools (i.e., overlaying geoprocessing tools) in GIS software.

2010 [64] 1998
Batu Enam, Jalan
Pekan, Kuantan,

Pahang

Design a fire hazard rating model integrating nine classes of
fuel type and human activity parameters (e.g., distance to
road and canal buffers) to classify the region into five
degrees of fire severity risk. Instead of the NDVI, the
Tasseled Cap (TC) transformation vegetation index was used
as it was a more effective scheme for detecting peat swamps
and burnt land.

2011 [66] - Selangor, Kuala
Langat, and Pahang

Propose an index that considers multiple factors affecting
forest fires in peat swamps (e.g., peat depth, bulk density,
and moisture content) to generate a fire map.

2013 [67]
September
2008–July

2011

Malaysia and
Indonesia

Investigate the suitability and reliability of the application of
the Wildfire Biomass Burning Algorithm (WFFABBA) from
the Multifunction Transport Satellite (MTSAT) by comparing
the pattern of fire activity with the results from MODIS
MOD14 in Malaysia and Indonesia.

2014
2013 [68,69] - Selangor

Weigh the forest fire factors essential in the analytical
hierarchy process (AHP) mathematical model by conducting
a survey with three domain experts from the Fire and Rescue
Department Malaysia. The model was deployed in WebGIS
to generate a fire risk map for Selangor, Malaysia.

2014 [70] 1997–2008 Malaysia

Utilise the number of fires collected from the ASTR World
Fire Atlas product for 12 years to understand the spatial and
temporal pattern of fire activity in the entirety of Malaysia
by adopting monthly frequency analysis and
clustering analysis.

2016 [71] 2006–2010 Sabah
Perform annual, month, and area frequency analyses using
five years of fire hotspot data from the Fire Information for
Resource Management System (i.e., a product of MODIS).

2016 [73] 2014 Pekan, Pahang

Utilise the thermal band from Landsat 8 to estimate and
classify the temperature into five distinct severities. Analyse
the temperature before, during, and after a fire incident by
using the five categorised temperatures and change
detection mapping.

2017 [74] 2015
Peninsular

Malaysia, Sumatra,
and Borneo

Investigate the relationship of fire incidents in (i) peat soil vs.
mineral soil and (ii) peat soil with different land covers in
Malaysia and Indonesia by using the MODIS hotspot counts
obtainable from the Fire Information and Resource
Management System.

2.3. Other Efforts Associated with Forest Fire

Though most researchers were motivated to locate or predict fire-prone regions, some
of the works discussed in this section used a distinct approach to conduct research associ-
ated with forest fires in Malaysia.
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Mahmud [81] estimated the pollutants discharged from vegetation burning (i.e., agri-
culture waste burning) by using the emission equation and emission factors devised by
Joyner [82]. To obtain the necessary input parameters for the formula, the author utilised
the number of hotspots retrieved from NOAA AVHRR to perform spatial analysis while
employing the Moran Index, nearest neighbour index, and nearest neighbour hierarchical
spatial clustering from February 2002 to March 2002 in Peninsular Malaysia. Selangor,
Perak, and Pahang states were observed to have higher rates of fire activities in contrast to
other states in the spatial analysis. Based on the information acquired from the analysis,
Mahmud [81] estimated the air pollutant emissions (e.g., particulates, carbon monoxide,
non-methane hydrocarbons, nitrogen oxides, sulphur dioxides, and particulate matter) and
greenhouse gases (e.g., carbon dioxide, methane, nitrous dioxide, and carbon). The author
discovered that the estimated carbon dioxide emission was much higher than nitrous
oxides or methane. Additional validation was recommended by the author to corroborate
the estimation evaluated in their work.

To evaluate the area of peat swamp burned in 1998 for Klias Peninsula located in the
State of Sabah, Phua et al. [83] applied the image differencing technique to Landsat imagery
before the fire (2 October 1997) and after the fire (7 December 1999) by utilising three
vegetation indexes, specifically the (i) normalised burn ratio, (ii) normalised difference
water index, and (iii) normalised difference vegetation index. Among the three indices,
image differencing in conjunction with a normalised burn ratio enabled the most accurate
estimation of the burned area. Understanding the changes that happened in the peat
swamp forests (i.e., reduction in peat swamp forest area) allowed the authors to conclude
that better approaches can be devised to more effectively confront fires.

Ainuddin and Goh [84] investigated the impacts of forest fires on the forest structures
in Raja Musa Forest Reserve, Selangor from September 2001 to June 2002. The study
location was selected by the authors because it had encountered fires since 1996. They
revealed that the composition of flora species and forest structure were greatly affected
by the forest fire incidents. For instance, the tree diameters in the unburnt areas were
larger (10.1–20.0 cm) than the trees from burnt areas (5.1–10.0 cm). On the contrary, a total
of 22 plant species were found in the unburnt region, while only 10 plant species were
identified in the burnt region.

Bin Suliman et al. [85] adopted the random spread model of Serra [86] to understand
the propagation of forest fires in Selangor State from 2001 to 2004. To formulate the model,
they utilised fuel and spread rate maps (i.e., Southeast Asia FDRS that built upon the Initial
Spread Index and Buildup Index [54]) as the primary input parameters to the model. They
tested the model, and it correctly predicted most of the burnt scars in the study location. In
this model, the authors assumed that there were no human interactions involved to put
out fires.

Sahani et al. [87] investigated the relationship between mortality rate and forest fire
haze events in the Klang Valley region by utilising the daily concentration of particulate
matter (PM10) and daily mortality rate from 1 January 2000 to 31 December 2007 retrieved
from the Department of Statistics, Malaysia. A total of 88 days were identified as haze days
(i.e., PM10 concentration greater than 100 µg/m3) in the seven studied years, and the root
cause of 8.56% of natural mortality was recorded to be associated with respiratory mortality.
They found that there was a significant relationship between haze and respiratory mortality,
and a higher mortality rate was recorded due to exposure to haze. For instance, respiratory
mortality was reported to be increasing for all males, elderly males, and adult females.

Fisal et al. [88] used a social science approach to study the forest fire awareness of the
community in Klias Forest Reserves, Sabah. They highlighted that the community living
near the vicinity of the forest were not fully equipped with the essential knowledge to
prevent fires in the peat swamp forests. Such a lack of awareness may subsequently lead
to forest fire incidents. However, positive feedback was acquired from the community to
work together with authorities to prevent and extinguish forest fires.
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Instead of estimating the emission of pollutants by using remote sensing information,
as conducted by Mahmud [81], Smith et al. [89] performed an on-site study utilising open-
path transform infrared spectroscopy to assess the pollutants discharged by peat swamp
forest fires in Pekan Pahang in 2005 and North Selangor in 2006. The plumes (i.e., smoke)
collected from the aforementioned technique were further analysed to measure the emission
factors (i.e., concentration) for 12 gas types: carbon dioxide, carbon monoxide, methane,
ammonia, acetic acid, hydrogen cyanide, methanol, ethylene, ethane, formaldehyde, formic
acid, and acetylene. The authors presented the first study to explain the large variability of
gases in each of the plumes. They recommended the emission factors discovered from this
work to be used for future peat fire emission models as a reliable alternative to the results
from earlier laboratory studies.

Musri et al. [90] presented the results of post-fire restoration and rehabilitation through
a case study in Raja Musa Forest Reserve, Selangor. The studied location had been repeat-
edly affected by fire incidence in the past decades. In the post-fire restoration process, the
authors found that the Selangor State Forestry Department rewetted the soil and raised the
water level of the degraded peat swamp forest by installing a check dam, canal block, clay
dyke, and high-density polyethylene pipe. Subsequently, over 250,000 saplings of pioneer
tree species were planted from 2009 to 2014 in the rehabilitation site of Raja Musa Forest
Reserve. With the raised in water level and the regeneration of new plants, the number of
forest fire occurrences has been significantly lowered [90]. The authors also introduced four
basic principles to manage peat swamp forests: (i) prevention (e.g., awareness campaign),
(ii) preparedness (e.g., maintenance and installation of equipment), (iii) response (e.g.,
immediate action to suppress small fires), and (iv) recovery (e.g., restoration and rehabilita-
tion efforts). Furthermore, the national strategies for fire management and rehabilitation
of degraded peat swamps in Malaysia were also discussed by Parish, Lew and Mohd
Hassan [91].

Instead of relying on human observations, Sali et al. [92] adopted an Internet of
Things (IoT) approach to monitor the condition of the Raja Musa Forest Reserve, Selangor.
By deploying an IoT monitoring system, real-time data including soil temperature, soil
humidity, water level, wind speed, rain precipitation, ambient humidity, and ambient
temperature information could be collected. In their studies, they collected and analysed
data obtained from 2020 January to March 2020.

Table 3 summarises the research works associated with forest fires, excluding studies
related to fire susceptibility mapping. In this subsection, several works that were closely
associated with forest fire incidents are reviewed. While fire susceptibility mapping is one
of the predominant research directions, we would like to highlight some of the distinct
directions such as locating regions burnt by forest fires, analysing the pollutant emissions,
and post-fire management.
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Table 3. Summary of the efforts (excluding studies related to fire susceptibility mapping) associated
with forest fires.

Year of
Publication References Year of

Studies Location Objective

2005 [81] February to
March of 2002

Peninsular
Malaysia

Estimate the pollutant emissions from agricultural burning
by employing emission equations. Utilise remote sensing
data (i.e., number of hotspots) from NOAA AVHRR to
provide necessary input parameters to the formula.

2007 [83] 1997 and 1999 Klias Peninsula,
Sabah

Estimate the burned peat swamp region by comparing the
pre-fire (1997) and post-fire (1999) Landsat satellite imagery
by employing an image differencing technique utilising
three vegetation indexes.

2010 [84] 2001–2002 Raja Musa Forest
Reserve, Selangor

Study the impact of forest fire on the composition of species
and forest structure for the peat swamp forest.

2010 [85] 2001–2004 Selangor

Adopt the random spread model of Serra [86] to predict the
area burned by forest fire by understanding the propagation
of forest fires by utilising spread rates and fuel maps as the
input parameters to the model.

2014 [87] 2000–2007 Klang,
Selangor

Investigate the relationship between mortality rate and haze
events in Klang Valley by analysing the daily mortality rate
in conjunction with the daily particulate matter
(PM10) concentration.

2017 [88] - Klias Forest
Reserves, Sabah

Assess the awareness of the neighbourhood around Klias
Forest Reserves for forest fire prevention. Authors
discovered that the community lacks awareness but is
willing to cooperate to prevent and extinguish forest fires.

2018 [89] August 2015
and July 2016

Pekan, Pahang
North Selangor

Measure the emission factors (i.e., the concentration of
gaseous) from the plumes collected from the peatland fires
through open-path transform infrared spectroscopy.

2020 [90] - Raja Musa Forest
Reserve, Selangor

Focus on the discussion of post-fire management through a
case study in Raja Musa Forest Reserve, Selangor. Describe
the restoration and rehabilitation process of degraded peat
swamp forests.

2021 [92]
January

2020–March
2020

Raja Musa Forest
Reserve, Selangor

Adopt an IoT approach to collect real-time environmental
variables for evaluating the condition of the peat forest.

2.4. Hotspot Locations in Malaysia Based on Previous Studies

A summary of the works in Malaysia from 1989 to 2021 categorised by each of the
states is shown in Table 4. From the table, it can be seen that most of the studies were
performed in three main states, which were Sabah (5 out of 26), Selangor (12 out of 26)
and Pahang (6 out of 26). It should be noted that the tabulated information excludes all
the works that focused on Peninsular Malaysia or the entirety of Malaysia. The hotspot
locations based on historical fire incidents in Malaysia are described in Figure 1.

To further substantiate the severity of forest fires in the three states, we also searched
through the local news reports in Malaysia. According to several reports, several fire
incidents had also been recently reported in the selected three locations, i.e., Pekan, Pa-
hang [16,93–96]; Selangor [12,13,97,98]; and Klias, Sabah [14,99,100]. Thus, the selected
locations are postulated to be suitable for conducting experimental studies related to forest
fires in the future.
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Table 4. Previous studies conducted in Malaysia grouped by state.

State Specific Location Year of Studies References Total No. of
Studies

Sabah

- 1983–1985 [21]

5

- 1990–1995 [58]

- 2006–2010 [71]

Klias Peninsula 1997 and 1999 [83]

Klias Forest Reserves - [88]

Sarawak
- 1997–1998 [9]

2
- 1990–1995 [58]

Pahang

Pekan 1997 [10]

6

Pekan 1995–1999 [62]

Pekan 1998 [64]

- - [66]

Pekan 2014 [73]

Pekan 2015 August and 2016 July [89]

Selangor

Kuala Selangor 1999 [11]

12

Sungai Karang and Raja Musa Forest Reserve 2000–2005 [51]

Raja Musa Forest Reserve 2001–2002 [84]

Raja Musa Forest Reserve - [90]

Raja Musa Forest Reserve 2020 [92]

Kuala Langat - [66]

Klang 2000–2007 [87]

Kuala Langat, North Selangor August 2015 and July 2016 [89]

- 2001–2004 [85]

- - [68]
[69]

- 1990–1995 [58]

Kelantan - 1990–1995 [58] 1
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2.5. Factors Affecting Forest Fire in Malaysia

Most of the forest fire incidents in Malaysia were speculated to be principally as-
sociated with human factors [9]. However, it was unclear whether the environmental
variables (i.e., land cover, topography, and meteorology) could intensify fire tragedies. A
comprehensive review of the general factors constituting forest fires was presented in [101].
A few of the factors that have been utilised in the past to generate a fire susceptibility
model in Malaysia are as follows: land cover, meteorological variables (i.e., temperature
and humidity), topology variables (i.e., digital elevation model, aspect, and slope), and
human factors (i.e., distance to road and population).

