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ABSTRACT

Current research on deep learning for medical image seg-
mentation exposes their limitations in learning either global
semantic information or local contextual information. To
tackle these issues, a novel network named SegTransVAE is
proposed in this paper. SegTransVAE is built upon encoder-
decoder architecture, exploiting transformer with the varia-
tional autoencoder (VAE) branch to the network to recon-
struct the input images jointly with segmentation. To the best
of our knowledge, this is the first method combining the suc-
cess of CNN, transformer, and VAE. Evaluation on various
recently introduced datasets shows that SegTransVAE out-
performs previous methods in Dice Score and 95%-Haudorff
Distance while having comparable inference time to a sim-
ple CNN-based architecture network. The source code is
available at: https://github.com/itruonghai/
SegTransVAE.

Index Terms— Transformer, Variational Autoencoder,
Medical Image Segmentation, MRI brain tumor, CT kidney.

1. INTRODUCTION

Since the introduction of U-Net [1], many state-of-the-art
deep neural networks for medical image segmentation have
been proposed. CNN-based segmentation networks such as
U-Net [1], and SegresnetVAE [2] are developed on a symmet-
ric encoder-decoder architecture with skip connection, which
combines high resolution features from the contracting path
with the upsampled output. Then, this information can then
be learned by a successive convolution layer to assemble a
more precise output. However, they pose their limitation on
learning global context and long-range spatial dependencies.
As a result, this raises challenges to learn global semantic
information which plays a critical role in segmentation tasks.

Transformer-based models in the natural language pro-
cessing (NLP) domain have achieved state-of-the-art results.
Inspired by attention mechanisms [3] in NLP, recent research
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such as UNETR [4] surpasses the aforementioned limita-
tion in segmentation task by exploiting this mechanism. The
self-attention mechanism in the transformers enables them
to dynamically highlight the crucial features of sequences
and learn their long-range dependencies. UNETR [4] lever-
ages the power of transformers for volumetric medical image
segmentation. A pure transformer is utilized as the encoder
to learn contextual information from the embedded input
patches. The extracted representations from the transformer
encoder are merged with a decoder via skip connections at
multiple resolutions to predict segmentation outputs. How-
ever, local structures are ignored when directly splitting im-
ages into patches as tokens for transformer, as mentioned
in the research of Yuan et al. [5]. Moreover, UNETR [4]
lacks inductive bias such as translation equivariance and lo-
cality, and therefore does not generalize well when trained on
insufficient amounts of data.

In this work, a novel network named SegTransVAE is
proposed to complement the drawbacks of existing studies.
SegTransVAE is built upon an encoder-decoder architecture
with the variational autoencoder (VAE) branch as the encoder
regularization to the network to reconstruct the input images
jointly with segmentation. Thanks to VAE branch, the pro-
posed network can avoid the overfitting problem. First, the
encoder of the network uses 3D CNN to extract the volumetric
spatial features and downsample the input 3D images, which
effectively captures the local 3D context information. Second,
each volume is reshaped into a vector and fed into the trans-
former encoder for global feature modeling. Third, the 3D
CNN decoder takes the feature embedding from transformer
and performs progressive upsampling while the extracted rep-
resentations from the encoder are concatenated with a decoder
via skip connections at multiple resolutions to predict seg-
mentation outputs.

2. METHOD

The architecture of the proposed method is shown in Fig.1.
This approach follows encoder-decoder architecture with an
asymmetrically larger encoder to extract image features, the
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transformer encoder to model the long-distance dependency
in a global space and a smaller decoder to construct the seg-
mentation mask. Also, an additional VAE branch is added to
the endpoint of the transformer to reconstruct source images.

2.1. Encoder component

Inspired by ResNet [6], in this research, a modified-Resnet
block is proposed in which consists of two convolutions with
instance normalization [7] and Leaky ReLU, followed by ad-
ditive identity skip connection. This modified-ResNet block
suffers from sparse gradients and shows a significant qual-
itative improvement. The encoder part uses the proposed
modified-ResNet blocks. In order be able to model the image
local context information across spatial and depth dimensions
for volumetric segmentation, the modified-ResNet blocks
are stacked with downsampling to gradually encode input
X ∈ RC×H×W×D images into low-resolution and high-level
feature representation F ∈ RK×H

8 ×
W
8 ×

D
8 . After that, this

representation is fed into the transformer encoder to further
learn long-range correlations with a global receptive field.

2.2. Transformer component

2.2.1. Feature embedding

A linear projection is used to project the feature map F from
K dimensions to a d dimensional embedding space f in order
to ensure a comprehensive representation of each volume. In
order to encode the location information, the learnable posi-
tion embeddings [8] are used and fused with the d×N feature
map f by direct addition, where N = H

8 ×
W
8 ×

D
8 . This cre-

ates the feature embeddings as follows:

z0 = f + PE =W × F + PE, (1)

where the linear projection matrix is W , the position em-
beddings is PE ∈ Rd×N , and the feature embeddings is
z0 ∈ Rd×N .