Though there are various factors contributing to forest fires in Malaysia, a rigorous
and thorough analysis has yet to be completed to date in the literature. To broaden the
understanding of fire incidents, subsequent analyses utilising various sources of data are
necessary. Hence, all the data that were exploited by the previous studies will be described
in the next section. By combining or integrating results from the previous studies with
presently available data and technologies, more works can be anticipated to expand the
results presented in the current literature.

3. Type of Data Utilised for Forest Fire Risk Modelling in Malaysia

In this section, the types of data are categorised into two distinct groups: public data
(i.e., satellite data) and Malaysia government-centric data. The primary purpose of this
section is to provide an overview of the data that have been explored in Malaysia. To ease
future researchers, the accessibility for each of the satellite data and government data are
also described in Tables 5 and 6.

All the derived products and the satellite versions employed by the previous studies
discussed earlier in this manuscript are summarised and tabulated in Table 5. According to
the table, it is obvious that the derived products from the Landsat, MODIS, and AVHRR
NOAA satellites have been widely exploited.

In addition to the satellite data, some of the Malaysian government data including
topography, meteorological, and population information that have been adopted in the
past are also shown in Table 6. However, it should be noted that most of the mentioned
data are not publicly accessible. Users that desire to obtain and use the data may need to
directly request them from each of the relevant departments, and most of the applications
will be subject to the approval of the department directors.

From the presented summaries, it can be seen that only limited satellite data have
been applied to the task of forest fire detection in Malaysia. Following the work of previous
researchers, future researchers that plan to perform similar studies in Malaysia can consider
adopting Sentinel-1 Synthetic Aperture Radar [102] and Sentinel-2 imagery [103] to develop
advanced fire models.
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Table 5. Summary of remote sensing data utilised by previous studies in Malaysia and their accessibility.

Derived Product Satellite Version/
Data Source

Previous
Application Accessibility

Land Cover or Fuel Type
Normalized Burn Ratio (NBR)

Normalized Difference Water Index (NDWI)
Normalized Vegetation Index (NDVI)

Landsat Thematic Mapper
(TM)—version not mentioned [10,64,85]

Public [104]
access from USGS
Earth Explorer)

Landsat-5 TM [11,83]

Landsat-7 ETM [51,68,69,83,105]

Landsat 8 [73]

Land Cover (classified) for
Malaysia and Indonesia

Landsat 7 Enhanced Thematic
Mapper (ETM) and Landsat 8

Operational Land Imager
(OLI) [78,106]

[67]

Private
(The classified land
cover is not available
publicly)

Precipitable Water Vapor for
Relative Humidity MODIS Level-1 (MACRES) [48] Public [107–109]

Land Surface Temperature
Surface Air Temperature for Relative Humidity

Precipitable Water for Relative Humidity
MODIS Level-2 [61] Public [110,111]

MODIS MCD14ML Collection 5 Active Fire
(hotspots)

NASA’s Fire Information for
Resource Management System [67,71,74] Public [112]

Land Surface Temperature - [52] Public [113]

World Fire Atlas (hotspots) - [45,70] Public [114]

Historical Forest Fire Data (hotspots)

AVHRR NOAA (not specified) [64,81,85]

Public [115]AVHRR NOAA 12 [51,61,105]

AVHRR NOAA 16 [51,61,105]

Application of Wildfire Biomass Burning
Algorithm (Hotspots) - [67] Public [116]

Table 6. Summary of Malaysia government data utilised by previous studies in Malaysia and
their accessibility.

Type of Data Derived Product Data Source Previous
Application Accessibility

Topography

Contour
Administrative Boundaries

Water Resources
Settlement

Transportation Infrastructure

Department of National
Mapping and Survey

(JUPEM)
[51,61,105] Private (apply and pay) [117]

Price List [118]

Digital Contours
Digital Elevation Model

Slope Gradient
Slope Aspect

[11]

Aspect
Elevation

Slope
Not Mentioned [10] -

-

Hotspots Prone Area
Fire Occurrence Map

Peat Swamp Map
Soil Map

Malaysia Centre of
Remote Sensing

(MACRES)
Known as Malaysia Space

Agency (since 2019)

[51,61,105]

Private (apply and pay) [119]
Price list [120]
Local students/universities may
request some data for free for research
and educational purposes [119]
Raw format of the relevant data
(MODIS, NOAA, LANDSAT TM, and
SPOT 1–5) can be obtained from Public
MYSA archive data [121]
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Table 6. Cont.

Type of Data Derived Product Data Source Previous
Application Accessibility

Population
Data

Population Data
Socio-economic Data

Department of Statistics
Malaysia [51,105]

Public/Available Data [122,123]
Additional data requests can be sent to
the Director of the Department of
Statistics Malaysia

Meteorological
Data

Temperature
Relative Humidity

Fire Danger Rating System (FDRS)

Malaysian Meteorological
Services Department [11,51,54,61,105]

Only the future 7-day forecasted
weather data were made available in
the official portal [124].

Daily Air Temperature
Total Daily Rainfall

Malaysian Meteorological
Services Department [58]

Archive data not available; contact
Malaysia Meteorological department
to request [125]

Daily Weather
Data

Temperature
Relative Humidity

Wind Speed

National Climatic Data
Center [45] Public [126]

- Land-use/cover maps
Department of Forestry

and Department of
Agriculture

[11] Private (apply and pay) [127]

- Record of Past Fire
Occurrences/Forest Fire Reports

Forestry Department of
Peninsular Malaysia

(JPSM)
[11,51,61,105] Not Available

An initiative
by National
Geospatial

Centre
Malaysia

(G2G) [128]

Malaysia Government Unit/Local
Public University in Malaysia can

apply for free

National Geospatial
Centre Malaysia -

Private (requests can be sent to
Malaysia Government Body and
Malaysia Public University only) [128]

3.1. Discussion on the Application of Data for Forest Fire Detection

Though some satellite data, such as those of Landsat and Sentinel-2, have been made
freely available to the public [27], some of them (e.g., Sentinel-2) have yet to be adopted
for the task of detecting forest fires in Malaysia. With the use of vast computing resources
and data, machine learning classification techniques such as logistic regression, decision
trees, support vector machines, and deep learning can be incorporated to improve the
performance of forest fire detection in Malaysia [23,24].

Big Data Platform for Satellite Data

Gomes et al. [27] defined big data platforms as “computational solutions that provide
functionalities for big Earth Observation (EO) data management, storage and access, which
allow the processing on the server side without having to download big amounts of EO
data sets”. Motivated by the advancement of technologies and the adoption of open data
policies supported by government and space agencies, an extensive amount of geospatial
data (i.e., Earth observation data) produced from Earth observation satellites have been
increasingly made freely available to researchers and societies in the past decades. For
instance, approximately 5 petabytes (~equivalent to 5000 terabytes) of open data were
generated from Landsat-7, Landsat-8, MODIS, Sentinel-1, Sentinel-2, and Sentinel-3 in
2019 [129]. The datasets’ tremendous volume makes it challenging to store, distribute,
process, and analyse them using traditional approaches. Thus, several big data platforms
for EO data have been developed, e.g., Google Earth Engine [29], Open Data Cube [28],
JEODPP [129], OpenEO [130], pipsCloud [131], System for Earth Observation Data Access,
Processing and Analysing for Land Monitoring (SEPAL) [132], and Sentihub Hub [133]. A
comprehensive review for each of the platforms was performed in [27]. It should be noted
that most of the acquisition methods performed by the researchers in Section 2 focused on
the individual file of geospatial data distribution through web services and portals (i.e.,
http or ftp).



Forests 2022, 13, 1405 20 of 37

Apart from the mentioned platforms, Microsoft also recently released its variation of
a big data platform for satellite data called Planetary Computer [30]. It is worth noting
that at the point of writing this manuscript, Planetary Computer also provides a hub that
supplies computational resources with several options for the development environment;
the five distinct options are: (i) Python environment with 4-core CPU and 32 GB of RAM;
(ii) R environment with 8-core CPU and 64 GB of RAM; (iii) PyTorch environment with
4-core CPU, 28 GB of RAM and T4 GPU; (iv) TensorFlow environment with 4-core CPU, 28
GB of RAM, and T4 GPU; and (v) QGIS environment with 4-core CPU and 32 GB of RAM.
To gain access to the platforms, users are required to fill in the application form provided
on the Planetary Computer home page.

Considering that big EO data platforms permit some of the computational processing
to be performed on the server side, future researchers should consider employing big
data platforms to alleviate some processing resources from the client side. In addition,
the complicated data access procedure described in our previous work [134] can be eased
by utilising the big data platforms. This is made possible by the ability of most big data
platforms to access publicly available datasets through their data catalogues and APIs.

4. Global View of Machine Learning and Forest Fire

From the literature reviewed in Section 2, it can be clearly recognised that the applica-
tion of machine learning has not been extended to the domain of forest fires in Malaysia.
However, utilising machine learning techniques in aiding forest fire detection, analysis, and
prediction is not new [23,24,135–138], and these techniques have been successfully adopted
in many other countries as they have been gaining more attention in recent years. Hence,
this is probably a potential research direction to be delved into in the near future.

Although traditional fire detection systems such as the CFFDRS [45], FDRS [54], and
Slovenia Environment Agency fire detection system [139] have been proven to be very
feasible for the task of fire detection, it is plausible to improve their detection and prediction
abilities by building machine learning models with a fire database containing the historical
fire occurrences and all contributing factors of forest fires.

Bui et al. [140] examined forest fire susceptibility through a hybrid artificial intelligent
approach that combined the usage of a neural fuzzy inference system (NF) and particle
swarm optimization (PSO) in Vietnam. This hybrid approach was named Particle Swarm
Optimized Neural Fuzzy (PSO-NF). The spatial information of tropical forest fire suscep-
tibility was extracted and modelled with the adoption of PSO-NF. The forest fire model
was retrieved from NF, and the best parameter values were selected through the PSO. The
authors created a GIS forest fire database based on 10 factors associated with forest fires,
i.e., slope, aspect, elevation, land use, NDVI, distance to road, distance to residence area,
temperature, wind speed, and rainfall. Most of the factors were derived from the Landsat-8
remote sensing data, and the climatic data (i.e., temperature, wind speed and rainfall) were
extracted from the National Climatic Data Center (NDCC) [126]. They also compared their
proposed algorithm (PSO-NF) with random forest and support vector machine algorithms,
and the classification accuracy attained by the PSO-NF (85.8%) surpassed the other two
notable classifiers (85.2% and 84.9%, respectively). Later, Bui et al. [141] proposed a new
hybrid methodology by amalgamating Multivariate Adaptive Regression Splines (MARS)
and Differential Flower Pollination (DFP) into a new methodology named MARS-DFP. DFP
was appended to the MARS as a feature extractor to retrieve the spatial patterns of forest
fire severity. The proposed algorithm attained a classification accuracy of 86.57%.

Fire kernel density was utilised to detect forest fires by Monjarás-Vega et al. [142], who
extracted the spatial patterns of fire occurrence at the regional and national levels in Mexico
by utilising geographically weighted regression (GWR) to predict fire density. The fire kernel
density was calculated by using two different approaches, which are regular grid density
and kernel density, over spatial resolutions ranging from 5 to 50 km on both the dependent
and the independent variables captured from human and environmental candidates.
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The element of forest fire susceptibility was also exploited by Moayedi et al. [143] in a
high fire-prone region in Iran. An ensemble fuzzy method was proposed by aggregating
the results retrieved from an adaptive neuro-fuzzy inference system (ANFIS) with genetic
algorithm (GA), PSO, and differential evolution (DE) evolutionary algorithms. The GIS
forest fire database was built based on 15 ignition factors, i.e., elevation, slope aspect, wind
speed, plan curvature, soil type, temperature, distance to river, distance from road, distance
from village, land use, slope degree, rainfall, topographic wetness index, evaporation,
and NDVI. It should be noted that the authors did not specify the source for each of the
mentioned factors. The best performance results were attained by ANFIS-GA, with which
the area under receiver operating characteristics (AUROC) was calculated as 0.8503 and
the mean squared error (MSE) was calculated as 0.1638.

Instead of predicting forest fire incidents akin to many other works, Sevinc et al. [144]
sought to predict the probability of an event that triggered a forest fire by utilising a
Bayesian network model. The primary motivation of the authors was to investigate the
reason behind each forest fire incident, as the probable causes for almost 54% of forest
fires were disclosed to be unknown in the location of study. The empirical testing was
conducted in the Mugla Regional Directorate of Forestry area located southwest of Turkey.
To assemble the Bayesian network model for each of the causes of fire occurrence, the
authors incorporated wind speed, month, distance from settlement, amount of burnt area,
relative humidity, temperature, distance from agricultural land, distance from road, and
tree species. Sevinc et al. [144] reported an AUC score of 0.91 for hunting, indicating that
hunting is the most plausible ignition factor for forest fires that happened between 2008
and 2018.

Table 7 summarises the related works discussed in this section. A thorough review
associated with machine learning techniques in the task of forest fire detection or prediction
as presented in [23,24].

Table 7. Summary of general machine learning classification techniques used for forest fire
detection tasks.

Year of
Publication Reference Year of Studies Dataset Objective

2017 [140] Lam Dong,
Vietnam

GIS database built based on
the 10 factors associated with

forest fires

To investigate forest fire susceptibility through the
combined usage of neural fuzzy inference system (NF) and
particle swarm optimization (PSO).

2019 [141] Lam Dong,
Vietnam

GIS database built based on
the 10 factors associated with

forest fire

To produce a forest fire susceptibility map through a hybrid
methodology by combining Multivariate Adaptive
Regression Splines (MARS) and Differential Flower
Pollination (DFP).

2020 [142] Mexico
GIS database built based on

the 16 factors associated with
forest fires

To adopt geographically weighted regression (GWR) to
predict fire density.

2020 [143] Iran GIS point database utilising
15 forest fire factors

To segregate the location into different fire-prone risks by
combining adaptive neuro-fuzzy inference system (ANFIS)
with the genetic algorithm (GA), particle swarm
optimisation (PSO), or differential evolution (DE).

2020 [144] Turkey Table data including fire
causes and 9 ignition factors

To investigate the probable causes for the fires by building
Bayesian networks for each fire cause along with the
ignition factors.

Deep Learning and Forest Fire

Deep learning techniques, which are gaining popularity in recent years, have also
been adopted to improve the models in the forest fire domain. Due to their success in the
field of image processing and handling spatial information [145], researchers from the fire
domain have also exploited similar techniques by utilising satellite remote sensing data,
satellite imageries, unmanned aerial vehicle (UAV) images (e.g., drone), and surveillance
camera footage.
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Zhang et al. [146] proposed a deep convolutional neural network (CNN) to automati-
cally annotate the fire regions in an image by using bounding boxes. To improve the fire
patch localisation annotation, the authors designed a two-level (cascaded) CNN where the
first CNN model was trained with the full image to identify whether the image contained
at least one fire patch and the second CNN model was trained with the fire patches to
accurately locate the fire regions in the image. A total of 25 videos from a fire detection
dataset [147] were utilised to build their dataset. The authors then extracted one image from
every five frames and resized them to 240 × 320, followed by the manual annotations of
fire boundaries with 32 × 32 bounding boxes. A subset of the data comprising 178 training
images (12,460 patches) and 59 testing images (4130 patches) was used to evaluate the
CNN models. A comparison of the performance of the proposed CNN against the support
vector machine linear classifier showed that the CNN achieved a detection accuracy of
90.1% and the support vector machine only achieved a detection accuracy of 89% on the
testing dataset.

A fine-tuned CNN trained with a CCTV surveillance camera containing 68,457 images
was devised by Muhammad, Ahmad and Baik [148]. The proposed algorithm was able
to detect fire in images with distinct indoor and outdoor environments. The authors
emphasised that the model could process 17 frames/s, and the performance of the model in
terms of precision, recall, and f-measure were recorded at 0.82, 0.98, and 0.89, respectively.

Hodges and Lattimer [149] presented a Deep Convolutional Inverse Graphic Network
(DCIGN) that combined both CNN and transpose convolutional layers to estimate the
spread of wildfires after ignition from 6 h to 24 h. The authors exploited 13 fire attributes,
such as aspect, fuel model, slope, moisture, and canopy height, to train the model. A
precision of 0.97, sensitivity of 0.92, and f-measure of 0.93 were found when using the
proposed technique.

An AlexNet CNN model with modified adaptive pooling combined with traditional
image processing was proposed by Wang et al. [150] to automatically locate fire pixels from
images obtained from the Corsica Fire Database. The authors stated that the present studies
only applied CNN directly to the fire images without considering colour features. Thus,
they segregated the fire regions in the images by utilising the colour features before training
the CNN model. Subsequently, the best classification accuracy of 90.7% was reported by
the authors when they trained and evaluated the model using only the segmented images
instead of the full original images.

Zhang et al. [151] adopted 14 influencing fire factors—elevation, slope, aspect, average
temperature, average precipitation, surface roughness, average wind speed, maximum
temperature, specific humidity, precipitation rate, forest coverage ratio, NDVI, distance to
roads, and distance to rivers—to train a CNN algorithm to forecast a spatial prediction map.
Data from 2002 to 2010 collected from the Yunnan Province of China were used in the study.
The authors also applied feature selection techniques such as multicollinearity analysis and
information gain ratio to evaluate the importance of each fire attribute. Additionally, an
oversampling technique was employed to resolve the issue of the imbalance class while
proportional stratified sampling was also utilised to fairly compare the performance of
the CNN with other benchmark classifiers such as random forest, support vector machine,
multi-layer perceptron (MLP), and kernel logistic regression. The authors reported that a
high AUC of 0.86 was attained by the proposed CNN.

To benefit from the real-time aerial images captured from UAVs, a low-power CNN
deep learning algorithm based on YOLOv3 was devised by Jiao et al. [152] to improve
the accuracy and speed of detection. The authors utilised the UAVs’ internal computing
resources to determine whether any fire pixels were detected from studied footage. They
justified that the transmission of a large amount of data from the UAVs to the cloud services
was not feasible. At the same time, contents in the videos or images may be susceptible to
privacy issues. To resolve these concerns, only the results (i.e., fire or no fire detected) were
sent from the UAVs to the cloud services. It should be highlighted that the YOLOv3 model
was trained on a desktop computer before embedding it onto the UAVs for evaluation and
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testing purposes. A precision of 0.82, recall of 0.79, and f1-score of 0.81 were achieved by
the proposed model.

Ban et al. [102] proposed a deep learning framework based on a CNN to automatically
identify burnt regions by training the model with the Sentinel-1 Synthetic Aperture Radar
(SAR) images. The experiments were conducted based on two fire incidents in Canada
and one fire incident in America. The authors emphasised the feasibility of SAR images
in wildfire monitoring as SAR is an active sensor that can produce microwave signals
and receive the returned signals (i.e., backscattered). In other words, SAR does not need
to rely on the availability of sunlight, so it can capture all images during the day and
night-time. By training the CNN model with SAR images containing the VV and VH
polarisation, the model was able to detect the progression of wildfires in all three of the
study locations. When comparing the proposed CNN against the traditional log-ratio
method, Ban et al. [102] reported a considerable improvement in terms of the Kappa
metrics, which were improved by 0.11, 0.27, and 0.30 for the three respective incidents.

Similar to the work of Jiao et al. [152], Wang et al. [153] developed a lightweight YOLO
and MobileNetv3 integrated with a pruned network and knowledge distillation process
to improve the speed and accuracy of real-time detection on a UAV. They pretrained their
models with the MSCOCO dataset before training the models utilising a fire dataset. A
total of 1069 fire and 775 non-fire images were supplied to allow the model to learn the
characteristics of fire regions. The proposed model was able to achieve a recall of 98.41%,
precision of 88.57%, and accuracy of 96.11%. While the performance of the proposed model
was on par with other baseline models, the authors emphasised that the proposed technique
was able to reduce the inference (i.e., testing) time required from 153.8 ms (YOLOv4 model)
to 37.4 ms (proposed model). This was enabled by tremendous reductions in model
parameters resulting in an approximate 95.87% inference time reduction compared with
the YOLOv4 model.

Table 8 summarises all the deep learning algorithms adopted in the forest fire do-
main. Among the eight pieces of literature reviewed in this section, five studies utilised
images from UAV or CCTV to perform image recognition and three studies exploited the
availability of remote sensing information to perform relevant fire detection tasks.

Table 8. Summary of deep learning techniques in forest fire detection tasks.

Year of
Publication Reference Dataset Objective Algorithm

2016 [146] Image: unmanned aerial
vehicle (UAV)

Establish computer vision/image
recognition

Full image and fine-grained patch fire
classifier with deep convolutional neural
networks (CNNs)

2018 [148] Image: CCTV surveillance
camera

Establish computer vision/image
recognition Fine-tuned CNN

2019 [149] Remote sensing data consists
of 13 fire-influencing attributes Estimate the spread of wildfires

Deep Convolutional Inverse Graphic
Network (DGIGN)—Deep CNN and
transport CNN

2019 [150] Image: Corsica Fire Database Establish computer vision/image
recognition

Conventional image processing, AlexNet
CNN, and modified adaptive pooling

2019 [151]
Remote sensing data

containing 14 fire-influencing
factors

Classify fire pixels Feature selection: multicollinearity
analysis/information gain ratio and CNN

2019 [152] Image: UAV Establish computer vision/image
recognition (real-time) Low-power YOLOv3 CNN

2020 [102]
Satellite Image: SAR Image

(Sentinel-1 Synthetic Aperture
Radar)

Establish automatic burnt region
detection CNN

2021 [153] Image: UAV Establish computer vision/image
recognition

Lightweight YOLO and MobileNetV3 with
pruned network and knowledge distillation



Forests 2022, 13, 1405 24 of 37

5. Challenges and Future Direction of Forest Fire Efforts in Malaysia

To exploit the potential of machine learning for the task of forest fire detection in
Malaysia, the first necessary step is to collect remote sensing data and any other ground data.
However, there are various challenges involved in the data acquisition process. Though
there are a tremendous amount of remote sensing data available, it remains challenging to
collect and utilise them effectively to produce significant research results. Additionally, data
from the Malaysian government may be restricted to their department’s internal usage. An
additional manual application is mandatory to obtain access to some data (e.g., historical
forest fire data). In a situation when the historical forest fire data cannot be obtained from
the government department, researchers need to perform data validation of the fire location
and fire occurrence time through other approaches (e.g., satellite imagery validation and
newspaper validation). Data validation is vital because the performance of a model greatly
relies on the precision of annotated data labels.

As the works related to understanding the factors of fire occurrence in Malaysia remain
limited, it is crucial to study the attributes of forest fires by correlating the fire incidents
with various remote sensing data and ground data. Subsequently, machine learning or
deep learning algorithms can be adopted by utilising all remote sensing data and ground
data collected to either predict fire pixels on spatial maps or to forecast future spatial fire
maps. Alternatively, researchers can also consider tackling the issue of forest fires from
the perspective of optical sensors (e.g., digital camera and UAV) [32,33], wireless sensor
networks [154–156], or satellite imagery fire pixel classification [102].

It is also worth pointing out that several researchers have identified that most intense
forest fires have arisen in peat swamp forests [8,35,85]. They have highlighted that fires
in peat swamp forests cannot be easily detected as they unnoticeably spread through
the underground. Thus, investigating the factors of forest fires in peat swamp forests is
definitely a worthy future research direction.

Open Research Questions

Based on the reviewed literature, we formulated four research questions for future
studies to address, which will be further discussed in the following paragraphs.

Research Question #1: What are the influencing factors of forest fires in Malaysia? To
understand the elements constituting forest fires in Malaysia, it is necessary to perform
a thorough investigation of the historical forest fire incidents by utilising remote sensing
data. Though several similar studies have been performed in Central Kalimantan, the
Mediterranean region of Europe, and the North America continent [157–159], it is still
extremely vital to perform this type of analysis to examine the local influencing factors
of each fire occurrence because the factors contributing to fires may vary depending on
location since each region is influenced by distinct climates, temperatures, weather, local
fuels, topography, etc. [25].

Research Question #2: How can remote sensing data (i.e., satellite data) be used to
build a machine learning model in Malaysia for the task of forest fire detection? Unlike
any other field of study, a general machine modelling technique cannot be deployed in
the task of forest fire detection because of the variation in training data collected from
different regions [26,138]. In other words, it is not feasible to build a fire model by using
the data attained from a region in Australia and subsequently implement it in the country
of Malaysia since fires might be affected by different factors. Thus, the analysis results
following Research Question #1 can be further exploited to build a forest fire dataset
specifically for the country of Malaysia. Once the dataset has been established, a few
machine classifiers can then be employed to evaluate its usability (i.e., utility).

Research Question #3: Can forest fire incidents be identified earlier to prevent disas-
trous fire tragedies? Once the model from Research Question #2 has been devised, it is
feasible to forecast the risk or the occurrence of fires at certain locations by utilising the fore-
casted data (e.g., wind speed and land surface temperature) from satellites or meteorology
stations to the machine model. For a forecasted fire region, analysts or domain experts can
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further analyse the fire factors and undertake appropriate measures to prevent fire incident.
For example, peat swamp fires tend to be triggered in prolonged drought scenarios [8].
Ideally, if the detected land surface temperature and drought level are relatively high,
authorities can then increase the water table level of the peat swamp region to prevent fire
incidents [160]. To aid the task of factor analysis, we recommend exploring the use of fuzzy
cognitive maps [161] or Bayesian networks for discovering the causal relationships between
each factor and fire occurrence. Based on the relationship presented by the model, analysts
and domain experts can certainly gain a more in-depth understanding of fire occurrence.

Research Question #4: Can the models and experiments be made reproducible and
scalable to a global level? In past works related to forest fires in Malaysia, researchers
have been required to access and pre-process satellite data before importing them into
GIS software to perform further analysis. The inconsistency of the pre-processing and
analysis steps may hinder the experiments’ potential to be reproduced and scaled. With
the availability of a big data platform for EO data, researchers can seamlessly access
satellite data to perform their analysis. Since the same datasets are exploited by researchers,
experiments can be easily reproduced through code sharing. To accommodate the model
on a global scale, some platforms would just require simple tweaks to their code. For
instance, Open Data Cube [28], which is an open-source software, can be used if the local
computing resources can accommodate the analysis task. However, in a scenario with a
lack of computing resources, the Google Earth Engine [29] and Planetary Computer [30]
platforms can be exploited to alleviate the local computing resources as some of the heavy
processing can be performed on their servers.

6. Proposed General Methodology to Utilise Remote Sensing Data for Forest Fire
Efforts in Malaysia

The proposed methodology to utilise remote sensing data for forest fire efforts is
succinctly deliberated in this section as a solution proposed to address the arising research
questions described in Section 5. Figure 2 presents the general flow of the overall works
that can be undertaken in the future. Each of the steps numbered in the figure will be
elaborated to offer a better insight into the proposed research methodology. It is postulated
that the proposed methodology can also be applied to other locations or countries, as well
as other research problems in the geoscience domain.

Step 1: Data Discovery. Firstly, the study locations must be selected in this phase. The
preferred locations are forests that have dealt with fire incidents in the past. Based on the
historical fire incidence data provided in Table 4, (i) Pekan, Pahang; (ii) Raja Musa Forest
Reserve, Selangor; and (iii) Klias, Sabah are the most suitable locations to be studied and
investigated. To obtain the necessary information (i.e., statistics, area burnt, and location of
forest fire) related to the selected locations, a request can be sent to the Forestry Department
of Peninsular Malaysia (JPSM) for Peninsular Malaysia or Sabah Forestry Department for
the state of Sabah. In the absence of historical fire incident information from government
departments, MODIS active fire product hotspots [112] can be substituted as historical fire
spots. It should be noted that the hotspots from MODIS have been exploited in several
works related to a forest fire in the literature [159,162,163].