2.2.2. Transformer encoder

A stack of transformer layers [9] is utilized to construct trans-
former encoder in which each transformer layer consisting
of Multi-Head Attention (MHA) and Feed Forward Network
(FFN) sublayers according to

z′l = MHA(LN(zl−1)) + zl−1, (2)

zl = FFN(LN(z′l)) + z′l, (3)

where LN refers to the layer normalization and zl denotes the
output of l-th transformer layer.

2.2.3. Feature mapping

A feature mapping module is added to project the sequence
data back to a standard feature map. Then, this feature map
is fed as the input dimension of 3D CNN decoder. In feature
mapping module, the output sequence of transformer is zL ∈
Rd×N is first reshaped into d×H

8 ×
W
8 ×

D
8 then a convolution

block is employed to reduce the channel dimension from d to
K. Finally a feature map Z ∈ RK×H

8 ×
W
8 ×

D
8 is obtained.

2.3. Decoder component

The encoder also uses modified-ResNet blocks to perform
feature upsampling and pixel-level segmentation, but with a
single block per spatial level. Each decoder level begins with
an upsizing to reduce the number of features by a factor of 2
and double the spatial dimension, followed by a concatena-
tion of encoder output of the equivalent spatial level. The end
of the decoder has the same spatial size as the original image
and the number of features equal to the initial input feature
size, followed by 1× 1× 1 convolution into 3 channels and a
sigmoid function.

2.4. VAE component

Variational autoencoder (VAE) is added to reconstruct the
volumetric input segmentation. The main role of VAE branch
is to avoid the overfitting problem and to increase the network
generalization. From the encoder endpoint output, the input
is reduced to a lower-dimensional space of 256 in which 128
represents for mean, and the rest represents for standard de-
viation. A sample is drawn from the Gaussian distribution
with the given mean and standard deviation N (µ, σ2), then
reconstructed into the input image dimensions following the
same architecture as the decoder.

2.5. Loss Function

Let y and ŷ be the ground truth of segmentation and the pre-
diction of the model, respectively. To avoid training data hav-
ing no label as ŷ = y = 0, ε is added into numerator and
denominator. Dice Loss is as follows

LDice(y, ŷ) = 1− 2ŷy + ε

ŷ + y + ε
. (4)

VAE loss is a total loss of reconstruction loss on VAELRec
branch and standard VAE penalty term LKL. Let xreconstruction
and x denote the reconstruction image and input image, re-
spectively.

In this study, LRec is the mean square error over each vox-
els:

LRec = ‖xreconstruction − x‖22. (5)

LKL is a Kullback–Leibler divergence between the esti-
mated normal distribution N (µ, σ2) and a prior distribution
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Fig. 1: Overview architecture of proposed method.

N (0, 1) as

LKL =
1

Ntotal voxels

∑
µ2 + σ2 − log σ2 − 1, (6)

where Ntotal voxels is the total number of image voxels.
The final loss function is the combination of Dice Loss

and VAE Loss as follow

L = LDice + 0.1× (LRec + LKL). (7)

A hyper-parameter (regularization factor weight) of 0.1 is
chosen to provide a good balance between dice loss and VAE
loss as [2].

3. EXPERIMENT

3.1. Experimental Setup

3.1.1. Dataset

The proposed method is evaluated on newly introduced
BraTS 2021 [10] and KiTS19 [11]. BraTS 2021 [10] pro-
vides a 3D brain MRI dataset with tumor segmentation labels
annotated. The training dataset comprises 1251 cases for
training and 219 for validation rigidly aligned and resampled
to a uniform isotropic resolution of 1mm3. The input im-
age size is 240 × 240 × 155. The KiTS19 [11] dataset is a
collection of segmented CT imaging and treatment outcomes
for 300 patients treated with partial or radical nephrectomy
between 2010 and 2018.

Since the validation data of BraTS 2021 is private and
it is not provided the ground truth, in this evaluation, 1251
cases is split as 1000 cases for training/validation and 251

cases for testing. Due to the small number of training im-
ages in KiTS19 [11], five-fold cross-validation is chosen to
evaluate proposed method and conventional models on this
dataset. During training, the BraTS 2021 [10] input images
are cropped of size 128× 128× 128 while KiTS19 [11] input
images are cropped of size 128× 160× 256.

3.1.2. Evaluation Metrics

The metrics Dice score and 95% - Hausdorff distance (HD)
are used for quantitative evaluation.

3.2. Quantitative Results

3.2.1. BraTS 2021

Ground truth SegTransVAE SegresnetVAE 3D U-Net UNETR

Fig. 2: The visual comparison of BraTS segmentation results
where red, green, blue are the enhancing tumor, core tumor
and whole tumor, respectively.