Step 2: Remote Sensing Data Extraction. Once the locations and historical fire incidents
or hotspots have been identified, a big data platform for satellite data or direct access from
a data provider (e.g., NASA) can be utilised to access and extract all the relevant remote
sensing data from various satellite sensors. For instance, slope, aspect, elevation, land
cover, land surface temperature, and sea surface temperature can be obtained or derived
from extracted data. It should be remarked that some of the information might be required
to undergo further processing procedures before it can be utilised to build the forest fire
dataset. The utilisation of big data platforms such as Open Data Cube [28], Google Earth
Engine [29], and Planetary Computer [30] will undoubtedly facilitate and improve the
process of satellite data acquisition.
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Step 3: Forest Fire Datasets Establishment. In addition to the remote sensing data
mentioned in Step 2, other related data such as distance to road, distance to residential
area, distance to river, population density, and socioeconomic information can also be
assimilated as the influencing factors to create the forest fire dataset. Some of these data
can be obtained or accessed from the Malaysia government portal, as described in Table 6.

Step 4: Feature Analysis and Selection. After building the forest fire datasets, statistical
analysis can then be exploited to assess the relationship between each attribute and forest
fire incident. Some of the works in the literature adopted entropy reduction [144] and
data analytical modelling in GIS [159] to discover the most significant influencing forest
fire factors. Once the importance of each attribute has been evaluated, the metrics can
be fine-tuned as the weight of each attribute and subsequently supplied to the machine
classifiers. On the other hand, feature selection techniques through machine classifiers such
as multiple logistic regression [157] and random forest [157] have also been carried out by
researchers to select the primary affecting attributes to build their models.

Steps 5 and 6: Machine Learning Training and Evaluation without Attribute Weighting
and Feature Selection. Machine learning classification models (e.g., random forest, support
vector machine, and decision tree) or other deep learning models can then be adopted to
build the model using the forest fire datasets. Once the models have been trained, they can
then be used as predictors to measure the likelihood of a certain pixel being a fire pixel or a
normal pixel.

Steps 7 and 8: Machine Learning Training and Evaluation with Attribute Weighting
and Feature Selection. To assess the impacts of attribute weighting or feature selection
obtained in Step 4, a similar experimental procedure as described in Steps 5 and 6 can be
repeated by incorporating the weighted attributes or only the selected features to build
the model. Some evaluation metrics (e.g., classification accuracy) can then be used to
evaluate the improvement or degradation effects resulting from the application of attribute
weighting or feature selection.

Step 9: Forecasting Future Fire Incidence. Generally, three methods can be used to
predict future fire incidents; the first strategy requires the forecasted data from satellite or
weather station to be extracted and supplied as the testing data. For example, the next seven
days of meteorological data (e.g., rainfall, temperature, and wind speed) can be provided
to the trained models in Step 5 or 7 to foresee whether the location will be identified as a
fire-prone pixel. On the other hand, advanced analysis techniques such as trend analysis
or hotspot analysis schemes can be employed to visualise and forecast the future trends
of fires. Alternatively, fuzzy cognitive mapping models can be exploited to uncover the
causal relationships between the factors and fire incidents.

7. Forest Fire Benchmark Datasets

In the machine learning community, a benchmark dataset representing a real-world
data science problem is commonly utilised to discover the best solution for a specific prob-
lem by measuring the performance of different machine learning models [164]. Generally, a
classifier trained by tabular data (e.g., breast cancer [165]) or images (e.g., ImageNet [166])
can be used to perform prediction tasks. Unlike the typical machine learning field, the
general geoscience domain must deal with a tremendous volume of remote sensing data to
create a benchmark dataset. Before building such a dataset, it is also necessary to study the
relevant factors contributing to the problem to extract the relevant attributes. For instance,
land-cover types, temperature, humidity, and digital elevation models are some of the criti-
cal factors in forest fire occurrence based on previous studies, e.g., by Ganteaume et al. [101].
Additionally, the use of validation data from previous field studies (i.e., verifying forest
fire locations from a field study) is also essential to enhance the credibility of a dataset.
Furthermore, a prediction task in the geoscience domain can span from the present to
several minutes, months, or even years.

Though it is not an easy task to create a benchmark dataset, particularly in the geo-
science domain, several weather and climate benchmark datasets have been created and
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are directly accessible from http://mldata.pangeo.io/ (accessed on 10 August 2022). For
example, the WeatherBench [167] benchmark dataset can be exploited with a machine
learning algorithm to forecast 3–5 days of global weather patterns. Presently, there are
only two publicly accessible forest fire datasets [135,168]. Cortez and Morais [135] focused
on the regression problem to predict the burnt area regions in Portugal by exploiting 13
attributes and 517 instances, while Sayad et al. [168] attempted to classify fire and non-fire
pixels in Canada by utilising three influencing attributes and a total of 1713 instances. Both
of the datasets only utilised a small number of attributes and instances. Referring to the
geoscience benchmark dataset criteria set forth by Dueben et al. [164], it can be concluded
that no standard benchmark dataset for a forest fire is publicly available to date. Hence,
we recommend utilising a big data platform in conjunction with the benchmark dataset
guidelines as described by Dueben et al. [164] to create a forest fire benchmark dataset,
starting from the country of Malaysia.

Forest Fire Validation Data

As mentioned earlier in Section 5, historical forest fire data can be requested from
local government agencies. In a scenario in which such data cannot be obtained, the
validation of the fire scene can be rendered with satellite imagery or newspaper articles.
Alternatively, post-fire burned area products from the Copernicus Emergency Management
Service (EMS) [169] and European Forest Fire Information System (EFFIS) [170] can also
be exploited to validate fire activity data. However, these products do not contain any
record of fire activity in the country of Malaysia. Therefore, satellite-based, post-fire burned
products such as FireCGI51 [171] or MCD64A1 [172,173] can be substituted to recognise
burnt areas and to perform the validation of fire incident data.

8. Overview of Forest Fire Detection and Monitoring

Traditionally, human-based observation, either from the public or patrol staff, was
utilised to discover the occurrence of forest fires. However, such an approach is not feasible
in the sense that the fire incidents will only be reported once they are visible. Addition-
ally, the surveillance time is limited to a certain period of the day. Thus, optical sensors
such as digital camera surveillance systems are designed to replace human observation.
Though digital cameras can effectively detect fires with a low number of false alarms, the
deployment of such systems is very expensive as it requires communication infrastructure
and a camera tower to establish them. Recently, UAV vision-based system detection has
also been developed by several authors [33]. It should be noted that most optical sensor
approaches require image processing techniques, along with machine learning or deep
learning algorithms, to determine whether a fire occurs in an image.

Alternatively, several works based on wireless sensor networks have also been de-
veloped to detect the occurrence of a fire before it is triggered [154–156]. Generally, a
sensor will collect and analyse parameters such as pressure, humidity, temperature, carbon
dioxide, and nitrogen dioxide to determine the presence of a fire. A detailed survey of the
variation of fire detection techniques was presented in [32,174].

On the other hand, satellite-based systems such as AVHRR or VIIRS [115] and MODIS
Active Fire Products [112] have been employed to determine the potential fire hotspots.
The primary disadvantage of this mechanism is its inability to detect a fire in real time
because the detection of a location is based on the cycle time of a satellite to return to
the same location. With the advancement of technology, one recent research study was
focused on uncovering the burnt area from a forest fire by performing deep learning
image classification from SAR images [102]. To draw out the strength of the satellite
remote sensing data, researchers have also exploited remote sensing data to forecast fire
maps [151]. The availability of the public and an enormous amount of remote sensing
data [27] have undoubtedly motivated researchers to utilise them in various applications.
We refer to [23,24] for reviews of the application of machine learning to build forest fire

http://mldata.pangeo.io/


Forests 2022, 13, 1405 29 of 37

prediction and detection systems. Figure 3 provides a general overview of forest fire
detection and monitoring technology.
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9. Other Relevant Studies Commonly Employed in Forest Fire Domain

In contrast to all the works presented in this manuscript, several research fields related
to fire spread models commonly employed around the world have also yet to be adopted
in Malaysia. Some of these include physical-based models [175,176], computational fluid
dynamics (CFD) models [177–179], geometrical models [180,181], and cellular automata
models [182–184]. The fundamentals of a physical model involve the chemistry and/or
physics of combustion to simulate fire spread [175]. For example, Koo et al. [176] simulated
fire spread activity by utilising the concepts of energy conversation and heat transfer. From
their experiments, they discovered that wind and slope attributes were some influencing
factors. The advancement of computational power has encouraged the usage of physical
models exploiting the computational model to predict the spread of fire [178]. For instance,
William et al. [179] utilised CFD to solve a three-dimensional time-dependant equation
considering fluid motion, combustion, and heat transfer in order to develop the Wildland
Fire Dynamic Simulator. Geometrical modelling is focussed on the application of physical,
mathematical and/or computational methods to study the geometry (i.e., shape) of a flame
in different scenarios. To illustrate, Lin et al. [180] studied flame geometry in terms of
horizontal flame length, vertical flame height, flame base drag, and flame tilt angle in an
experiment utilising propane as fuel for four distinct dimensions of gaseous burners with
varying air speed (i.e., wind speed) conditions. A cellular automata model is a local grid-
based stochastic modelling technique [183]. For example, such a model will split an entire
forest into multiple smaller cells, and each cell changes state (e.g., no fuel, contain fuel but
not burning, burning, and burnt) depending on the state of the neighbouring cells and time-
steps [183]. Hence, researchers may also consider developing the aforementioned models
from the physics, chemistry, or mathematics perspectives to build fire spread models.

10. Conclusions

This manuscript predominantly summarises background information for forest fire
research in Malaysia. It begins with an exploration of forest-fire-associated research works
performed in Malaysia. Then, some of the influencing forest fire factors are briefly discussed.
The procurement of data, especially public remote sensing (i.e., satellite date) data that
have been utilised in Malaysia, is provided in Section 3. It should be highlighted that only a
small amount of satellite data has been adopted in Malaysia. In addition, a small discussion
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related to big data platforms for accessing remote sensing information is also provided. It
is necessary to understand the different acquisition procedures to access the data because
these remote sensing data are vital for the establishment of a machine learning-based forest
fire dataset in Malaysia.

Section 4 is mainly devoted to exploring the utilisation of machine learning to detect
forest fires from a global perspective. From the presented literature, it can be recognised that
the application of machine learning for fire detection tasks is definitely not new. However, a
finding from the review presented in Section 2 shows that no one has exploited the potential
of a machine learning algorithm for forest-fire-related tasks in Malaysia. Subsequently,
some of the challenges to utilising machine classifiers for the task of forest fire detection
in Malaysia are also discussed in Section 5. Additionally, some future directions and
research questions are also contemplated in the same section to provide future researchers
in Malaysia avenues for the extension of the literature in the forest fire domain. A general
methodology to apply machine learning by making use of remote sensing data and ground
data for the task of forest fire detection in Malaysia is proposed in Section 6. In view of
technology advancement, it is postulated that the application of machine learning or deep
learning algorithms will undoubtedly improve fire monitoring and detection in Malaysia.
It can be certain that the ability to accurately detect or forecast fires will assist authorities to
efficiently allocate fire-fighting resources to reduce the severity of forest fire incidents. Next,
Section 7 highlights that there are no presently available forest fire benchmark datasets, and
some general recommendations to create a standard benchmark dataset are also provided
in this section. An overview of forest fire detection and monitoring solutions such as human
observation, optical sensors, and wireless sensors are briefly discussed in Section 8. Towards
the end of the manuscript, some of the methods and techniques associated with fire spread
models from the perspectives of mathematics, chemistry, and/or physics are presented in
Section 9. It is important to emphasise that these models have been commonly exploited
across other countries, but the adoption of these models is still very rare in Malaysia.

In conclusion, research in the forest fire domain in Malaysia comprises discovering
the causes of fires, revealing the impacts of fires, and generating fire risk maps by utilising
remote sensing data. From this review, it can be speculated that human activity and
negligence are the predominant factors in instigating forest fires in Malaysia. To fathom
whether environmental variables were some of the influencing fire factors, researchers have
also exploited various remote sensing data in conjunction with fire activity information to
reveal the relationship between them. Specifically, temperature and precipitation have been
shown to exhibit a high correlation with most fire activity. While machine learning has not
been utilised in Malaysia, our review suggests that the adoption of machine learning or
deep learning techniques will definitely aid in the task of fire prediction or detection in
Malaysia. In summation, this review paper aspires to serve as an avenue to facilitate future
researchers in their initial stage of exploration for the battle against forest fires in Malaysia.

Author Contributions: Conceptualization, Y.J.C.; Investigation, Y.J.C.; Methodology, Y.J.C.; Writing—
Original Draft, Y.J.C.; Funding Acquisition, S.Y.O.; Project Administration, S.Y.O.; Supervision, S.Y.O.,
Y.H.P. and K.-S.W.; Writing—Review and Editing, S.Y.O., Y.H.P. and K.-S.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research work was supported by a Fundamental Research Grant Schemes (FRGS) un-
der the Ministry of Education and Multimedia University, Malaysia (Project ID: FRGS/1/2020/ICT02/
MMU/02/2), and Chey Institute for Advanced Studies (ISEF).

Data Availability Statement: Data sharing is not applicable to this article as no new data were
created or analysed in this study.

Acknowledgments: We would like to thank two anonymous reviewers for taking the time and effort
necessary to review the manuscript. We sincerely appreciate all valuable comments and suggestions,
which helped us to improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Forests 2022, 13, 1405 31 of 37

References
1. Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Wildfire Effects on Soil Erosion Dynamics: The Case of 2021 Megafires

in Greece. Agric. For. 2022, 68, 49–63.
2. Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire Severity and Soil Erosion Susceptibility Mapping Using Multi-Temporal Earth

Observation Data: The Case of Mati Fatal Wildfire in Eastern Attica, Greece. Catena 2020, 187, 104320. [CrossRef] [PubMed]
3. Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas

in Crete Island, Greece. Sustainability 2022, 14, 2738. [CrossRef]
4. Köninger, J.; Panagos, P.; Jones, A.; Briones, M.J.I.; Orgiazzi, A. In Defence of Soil Biodiversity: Towards an Inclusive Protection in

the European Union. Biol. Conserv. 2022, 268, 109475. [CrossRef]
5. Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi, A.; Kolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate Change Is Increasing

the Likelihood of Extreme Autumn Wildfire Conditions across California. Environ. Res. Lett. 2020, 15, 94016. [CrossRef]
6. Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.;

Martinuzzi, S.; Syphard, A.D. Rapid Growth of the US Wildland-Urban Interface Raises Wildfire Risk. Proc. Natl. Acad. Sci. USA
2018, 115, 3314–3319. [CrossRef]

7. Buckland, M.K. What Is a Megafire? Defining the Social and Physical Dimensions of Extreme US Wildfires (1988–2014). Ph.D.
Thesis, University of Colorado, Boulder, CO, USA, 2019.

8. Abdullah, M.J.; Ibrahim, M.R.; Abdul Rahim, A.R. The Incidence of Forest Fire in Peninsular Malaysia: History, Root Causes,
Prevention and Control. Prev. Control. Fire Peatl. 2002, 27–34.

9. Chandrasekharan, C. The Mission on Forest Fire Prevention and Management to Indonesia and Malaysia (Sarawak). Trop. For.
Fire. Prev. Control. Rehabil. Trans-Bound. Issues 1998, 14, 1–79.

10. Setiawan, I.; Mahmud, A.R.; Mansor, S.; Shariff, A.R.M.; Nuruddin, A.A. GIS-grid-based and Multi-criteria Analysis for
Identifying and Mapping Peat Swamp Forest Fire Hazard in Pahang, Malaysia. Disaster Prev. Manag. An. Int. J. 2004, 13, 379–386.
[CrossRef]

11. Patah, N.A.; Mansor, S.; Mispan, M.R. An Application of Remote Sensing and Geographic Information System for Forest Fire Risk
Mapping. Malays. Cent. Remote Sens. 2006, 54–67.

12. Bernama 80 Hektar Hutan Simpan Kuala Langat Terbakar. Available online: https://www.bharian.com.my/berita/kes/2020/0
4/679541/80-hektar-hutan-simpan-kuala-langat-terbakar (accessed on 2 August 2021).

13. Bernama Lebih 40 Hektar Hutan Simpan Kuala Langat Selatan Terbakar. Available online: https://www.bharian.com.my/berita/
nasional/2021/03/791876/lebih-40-hektar-hutan-simpan-kuala-langat-selatan-terbakar (accessed on 2 August 2021).

14. Berita Harian Kegiatan Memancing Disyaki Punca Kebakaran Hutan. Available online: https://www.bharian.com.my/berita/
wilayah/2020/03/670625/kegiatan-memancing-disyaki-punca-kebakaran-hutan (accessed on 2 August 2021).

15. Tang, K.H.D. Climate Change in Malaysia: Trends, Contributors, Impacts, Mitigation and Adaptations. Sci. Total Environ. 2019,
650, 1858–1871. [CrossRef]

16. Alagesh, T.N. 40 ha of Pahang Forest, Peat Land on Fire. New Straits Times, 26 February 2019. Available online: https://www.nst.
com.my/news/nation/2019/02/463995/40ha-pahang-forest-peat-land-fire-nsttv(accessed on 28 August 2022).

17. Then, S. Forest Fires Flare up Again in Parts of Sarawak. The Star. 17 July 2019. Available online: https://www.thestar.com.my/
news/nation/2019/07/17/forest-fires-flare-up-again-in-parts-of-sarawak (accessed on 28 August 2022).

18. Tay, R. The Haze Is Making a Comeback in August, and Some Malaysian Regions Are Already Affected. 2 August 2019. Available
online: https://web.archive.org/web/20190823091814/https://www.businessinsider.my/the-haze-is-making-a-comeback-
in-august-and-some-malaysian-regions-are-already-affected/ (accessed on 28 August 2022).

19. Then, S. More Hotspots in Kalimantan May Bring Widespread Transboundary Haze to S’wak. The Star. 18 August 2019. Avail-
able online: https://www.thestar.com.my/news/nation/2019/08/18/more-hotspots-in-kalimantan-may-bring-widespread-
transboundary-haze-to-s039wak (accessed on 28 August 2022).

20. Beaman, R.S.; Beaman, J.H.; Marsh, C.W.; Woods, P. V Drought and Forest Fires in Sabah in 1983. Sabah Soc. J. 1985, 8, 10–30.
21. Woods, P. Effects of Logging, Drought, and Fire on Structure and Composition of Tropical Forests in Sabah, Malaysia. Biotropica

1989, 21, 290–298. [CrossRef]
22. Cane, M.A. Oceanographic Events during El Nino. Science 1983, 222, 1189–1195. [CrossRef]
23. Abid, F. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technol. 2020, 57,

559–590. [CrossRef]
24. Bot, K.; Borges, J.G. A Systematic Review of Applications of Machine Learning Techniques for Wildfire Management Decision

Support. Inventions 2022, 7, 15. [CrossRef]
25. Chuvieco, E.; Salas, J. Mapping the Spatial Distribution of Forest Fire Danger Using GIS. Int. J. Geogr. Inf. Sci. 1996, 10, 333–345.

[CrossRef]
26. Cochrane, M.A. Fire Science for Rainforests. Nature 2003, 421, 913–919. [CrossRef]
27. Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis.

Remote Sens. 2020, 12, 1253. [CrossRef]
28. Killough, B. Overview of the Open Data Cube Initiative. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience

and Remote Sensing Symposium, Valencia, Spain, 23 July 2018; pp. 8629–8632.

http://doi.org/10.1016/j.catena.2019.104320
http://www.ncbi.nlm.nih.gov/pubmed/32255894
http://doi.org/10.3390/su14052738
http://doi.org/10.1016/j.biocon.2022.109475
http://doi.org/10.1088/1748-9326/ab83a7
http://doi.org/10.1073/pnas.1718850115
http://doi.org/10.1108/09653560410568507
https://www.bharian.com.my/berita/kes/2020/04/679541/80-hektar-hutan-simpan-kuala-langat-terbakar
https://www.bharian.com.my/berita/kes/2020/04/679541/80-hektar-hutan-simpan-kuala-langat-terbakar
https://www.bharian.com.my/berita/nasional/2021/03/791876/lebih-40-hektar-hutan-simpan-kuala-langat-selatan-terbakar
https://www.bharian.com.my/berita/nasional/2021/03/791876/lebih-40-hektar-hutan-simpan-kuala-langat-selatan-terbakar
https://www.bharian.com.my/berita/wilayah/2020/03/670625/kegiatan-memancing-disyaki-punca-kebakaran-hutan
https://www.bharian.com.my/berita/wilayah/2020/03/670625/kegiatan-memancing-disyaki-punca-kebakaran-hutan
http://doi.org/10.1016/j.scitotenv.2018.09.316
https://www.nst.com.my/news/nation/2019/02/463995/40ha-pahang-forest-peat-land-fire-nsttv
https://www.nst.com.my/news/nation/2019/02/463995/40ha-pahang-forest-peat-land-fire-nsttv
https://www.thestar.com.my/news/nation/2019/07/17/forest-fires-flare-up-again-in-parts-of-sarawak
https://www.thestar.com.my/news/nation/2019/07/17/forest-fires-flare-up-again-in-parts-of-sarawak
https://web.archive.org/web/20190823091814/https://www.businessinsider.my/the-haze-is-making-a-comeback-in-august-and-some-malaysian-regions-are-already-affected/
https://web.archive.org/web/20190823091814/https://www.businessinsider.my/the-haze-is-making-a-comeback-in-august-and-some-malaysian-regions-are-already-affected/
https://www.thestar.com.my/news/nation/2019/08/18/more-hotspots-in-kalimantan-may-bring-widespread-transboundary-haze-to-s039wak
https://www.thestar.com.my/news/nation/2019/08/18/more-hotspots-in-kalimantan-may-bring-widespread-transboundary-haze-to-s039wak
http://doi.org/10.2307/2388278
http://doi.org/10.1126/science.222.4629.1189
http://doi.org/10.1007/s10694-020-01056-z
http://doi.org/10.3390/inventions7010015
http://doi.org/10.1080/02693799608902082
http://doi.org/10.1038/nature01437
http://doi.org/10.3390/rs12081253


Forests 2022, 13, 1405 32 of 37

29. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial
Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

30. Microsoft Planetary Computer. Available online: https://planetarycomputer.microsoft.com/ (accessed on 24 January 2022).
31. Joseph, S.; Anitha, K.; Murthy, M.S.R. Forest Fire in India: A Review of the Knowledge Base. J. For. Res. 2009, 14, 127–134.

[CrossRef]
32. Alkhatib, A.A.A. A Review on Forest Fire Detection Techniques. Int. J. Distrib. Sens. Netw. 2014, 2014, 597368. [CrossRef]
33. Yuan, C.; Zhang, Y.; Liu, Z. A Survey on Technologies for Automatic Forest Fire Monitoring, Detection, and Fighting Using

Unmanned Aerial Vehicles and Remote Sensing Techniques. Can. J. For. Res. 2015, 45, 783–792. [CrossRef]
34. Ministry of Environment and Water Air Pollutant Index (API). Available online: https://www.doe.gov.my/portalv1/en/info-

umum/english-air-pollutant-index-api/100 (accessed on 3 March 2021).
35. Musa, S.; Parlan, I. The 1997/98 Forest Fire Experience in Peninsular Malaysia. Prev. Control Fire Peatl. 2002, 69–74.
36. Diemont, W.H.; Hillegers, P.J.M.; Joosten, H.; Kramer, K.; Ritzema, H.P.; Rieley, J.; Wösten, J.H.M. Fire and Peat Forests, What Are

the Solutions? In Proceedings of the Workshop on Prevention & Control of Fire in Peatlands, Kuala Lumpur, Malaysia, 19 March
2002; pp. 41–50.

37. Schott, J.R. Remote Sensing: The Image Chain Approach, 2nd ed.; Oxford University Press on Demand: Oxford, UK, 2007.
38. Chuvieco, E.; Congalton, R.G. Application of Remote Sensing and Geographic Information Systems to Forest Fire Hazard

Mapping. Remote Sens. Environ. 1989, 29, 147–159. [CrossRef]
39. Clarke, K.C. Advances in Geographic Information Systems. Comput. Environ. Urban Syst. 1986, 10, 175–184. [CrossRef]
40. Esri Introducing ArcGIS Platform|Esri. Available online: https://www.esri.com/en-us/home (accessed on 13 March 2021).
41. QGIS Development Team Welcome to the QGIS Project! Available online: https://www.qgis.org/en/site/ (accessed on

13 March 2021).
42. Dymond, C.C.; Roswintiarti, O.; Brady, M. Characterizing and Mapping Fuels for Malaysia and Western Indonesia. Int. J. Wildl.

Fire 2004, 13, 323–334. [CrossRef]
43. Stibig, H.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; Hildanus; Beuchle, R.; Fritz, S.; Mubareka, S. A

Land-cover Map for South and Southeast Asia Derived from SPOT-VEGETATION Data. J. Biogeogr. 2007, 34, 625–637. [CrossRef]
44. DeFries, R.S.; Townshend, J.R.G.; Hansen, M.C. Continuous Fields of Vegetation Characteristics at the Global Scale at 1-km

Resolution. J. Geophys. Res. Atmos. 1999, 104, 16911–16923. [CrossRef]
45. Dymond, C.C.; Field, R.D.; Roswintiarti, O. Using Satellite Fire Detection to Calibrate Components of the Fire Weather Index

System in Malaysia and Indonesia. Environ. Manag. 2005, 35, 426–440. [CrossRef]
46. Stocks, B.J.; Lynham, T.J.; Lawson, B.D.; Alexander, M.E.; Van Wagner, C.E.; McAlpine, R.S.; Dube, D.E. Canadian Forest Fire

Danger Rating System: An Overview. For. Chron. 1989, 65, 258–265. [CrossRef]
47. Arino, O.; Melinotte, J.M. Fire Index Atlas. Earth Obs. Q. 1995, 50, 11–16.
48. Peng, G.; Li, J.; Chen, Y.; Norizan, A.P.; Tay, L. High-Resolution Surface Relative Humidity Computation Using MODIS Image in

Peninsular Malaysia. Chin. Geogr. Sci. 2006, 16, 260–264. [CrossRef]
49. Han, K.-S.; Viau, A.A.; Anctil, F. High-Resolution Forest Fire Weather Index Computations Using Satellite Remote Sensing. Can. J.

For. Res. 2003, 33, 1134–1143. [CrossRef]
50. Anderson, I.P.; Imanda, I.D.; Balai, M.; Dan, I.; Hutan, P.; Ii, W.; Kehutanan, K.; Perkebunan, D. Vegetation Fires in Sumatra,

Indonesia: The Presentation and Distribution of NOAA Derived Data. In Forest Fire Prevention and Control Project; Natural
Resources International Ltd. Scot Conseil: Jakarta, Indonesia, 1999.

51. Pradhan, B.; Suliman, M.D.H.B.; Awang, M.A. Bin Forest Fire Susceptibility and Risk Mapping Using Remote Sensing and
Geographical Information Systems (GIS). Disaster Prev. Manag. 2007, 16, 344–352. [CrossRef]

52. Peng, G.-X.; Jing, L.; Chen, Y.-H.; Norizan, A.-P. A Forest Fire Risk Assessment Using ASTER Images in Peninsular Malaysia.
J. China Univ. Min. Technol. 2007, 17, 232–237. [CrossRef]

53. Dasgupta, S.; Qu, J.J.; Hao, X. Design of a Susceptibility Index for Fire Risk Monitoring. IEEE Geosci. Remote Sens. Lett. 2006,
3, 140–144. [CrossRef]

54. De Groot, W.J.; Field, R.D.; Brady, M.A.; Roswintiarti, O.; Mohamad, M. Development of the Indonesian and Malaysian Fire
Danger Rating Systems. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 165. [CrossRef]

55. Malaysia Meteorological Department Sistem Risiko Bahaya Kebakaran (FDRS) Malaysia. Available online: https://www.met.gov.
my/iklim/fdrs/mfdrs (accessed on 9 March 2021).

56. Malaysia Meteorological Department Sistem Risiko Bahaya Kebakaran (FDRS) ASEAN. Available online: https://www.met.gov.
my/iklim/fdrs/afdrs?lang=bm (accessed on 9 March 2021).

57. Rieley, J.; Page, S. Tropical Peatland of the World. In Tropical Peatland Ecosystems; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 3–32.

58. Ainuddin, N.A.; Ampun, J. Temporal Analysis of the Keetch-Byram Drought Index in Malaysia: Implications for Forest Fire
Management. J. Appl. Sci. 2008, 8, 3991–3994. [CrossRef]

59. Keetch, J.J.; Byram, G.M. A Drought Index for Forest Fire Control; US Department of Agriculture, Forest Service, Southeastern Forest
Experiment: Asheville, NC, USA, 1968; Volume 38.

60. Finkele, K.; Mills, G.A.; Beard, G.; Jones, D.A. National Gridded Drought Factors and Comparison of Two Soil Moisture Deficit
Formulations Used in Prediction of Forest Fire Danger Index in Australia. Aust. Meteorol. Mag. 2006, 55, 183–197.

http://doi.org/10.1016/j.rse.2017.06.031
https://planetarycomputer.microsoft.com/
http://doi.org/10.1007/s10310-009-0116-x
http://doi.org/10.1155/2014/597368
http://doi.org/10.1139/cjfr-2014-0347
https://www.doe.gov.my/portalv1/en/info-umum/english-air-pollutant-index-api/100
https://www.doe.gov.my/portalv1/en/info-umum/english-air-pollutant-index-api/100
http://doi.org/10.1016/0034-4257(89)90023-0
http://doi.org/10.1016/0198-9715(86)90006-2
https://www.esri.com/en-us/home
https://www.qgis.org/en/site/
http://doi.org/10.1071/WF03077
http://doi.org/10.1111/j.1365-2699.2006.01637.x
http://doi.org/10.1029/1999JD900057
http://doi.org/10.1007/s00267-003-0241-9
http://doi.org/10.5558/tfc65258-4
http://doi.org/10.1007/s11769-006-0260-6
http://doi.org/10.1139/x03-014
http://doi.org/10.1108/09653560710758297
http://doi.org/10.1016/S1006-1266(07)60078-9
http://doi.org/10.1109/LGRS.2005.858484
http://doi.org/10.1007/s11027-006-9043-8
https://www.met.gov.my/iklim/fdrs/mfdrs
https://www.met.gov.my/iklim/fdrs/mfdrs
https://www.met.gov.my/iklim/fdrs/afdrs?lang=bm
https://www.met.gov.my/iklim/fdrs/afdrs?lang=bm
http://doi.org/10.3923/jas.2008.3991.3994


Forests 2022, 13, 1405 33 of 37

61. Pradhan, B. Hot Spot Detection and Monitoring Using MODIS and NOAA AVHRR Images for Wild Fire Emergency Preparedness.
In Proceedings of the 2nd Applied Geoinformatics for Society and Environment (AGSE) Conference, Stuttgart Technology
University of Applied Sciences, Stuttgart, Germany, 12–17 July 2009; pp. 53–61.

62. Mahmud, A.; Setiawan, I.; Mansor, S.; Shariff, A.; Pradhan, B.; Nuruddin, A. Utilization of Geoinformation Tools for the
Development of Forest Fire Hazard Mapping System: Example of Pekan Fire, Malaysia. Open Geosci. 2009, 1, 456–462. [CrossRef]

63. Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [CrossRef]
64. Razali, S.M.; Nuruddin, A.A.; Malek, I.A.; Patah, N.A. Forest Fire Hazard Rating Assessment in Peat Swamp Forest Using Landsat

Thematic Mapper Image. J. Appl. Remote Sens. 2010, 4, 43531. [CrossRef]
65. Ramsey, E.W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A. Forest Impact Estimated with NOAA AVHRR and Landsat TM Data

Related to an Empirical Hurricane Wind-Field Distribution. Remote Sens. Environ. 2001, 77, 279–292. [CrossRef]
66. Ismail, P.; Shamsudin, I.; Khali Aziz, H. Development of Indicators for Assessing Susceptibility of Degraded Peatland Areas to

Forest Fires in Peninsular Malaysia. IUFRO World Ser. 2011, 29, 67.
67. Hyer, E.J.; Reid, J.S.; Prins, E.M.; Hoffman, J.P.; Schmidt, C.C.; Miettinen, J.I.; Giglio, L. Patterns of Fire Activity over Indonesia

and Malaysia from Polar and Geostationary Satellite Observations. Atmos. Res. 2013, 122, 504–519. [CrossRef]
68. Suliman, M.D.H.; Mahmud, M.; Reba, M.N.M. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial

Technology and Mathematical Modeling. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 12034. [CrossRef]
69. Mohd, D.; Mastura, M. Analysis of Potential Forest Fires by Utilizing Geospatial and AHP Model in Selangor, Malaysia. Sains

Malays. 2013, 42, 579–586.
70. Ash’aari, Z.H.; Badrunsham, A.S. Spatial Temporal Analysis of Forest Fire in Malaysia Using ATSR Satellite Measurement. Bull.

Environ. Sci. Sustain. Manag. 2014, 2, 8–11. [CrossRef]
71. Leewe, Y.; Ahmad, A.N.; Ismail, A.; Sheriza, M.R. Analysis of Hotspot Pattern Distribution at Sabah, Malaysia for Forest Fire

Management. J. Environ. Sci. Technol. 2016, 9, 291–295.
72. Davies, D.K.; Ilavajhala, S.; Wong, M.M.; Justice, C.O. Fire Information for Resource Management System: Archiving and

Distributing MODIS Active Fire Data. IEEE Trans. Geosci. Remote Sens. 2008, 47, 72–79. [CrossRef]
73. Bin Jamaruppin, M.E.; Bayuaji, L.; Ab Ghani, N.B.; Rahman, M.A.; Akashah, F.W.; Shah, A. Forest Fire Occurrence Analysis Base

on Land Brightness Temperature Using Landsat Data (Study Area: Jalan Kuantan–Pekan, Pahang, Malaysia). In Proceedings
of the National Conference for Postgraduate Research, University Malaysia Pahang, Pekan, Malaysia, 24–25 September 2016;
pp. 798–805.

74. Miettinen, J.; Shi, C.; Liew, S.C. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on
Peatland Fires. Environ. Manag. 2017, 60, 747–757. [CrossRef]

75. Tacconi, L. Preventing Fires and Haze in Southeast Asia. Nat. Clim. Chang. 2016, 6, 640–643. [CrossRef]
76. Field, R.D.; Van Der Werf, G.R.; Fanin, T.; Fetzer, E.J.; Fuller, R.; Jethva, H.; Levy, R.; Livesey, N.J.; Luo, M.; Torres, O. Indonesian

Fire Activity and Smoke Pollution in 2015 Show Persistent Nonlinear Sensitivity to El Niño-Induced Drought. Proc. Natl. Acad.
Sci. USA 2016, 113, 9204–9209. [CrossRef]

77. Huijnen, V.; Wooster, M.J.; Kaiser, J.W.; Gaveau, D.L.A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van
Weele, M. Fire Carbon Emissions over Maritime Southeast Asia in 2015 Largest since 1997. Sci. Rep. 2016, 6, 26886.

78. Miettinen, J.; Shi, C.; Liew, S.C. Land Cover Distribution in the Peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015
with Changes since 1990. Glob. Ecol. Conserv. 2016, 6, 67–78. [CrossRef]

79. Biancalani, R.; Avagyan, A. Towards Climate-Responsible Peatlands Management. Mitig. Clim. Chang. Agric. Ser. 2014, 9, 1–117.
80. Indonesia Meteorological Climatological and Geophysical Agency Sistem Peringatan Kebakaran Hutan Dan Lahan|BMKG.

Available online: https://www.bmkg.go.id/cuaca/kebakaran-hutan.bmkg?index=fwi&wil=indonesia&day=obs (accessed on
14 March 2021).

81. Mahmud, M. Active Fire and Hotspot Emissions in Peninsular Malaysia during the 2002 Burning Season. Geogr. J. Soc. Sp. 2005,
1, 32–45.

82. Joyner, W.M. Compilation of Air-Pollutant Emission Factors, Volume 1, Stationary Point and Area Sources, Fourth Edition, Supplement C.
United States; Environmental Protection Agency: Washington, DC, USA, 1 September 1990.

83. Phua, M.-H.; Tsuyuki, S.; Lee, J.S.; Sasakawa, H. Detection of Burned Peat Swamp Forest in a Heterogeneous Tropical Landscape:
A Case Study of the Klias Peninsula, Sabah, Malaysia. Landsc. Urban Plan. 2007, 82, 103–116. [CrossRef]

84. Ainuddin, N.A.; Goh, K. Effect of Forest Fire on Stand Structure in Raja Musa Peat Swamp Forest Reserve, Selangor, Malaysia.
J. Environ. Sci. Technol. 2010, 3, 56–62. [CrossRef]

85. Bin Suliman, M.D.H.; Serra, J.; Mahmud, M. Prediction and Simulation of Malaysian Forest Fires by Random Spread. Int. J.
Remote Sens. 2010, 31, 6015–6032. [CrossRef]

86. Serra, J. The Random Spread Model. Complex Anal. Digit. Geom. 2006, 283–310.
87. Sahani, M.; Zainon, N.A.; Mahiyuddin, W.R.W.; Latif, M.T.; Hod, R.; Khan, M.F.; Tahir, N.M.; Chan, C.-C. A Case-Crossover

Analysis of Forest Fire Haze Events and Mortality in Malaysia. Atmos. Environ. 2014, 96, 257–265. [CrossRef]
88. Fisal, N.S.M.; Lintangah, W.; Ismenyah, M. Community Awareness & Challenges in Forest Fire Prevention: A Case Study at Peat

Swamp Forest, Klias Forest Reserve, Beaufort, Sabah, Malaysia. Int. J. Agric. For. Plant. 2017, 5, 86–91.
89. Smith, T.E.L.; Evers, S.; Yule, C.M.; Gan, J.Y. In Situ Tropical Peatland Fire Emission Factors and Their Variability, as Determined

by Field Measurements in Peninsula Malaysia. Glob. Biogeochem. Cycles 2018, 32, 18–31. [CrossRef]

http://doi.org/10.2478/v10085-009-0032-5
http://doi.org/10.1016/0377-2217(90)90057-I
http://doi.org/10.1117/1.3430040
http://doi.org/10.1016/S0034-4257(01)00217-6
http://doi.org/10.1016/j.atmosres.2012.06.011
http://doi.org/10.1088/1755-1315/18/1/012034
http://doi.org/10.54987/bessm.v2i1.110
http://doi.org/10.1109/TGRS.2008.2002076
http://doi.org/10.1007/s00267-017-0911-7
http://doi.org/10.1038/nclimate3008
http://doi.org/10.1073/pnas.1524888113
http://doi.org/10.1016/j.gecco.2016.02.004
https://www.bmkg.go.id/cuaca/kebakaran-hutan.bmkg?index=fwi&wil=indonesia&day=obs
http://doi.org/10.1016/j.landurbplan.2007.01.021
http://doi.org/10.3923/jest.2010.56.62
http://doi.org/10.1080/01431161.2010.512307
http://doi.org/10.1016/j.atmosenv.2014.07.043
http://doi.org/10.1002/2017GB005709


Forests 2022, 13, 1405 34 of 37

90. Musri, I.; Ainuddin, A.N.; Hyrul, M.H.I.; Hazandy, A.H.; Azani, A.M.; Mitra, U. Post Forest Fire Management at Tropical Peat
Swamp Forest: A Review of Malaysian Experience on Rehabilitation and Risk Mitigation. IOP Conf. Ser. Earth Environ. Sci. 2020,
504, 12017. [CrossRef]

91. Parish, F.; Lew, S.Y.S.; Mohd Hassan, A.H. National Strategies on Responsible Management of Tropical Peatland in Malaysia. In
Tropical Peatland Eco-Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 677–723.

92. Sali, A.; Mohd Ali, A.; Ali, B.M.; Syed Ahmad Abdul Rahman, S.M.; Liew, J.T.; Saleh, N.L.; Nuruddin, A.A.; Mohd Razali, S.;
Nsaif, I.G.; Ramli, N. Peatlands Monitoring in Malaysia with IoT Systems: Preliminary Experimental Results. In Proceedings of
the International Conference on Computational Intelligence in Information System, Bandar Seri Begawan, Berunei Darussalam,
Brunei, 25–27 January 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 233–242.

93. Astro Awani Kebakaran Hutan Simpan Pekan Tak Membimbangkan (Fire in Pekan Forest Reserve Is Not a Concern). Available
online: https://www.astroawani.com/berita-malaysia/kebakaran-hutan-simpan-pekan-tak-membimbangkan-186979 (accessed
on 2 August 2021).

94. Awang, A. Lebih 300 Hektar Hutan Di Pahang Terbakar (More Than 300 Hectare of Forest Burnt in Pahang). Available
online: https://www.bharian.com.my/berita/wilayah/2021/03/795145/lebih-300-hektar-hutan-di-pahang-terbakar (accessed
on 2 August 2021).

95. Bernama Kebakaran Hutan Simpan Pekan: Anggota Bomba, Jabatan Perhutanan Terkandas (Fire in Pekan Forest Reserve: Fire
Fighters, Forestry Department Is Stranded). Available online: https://www.utusanborneo.com.my/2018/10/01/kebakaran-
hutan-simpan-pekan-anggota-bomba-jabatan-perhutanan-terkandas (accessed on 2 August 2021).

96. Malaysia Kini Hutan Seluas 34 Hektar Terbakar Di Kuantan (A 34-Hectare Forest Burned in Kuantan). Available online:
https://www.malaysiakini.com/news/339616 (accessed on 2 August 2021).

97. Muhammad, A. 994 Kes Kebakaran Terbuka Di Selangor Sejak Januari. Available online: https://www.sinarharian.com.my/
article/125841/BERITA/Semasa/994-kes-kebakaran-terbuka-di-Selangor-sejak-Januari (accessed on 2 August 2021).

98. Idris, M.N. Kebakaran Hutan Di Selangor Meningkat—Utusan Digital. Available online: https://www.utusan.com.my/berita/
2020/07/kebakaran-hutan-di-selangor-meningkat/ (accessed on 2 August 2021).

99. Utusan Borneo Pasukan Kru Api JPS Bertungkus-Lumus Padam Kebakaran Hutan Simpan Binsuluk|Utusan Borneo Online.
Available online: https://www.utusanborneo.com.my/2020/03/29/pasukan-kru-api-jps-bertungkus-lumus-padam-kebakaran-
hutan-simpan-binsuluk (accessed on 2 August 2021).

100. Berita Harian Kualiti Udara Pantai Barat Sabah Semakin Pulih. Available online: https://www.bharian.com.my/berita/nasional/
2016/04/141727/kualiti-udara-pantai-barat-sabah-semakin-pulih (accessed on 2 August 2021).

101. Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving
Factors of Forest Fire Ignition over Europe. Environ. Manag. 2013, 51, 651–662. [CrossRef]

102. Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1
SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [CrossRef] [PubMed]

103. Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A Remote Sensing Approach to Mapping Fire Severity in South-Eastern Australia
Using Sentinel 2 and Random Forest. Remote Sens. Environ. 2020, 240, 111702. [CrossRef]

104. United States Geological Survey Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 3 April 2021).
105. Pradhan, B.; Awang, M.A. Application of Remote Sensing and Gis for Forest Fire Susceptibility Mapping Using Likelihood Ratio

Model. Proc. Map Malaysia 2007, 16, 344–352.
106. Miettinen, J.; Liew, S.C. Degradation and Development of Peatlands in Peninsular Malaysia and in the Islands of Sumatra and

Borneo since 1990. Land Degrad. Dev. 2010, 21, 285–296. [CrossRef]
107. NASA LAADS DAAC (Archive). Available online: https://ladsweb.modaps.eosdis.nasa.gov/archive/ (accessed on 3 April 2021).
108. NASA Find Data—LAADS DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/search/ (accessed on

3 April 2021).
109. NASA LP DAAC (MODIS Download). Available online: https://e4ftl01.cr.usgs.gov/MOLA/ (accessed on 3 April 2021).
110. NASA MODIS Web. Available online: https://modis.gsfc.nasa.gov/data/dataprod/ (accessed on 3 April 2021).
111. NASA Moderate Resolution Imaging Spectroradiometer (MODIS)|Earthdata. Available online: https://earthdata.nasa.gov/

earth-observation-data/near-real-time/download-nrt-data/modis-nrt (accessed on 3 April 2021).
112. Fire Information for Resource Management System Archive Download—NASA|LANCE|FIRMS. Available online: https:

//firms.modaps.eosdis.nasa.gov/download/ (accessed on 1 April 2021).
113. NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team ASTER Level 2 Surface Temperature Product

[Data Set]. Available online: http://lpdaac.usgs.gov/products/ast_08v003/ (accessed on 28 August 2022).
114. European Space Agency ATSR World Fire Atlas. Available online: http://due.esrin.esa.int/page_wfa.php (accessed on

3 April 2021).
115. Asean Specialised Meteorological Centre (ASMC) VIIRS Hotspot—Annual. Available online: http://asmc.asean.org/asmc-haze-

hotspot-annual-new#Hotspot (accessed on 4 April 2021).
116. Cooperative Institute for Meteorological Satellite Studies Wildfire Automated Biomass Burning Algorithm (WFABBA). Available

online: http://wfabba.ssec.wisc.edu/index.html (accessed on 4 April 2021).
117. JUPEM Permohonan Lesen Hak Cipta/Membeli Dokumen Geospatial Terperingkat. 2021. Available online: https://www.jupem.

gov.my/jupem18a/assets/uploads/images/contents/20220406103724-6ad21-borang-1_edit.pdf (accessed on 28 August 2022).

http://doi.org/10.1088/1755-1315/504/1/012017
https://www.astroawani.com/berita-malaysia/kebakaran-hutan-simpan-pekan-tak-membimbangkan-186979
https://www.bharian.com.my/berita/wilayah/2021/03/795145/lebih-300-hektar-hutan-di-pahang-terbakar
https://www.utusanborneo.com.my/2018/10/01/kebakaran-hutan-simpan-pekan-anggota-bomba-jabatan-perhutanan-terkandas
https://www.utusanborneo.com.my/2018/10/01/kebakaran-hutan-simpan-pekan-anggota-bomba-jabatan-perhutanan-terkandas
https://www.malaysiakini.com/news/339616
https://www.sinarharian.com.my/article/125841/BERITA/Semasa/994-kes-kebakaran-terbuka-di-Selangor-sejak-Januari
https://www.sinarharian.com.my/article/125841/BERITA/Semasa/994-kes-kebakaran-terbuka-di-Selangor-sejak-Januari
https://www.utusan.com.my/berita/2020/07/kebakaran-hutan-di-selangor-meningkat/
https://www.utusan.com.my/berita/2020/07/kebakaran-hutan-di-selangor-meningkat/
https://www.utusanborneo.com.my/2020/03/29/pasukan-kru-api-jps-bertungkus-lumus-padam-kebakaran-hutan-simpan-binsuluk
https://www.utusanborneo.com.my/2020/03/29/pasukan-kru-api-jps-bertungkus-lumus-padam-kebakaran-hutan-simpan-binsuluk
https://www.bharian.com.my/berita/nasional/2016/04/141727/kualiti-udara-pantai-barat-sabah-semakin-pulih
https://www.bharian.com.my/berita/nasional/2016/04/141727/kualiti-udara-pantai-barat-sabah-semakin-pulih
http://doi.org/10.1007/s00267-012-9961-z
http://doi.org/10.1038/s41598-019-56967-x
http://www.ncbi.nlm.nih.gov/pubmed/31992723
http://doi.org/10.1016/j.rse.2020.111702
https://earthexplorer.usgs.gov/
http://doi.org/10.1002/ldr.976
https://ladsweb.modaps.eosdis.nasa.gov/archive/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://e4ftl01.cr.usgs.gov/MOLA/
https://modis.gsfc.nasa.gov/data/dataprod/
https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data/modis-nrt
https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data/modis-nrt
https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
http://lpdaac.usgs.gov/products/ast_08v003/
http://due.esrin.esa.int/page_wfa.php
http://asmc.asean.org/asmc-haze-hotspot-annual-new#Hotspot
http://asmc.asean.org/asmc-haze-hotspot-annual-new#Hotspot
http://wfabba.ssec.wisc.edu/index.html
https://www.jupem.gov.my/jupem18a/assets/uploads/images/contents/20220406103724-6ad21-borang-1_edit.pdf
https://www.jupem.gov.my/jupem18a/assets/uploads/images/contents/20220406103724-6ad21-borang-1_edit.pdf


Forests 2022, 13, 1405 35 of 37

118. JUPEM Information Mapping Data Rate (Fi Act 1951: Fees and Payments (Services, Survey and Mapping Data and Reproduction)).
2010. Available online: https://www.jupem.gov.my/page/national-mapping-spatial-data-committee-jpdsn-1 (accessed on
28 August 2022).

119. MYSA Remote Sensing Data Application Procedure—Malaysian Space Agency (MYSA). Available online: http://www.mysa.gov.
my/remote-sensing-data-application-procedure/ (accessed on 5 April 2021).

120. MYSA Remote Sensing Satellite Data Price List—Malaysian Space Agency (MYSA). Available online: http://www.mysa.gov.my/
remote-sensing-satellite-data-price-list/ (accessed on 5 April 2021).

121. MYSA MYSA|MYSA Free Satellites Data. Available online: http://rsopendata.mysa.gov.my/mrsa_ctlg_dld.php (accessed on
5 April 2021).

122. Malaysia Government Portal Data Terbuka (One Stop Center for Public Data). Available online: https://www.data.gov.my/
(accessed on 5 April 2021).

123. Department of Statistics Malaysia Department of Statistics Malaysia Open Data. Available online: https://www.dosm.gov.my/
v1/index.php?r=column3/accordion&menu_id=amZNeW9vTXRydTFwTXAxSmdDL1J4dz09 (accessed on 5 April 2021).

124. Malaysia Meteorological Department MetMalaysia: Ramalan Cuaca Negeri. Available online: https://www.met.gov.my/
forecast/weather/state?lang=en (accessed on 6 April 2021).

125. Malaysian Meteorological Department Malaysian Meteorological Department Web Service API. Available online: https://api.
met.gov.my/ (accessed on 5 April 2021).

126. National Centers for Environmental Information Daily Weather Records|Data Tools|Climate Data Online (CDO)|National
Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/records (accessed on
5 April 2021).

127. Department of Agriculture Application of Map/Stage Geospatial Document. Available online: http://www.doa.gov.my/index.
php/pages/view/361 (accessed on 5 April 2021).

128. National Geospatial Centre Malaysia Prosedur Permohonan Data Geospatial|MyGeoportal. Available online: http://www.
mygeoportal.gov.my/ms/prosedur-permohonan-data-geospatial (accessed on 5 April 2021).

129. Soille, P.; Burger, A.; De Marchi, D.; Kempeneers, P.; Rodriguez, D.; Syrris, V.; Vasilev, V. A Versatile Data-Intensive Computing
Platform for Information Retrieval from Big Geospatial Data. Futur. Gener. Comput. Syst. 2018, 81, 30–40. [CrossRef]

130. Pebesma, E.; Wagner, W.; Schramm, M.; Von Beringe, A.; Paulik, C.; Neteler, M.; Reiche, J.; Verbesselt, J.; Dries, J.; Goor, E.; et al.
OpenEO—A Common, Open Source Interface Between Earth Observation Data Infrastructures and Front-End Applications; European
Commission: Viena, Austria, 2017; Volume 57.

131. Wang, L.; Ma, Y.; Yan, J.; Chang, V.; Zomaya, A.Y. PipsCloud: High Performance Cloud Computing for Remote Sensing Big Data
Management and Processing. Futur. Gener. Comput. Syst. 2018, 78, 353–368. [CrossRef]

132. United Nations Food and Agriculture Organization Sepal Repository. Available online: https://github.com/openforis/sepal
(accessed on 19 July 2021).

133. Sinergise Sentinel Hub. Available online: https://www.sentinel-hub.com/ (accessed on 19 July 2021).
134. Chew, Y.J.; Ooi, S.Y.; Pang, Y.H. Data Acquisition Guide for Forest Fire Risk Modelling in Malaysia. In Proceedings of the 2021 9th

International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 3–5 August 2021;
pp. 633–638. [CrossRef]

135. Cortez, P.; Morais, A. A Data Mining Approach to Predict Forest Fires Using Meteorological Data. In Proceedings of the
New Trends in Artificial Intelligence, 13th EPIA 2007, Portugese Conference on Artificial Intelligence, Guimaraes, Portugal,
3–7 December 2007; pp. 512–523.

136. Maeda, E.E.; Formaggio, A.R.; Shimabukuro, Y.E.; Arcoverde, G.F.B.; Hansen, M.C. Predicting Forest Fire in the Brazilian Amazon
Using MODIS Imagery and Artificial Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 265–272. [CrossRef]

137. Cheney, N.P.; Gould, J.S.; McCaw, W.L.; Anderson, W.R. Predicting Fire Behaviour in Dry Eucalypt Forest in Southern Australia.
For. Ecol. Manag. 2012, 280, 120–131. [CrossRef]

138. Pham, B.T.; Jaafari, A.; Avand, M.; Al-Ansari, N.; Dinh Du, T.; Yen, H.P.H.; Van Phong, T.; Nguyen, D.H.; Van Le, H.; Mafi-
Gholami, D. Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry 2020,
12, 1022. [CrossRef]

139. Stojanova, D.; Panov, P.; Kobler, A.; Džeroski, S.; Taškova, K. Learning to Predict Forest Fires with Different Data Mining
Techniques. In Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD 2006), Ljubljana, Slovenia,
17 October 2006; pp. 255–258.

140. Bui, D.T.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A Hybrid Artificial Intelligence Approach Using
GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at a Tropical
Area. Agric. For. Meteorol. 2017, 233, 32–44.

141. Bui, D.T.; Hoang, N.-D.; Samui, P. Spatial Pattern Analysis and Prediction of Forest Fire Using New Machine Learning Approach
of Multivariate Adaptive Regression Splines and Differential Flower Pollination Optimization: A Case Study at Lao Cai Province
(Viet Nam). J. Environ. Manag. 2019, 237, 476–487.

142. Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Pompa-
García, M.; Rodríguez-Trejo, D.A.; Carrillo-Parra, A.; González-Cabán, A. Predicting Forest Fire Kernel Density at Multiple Scales
with Geographically Weighted Regression in Mexico. Sci. Total Environ. 2020, 718, 137313. [CrossRef]

https://www.jupem.gov.my/page/national-mapping-spatial-data-committee-jpdsn-1
http://www.mysa.gov.my/remote-sensing-data-application-procedure/
http://www.mysa.gov.my/remote-sensing-data-application-procedure/
http://www.mysa.gov.my/remote-sensing-satellite-data-price-list/
http://www.mysa.gov.my/remote-sensing-satellite-data-price-list/
http://rsopendata.mysa.gov.my/mrsa_ctlg_dld.php
https://www.data.gov.my/
https://www.dosm.gov.my/v1/index.php?r=column3/accordion&menu_id=amZNeW9vTXRydTFwTXAxSmdDL1J4dz09
https://www.dosm.gov.my/v1/index.php?r=column3/accordion&menu_id=amZNeW9vTXRydTFwTXAxSmdDL1J4dz09
https://www.met.gov.my/forecast/weather/state?lang=en
https://www.met.gov.my/forecast/weather/state?lang=en
https://api.met.gov.my/
https://api.met.gov.my/
https://www.ncdc.noaa.gov/cdo-web/datatools/records
http://www.doa.gov.my/index.php/pages/view/361
http://www.doa.gov.my/index.php/pages/view/361
http://www.mygeoportal.gov.my/ms/prosedur-permohonan-data-geospatial
http://www.mygeoportal.gov.my/ms/prosedur-permohonan-data-geospatial
http://doi.org/10.1016/j.future.2017.11.007
http://doi.org/10.1016/j.future.2016.06.009
https://github.com/openforis/sepal
https://www.sentinel-hub.com/
http://doi.org/10.1109/ICoICT52021.2021.9527495
http://doi.org/10.1016/j.jag.2009.03.003
http://doi.org/10.1016/j.foreco.2012.06.012
http://doi.org/10.3390/sym12061022
http://doi.org/10.1016/j.scitotenv.2020.137313


Forests 2022, 13, 1405 36 of 37

143. Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-Metaheuristic Ensembles for Spatial Assessment of Forest
Fire Susceptibility. J. Environ. Manag. 2020, 260, 109867. [CrossRef]

144. Sevinc, V.; Kucuk, O.; Goltas, M. A Bayesian Network Model for Prediction and Analysis of Possible Forest Fire Causes. For. Ecol.
Manag. 2020, 457, 117723. [CrossRef]

145. Jiao, L.; Zhao, J. A Survey on the New Generation of Deep Learning in Image Processing. IEEE Access 2019, 7, 172231–172263.
[CrossRef]

146. Zhang, Q.; Xu, J.; Xu, L.; Guo, H. Deep Convolutional Neural Networks for Forest Fire Detection. In Proceedings of the 2016
International Forum on Management, Education and Information Technology Application, Guangzhou, China, 30–31 January
2016; Atlantis Press: Amsterdam, The Netherlands, 2016.

147. Bilikent SPG Computer Vision Based Fire Detection Dataset. Available online: http://signal.ee.bilkent.edu.tr/VisiFire/ (accessed
on 5 November 2021).

148. Muhammad, K.; Ahmad, J.; Baik, S.W. Early Fire Detection Using Convolutional Neural Networks during Surveillance for
Effective Disaster Management. Neurocomputing 2018, 288, 30–42. [CrossRef]

149. Hodges, J.L.; Lattimer, B.Y. Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technol. 2019,
55, 2115–2142. [CrossRef]

150. Wang, Y.; Dang, L.; Ren, J. Forest Fire Image Recognition Based on Convolutional Neural Network. J. Algorithms Comput. Technol.
2019, 13, 1748302619887689. [CrossRef]

151. Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of
China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [CrossRef]

152. Jiao, Z.; Zhang, Y.; Xin, J.; Mu, L.; Yi, Y.; Liu, H.; Liu, D. A Deep Learning Based Forest Fire Detection Approach Using UAV and
YOLOv3. In Proceedings of the 2019 1st International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China,
23–27 July 2019; pp. 1–5.

153. Wang, S.; Zhao, J.; Ta, N.; Zhao, X.; Xiao, M.; Wei, H. A Real-Time Deep Learning Forest Fire Monitoring Algorithm Based on an
Improved Pruned + KD Model. J. Real-Time Image Process. 2021, 18, 2319–2329. [CrossRef]

154. Son, B.; Her, Y.; Kim, J.-G. A Design and Implementation of Forest-Fires Surveillance System Based on Wireless Sensor Networks
for South Korea Mountains. Int. J. Comput. Sci. Netw. Secur. 2006, 6, 124–130.

155. Hartung, C.; Han, R.; Seielstad, C.; Holbrook, S. FireWxNet: A Multi-Tiered Portable Wireless System for Monitoring Weather
Conditions in Wildland Fire Environments. In Proceedings of the 4th International Conference on Mobile Systems, Applications
and Services, Uppsala, Sweden, 19–22 June 2006; pp. 28–41.

156. Okokpujie, K.O.; John, S.N.; Noma-Osaghae, E.; Okokpujie, I.P.; Okonigene, R.E. A Wireless Sensor Network Based Fire Protection
System with Sms Alerts. Int. J. Mech. Eng. Technol. 2019, 10, 44–52.

157. Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling Spatial Patterns of Fire Occurrence in
Mediterranean Europe Using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [CrossRef]

158. Pu, R.; Li, Z.; Gong, P.; Csiszar, I.; Fraser, R.; Hao, W.-M.; Kondragunta, S.; Weng, F. Development and Analysis of a 12-Year Daily
1-Km Forest Fire Dataset across North America from NOAA/AVHRR Data. Remote Sens. Environ. 2007, 108, 198–208. [CrossRef]

159. Lestari, A.; Rumantir, G.; Tapper, N. A Spatio-Temporal Analysis on the Forest Fire Occurrence in Central Kalimantan, Indonesia.
In Proceedings of the 20th Pacific Asia Conference on Information Systems, Chiayi, Taiwan, 27 June 2016; p. 90.

160. Page, S.E.; Hooijer, A. In the Line of Fire: The Peatlands of Southeast Asia. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150176.
[CrossRef]

161. Kosko, B. Fuzzy Cognitive Maps. Int. J. Man. Mach. Stud. 1986, 24, 65–75. [CrossRef]
162. Yao, J.; Raffuse, S.M.; Brauer, M.; Williamson, G.J.; Bowman, D.M.J.S.; Johnston, F.H.; Henderson, S.B. Predicting the Minimum

Height of Forest Fire Smoke within the Atmosphere Using Machine Learning and Data from the CALIPSO Satellite. Remote Sens.
Environ. 2018, 206, 98–106. [CrossRef]

163. Pourtaghi, Z.S.; Pourghasemi, H.R.; Aretano, R.; Semeraro, T. Investigation of General Indicators Influencing on Forest Fire and
Its Susceptibility Modeling Using Different Data Mining Techniques. Ecol. Indic. 2016, 64, 72–84. [CrossRef]

164. Dueben, P.; Schultz, M.G.; Chantry, M.; Gagne, D.J.; Hall, D.M.; McGovern, A. Challenges and Benchmark Datasets for Machine
Learning in the Atmospheric Sciences: Definition, Status and Outlook. Artif. Intell. Earth Syst. 2022, 1, 1–29. [CrossRef]

165. Mangasarian, O.L.; Wolberg, W.H. Cancer Diagnosis via Linear Programming; University of Wisconsin-Madison Department of
Computer Sciences: Madison, WI, USA, 1990.

166. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet
Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

167. Rasp, S.; Dueben, P.D.; Scher, S.; Weyn, J.A.; Mouatadid, S.; Thuerey, N. WeatherBench: A Benchmark Data Set for Data-driven
Weather Forecasting. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002203. [CrossRef]

168. Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive Modeling of Wildfires: A New Dataset and Machine Learning Approach.
Fire Saf. J. 2019, 104, 130–146. [CrossRef]

169. Copernicus Emergency Management Service. Available online: https://emergency.copernicus.eu/ (accessed on 10 August 2022).
170. European Forest Fire Information System. Available online: https://effis.jrc.ec.europa.eu/ (accessed on 10 August 2022).
171. Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A Spatio-Temporal Active-Fire Clustering Approach for Global Burned Area

Mapping at 250 m from MODIS Data. Remote Sens. Environ. 2020, 236, 111493. [CrossRef]

http://doi.org/10.1016/j.jenvman.2019.109867
http://doi.org/10.1016/j.foreco.2019.117723
http://doi.org/10.1109/ACCESS.2019.2956508
http://signal.ee.bilkent.edu.tr/VisiFire/
http://doi.org/10.1016/j.neucom.2017.04.083
http://doi.org/10.1007/s10694-019-00846-4
http://doi.org/10.1177/1748302619887689
http://doi.org/10.1007/s13753-019-00233-1
http://doi.org/10.1007/s11554-021-01124-9
http://doi.org/10.1016/j.foreco.2012.03.003
http://doi.org/10.1016/j.rse.2006.02.027
http://doi.org/10.1098/rstb.2015.0176
http://doi.org/10.1016/S0020-7373(86)80040-2
http://doi.org/10.1016/j.rse.2017.12.027
http://doi.org/10.1016/j.ecolind.2015.12.030
http://doi.org/10.1175/AIES-D-21-0002.1
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1029/2020MS002203
http://doi.org/10.1016/j.firesaf.2019.01.006
https://emergency.copernicus.eu/
https://effis.jrc.ec.europa.eu/
http://doi.org/10.1016/j.rse.2019.111493


Forests 2022, 13, 1405 37 of 37

172. Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and
Product. Remote Sens. Environ. 2018, 217, 72–85. [CrossRef] [PubMed]

173. Artés, T.; Oom, D.; De Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the
Analysis of Fire Regimes and Fire Behaviour. Sci. Data 2019, 6, 296. [CrossRef] [PubMed]

174. De, D.K.; Olawole, O.C.; Joel, E.S.; Ikono, U.I.; Oyedepo, S.O.; Olawole, O.F.; Obaseki, O.; Oduniyi, I.; Omeje, M.; Ayoola, A.A.
Twenty-First Century Technology of Combating Wildfire. IOP Conf. Ser. Earth Environ. Sci. 2019, 331, 12015. [CrossRef]

175. Sullivan, A.L. Wildland Surface Fire Spread Modelling, 1990–2007. 1: Physical and Quasi-Physical Models. Int. J. Wildl. Fire 2009,
18, 349–368. [CrossRef]

176. Koo, E.; Pagni, P.; Woycheese, J.; Stephens, S.; Weise, D.; Huff, J. A Simple Physical Model for Forest Fire Spread. Fire Saf. Sci.
2005, 8, 851–862. [CrossRef]

177. Coen, J. Some Requirements for Simulating Wildland Fire Behavior Using Insight from Coupled Weather—Wildland Fire Models.
Fire 2018, 1, 6. [CrossRef]

178. Yeoh, G.H.; Yuen, K.K. Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice; Butterworth-Heinemann:
Oxford, UK, 2009; ISBN 0080570038.

179. Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical Simulation and Experiments of Burning Douglas Fir Trees.
Combust. Flame 2009, 156, 2023–2041. [CrossRef]

180. Lin, Y.; Delichatsios, M.A.; Zhang, X.; Hu, L. Experimental Study and Physical Analysis of Flame Geometry in Pool Fires under
Relatively Strong Cross Flows. Combust. Flame 2019, 205, 422–433. [CrossRef]

181. Morvan, D. A Numerical Study of Flame Geometry and Potential for Crown Fire Initiation for a Wildfire Propagating through
Shrub Fuel. Int. J. Wildl. Fire 2007, 16, 511–518. [CrossRef]

182. Mutthulakshmi, K.; Wee, M.R.E.; Wong, Y.C.K.; Lai, J.W.; Koh, J.M.; Acharya, U.R.; Cheong, K.H. Simulating Forest Fire Spread
and Fire-Fighting Using Cellular Automata. Chin. J. Phys. 2020, 65, 642–650. [CrossRef]

183. Alexandridis, A.; Russo, L.; Vakalis, D.; Bafas, G.V.; Siettos, C.I. Wildland Fire Spread Modelling Using Cellular Automata:
Evolution in Large-Scale Spatially Heterogeneous Environments under Fire Suppression Tactics. Int. J. Wildl. Fire 2011, 20, 633–647.
[CrossRef]

184. Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.
Application of Cellular Automata and Markov-Chain Model in Geospatial Environmental Modeling—A Review. Remote Sens.
Appl. Soc. Environ. 2017, 5, 64–77. [CrossRef]

http://doi.org/10.1016/j.rse.2018.08.005
http://www.ncbi.nlm.nih.gov/pubmed/30220740
http://doi.org/10.1038/s41597-019-0312-2
http://www.ncbi.nlm.nih.gov/pubmed/31784525
http://doi.org/10.1088/1755-1315/331/1/012015
http://doi.org/10.1071/WF06143
http://doi.org/10.3801/IAFSS.FSS.8-851
http://doi.org/10.3390/fire1010006
http://doi.org/10.1016/j.combustflame.2009.06.015
http://doi.org/10.1016/j.combustflame.2019.04.025
http://doi.org/10.1071/WF06010
http://doi.org/10.1016/j.cjph.2020.04.001
http://doi.org/10.1071/WF09119
http://doi.org/10.1016/j.rsase.2017.01.005

	Introduction 
	Related Forest Fire Studies in Malaysia 
	Root Causes and Impacts of Forest Fire 
	Fire Susceptibility Mapping Utilising Remote Sensing 
	Other Efforts Associated with Forest Fire 
	Hotspot Locations in Malaysia Based on Previous Studies 
	Factors Affecting Forest Fire in Malaysia 

	Type of Data Utilised for Forest Fire Risk Modelling in Malaysia 
	Discussion on the Application of Data for Forest Fire Detection 

	Global View of Machine Learning and Forest Fire 
	Challenges and Future Direction of Forest Fire Efforts in Malaysia 
	Proposed General Methodology to Utilise Remote Sensing Data for Forest Fire Efforts in Malaysia 
	Forest Fire Benchmark Datasets 
	Overview of Forest Fire Detection and Monitoring 
	Other Relevant Studies Commonly Employed in Forest Fire Domain 
	Conclusions 
	References