In this experiment, the proposed method SegTransVAE is
compared with state-of-the-art 3D approaches including 3D
U-Net [12], UNETR [4], and SegresnetVAE [2]. Table 1 illus-
trates the Dice Score comparison between SegTransVAE and
previous methods. It is clear that SegTransVAE outperforms
previous research as it achieves the Dice Score of 85.48%,
90.42%, and 92.60% on ET, WT and TC, respectively. In
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Table 1: Dice Score and 95%-HD comparison on BraTS.

Method Dice Score (%) 95%-HD (mm)
ET WT TC ET WT TC

3D U-Net [12] 80.69 85.00 90.11 4.83 6.20 8.99
UNETR [4] 82.18 85.14 89.46 5.63 7.62 13.18

SegresnetVAE [2] 84.46 89.52 92.35 3.24 3.79 6.36
SegTransVAE 85.48 90.52 92.60 2.89 3.57 5.84

terms of 95% - Hausdorff Distance, Table 1 shows that Seg-
TransVAE also achieves considerable improvement. It is clear
that due to leveraging CNN for high-level features extract-
ing and transformer for global feature modeling, the proposed
method shows its significant improvement in segmentation. It
is obvious that in Fig. 2 SegTransVAE creates segmentation
masks of brain tumors more precisely and especially gener-
ates much better segmentation masks of the small tumor as
enhancing tumor.

3.2.2. KiTS 2019

Ground truth SegTransVAE SegresnetVAE 3D U-Net UNETR

Fig. 3: The visual comparison of KiTS segmentation results
where red and green are tumor and kidney, respectively.

Table 2: Dice Score and 95%-HD comparison of Kidney.

Method Kidney
Dice Score (%) 95%-HD (mm)

3D U-Net [12] 92.37 ± 4.54 6.32 ± 1.83
UNETR [4] 91.86 ± 1.29 8.84 ± 1.78

SegresnetVAE [2] 94.86 ± 0.69 4.28 ± 0.97
SegTransVAE 95.28 ± 0.85 3.28 ± 1.19

Table 3: Dice Score and 95%-HD comparison of Tumor.

Method Tumor
Dice Score (%) 95%-HD (mm)

3D U-Net [12] 60.41 ± 4.14 42.02 ± 4.05
UNETR [4] 34.87 ± 3.80 60.43 ± 9.43

SegresnetVAE [2] 63.67 ± 4.39 25.86 ± 3.24
SegTransVAE 66.31 ± 4.41 24.61 ± 2.49

The proposed method is also evaluated on KiTS 2019
dataset [11]. Tables 2 and 3 illustrate that SegTransVAE
outperforms in tumor segmentation and shows comparable
results in kidney segmentation of the conventional methods

as 3D U-Net [12], UNETR [4], and SegresnetVAE [2]. In
addition, the proposed method shows better results in kid-
ney and tumor in every fold of the experiment. By utilizing
VAE, SegTransVAE shows its significant results in the little
availability of training data as KiTS 2019 dataset [11]. It is
clear that in Fig. 3, SegTransVAE shows better performance
in segmentation tumor and kidney.

3.3. Complexity

Table 4: Comparision of number of parameters and averaged
inference time.

Method #Params (M) Inference Time (s)
3D U-Net [12] 5.6 0.45

UNETR [4] 101.7 0.38
SegresnetVAE [2] 7.5 0.55

SegTransVAE 44.7 0.45

The complexity of SegTransVAE is compared to other
models in terms of the number of parameters and the aver-
aged inference time. The benchmark is calculated based on
the input size of (4, 128, 128, 128). Table 4 illustrates that
SegTransVAE has 44.7M parameters as compared to 101.7M
parameters of UNETR [4] which makes [4] hard to converge,
especially with high-resolution input. As a result, the pro-
posed method outperforms [4] at all evaluation metrics on
BraTS 2021 and KiTS19 datasets. Although CNN-based
segmentation methods as 3D U-Net and SegresnetVAE [2]
have fewer parameters than UNETR [4] and SegTransVAE,
the GFLOPs benchmarks of CNN-based methods are more
than UNETR and SegTransVAE, with the GFLOPs bench-
marks of 3D U-Net and SegresnetVAE are more than 1000
GFLOPs while those of UNETR and SegTransVAE are 358.8
GFLOPs and 607.5 GFLOPs, respectively. As a consequence,
SegTransVAE is less complex than the CNN-based network.
Moreover, SegTransVAE has the second-lowest averaged
inference time after UNETR and is comparable to simple
CNN-based architecture like 3D U-Net. Also, SegTransVAE
is 20% faster than SegresnetVAE.

4. CONCLUSION

A novel network named SegTransVAE is presented with the
goal of complement the disadvantages of existing studies and
the little availability of training data. SegTransVAE is built
upon encoder-decoder architecture with the variational au-
toencoder (VAE) branch to the network to reconstruct the
input images jointly with segmentation. transformer is also
used for global feature modeling. Experiments on two distinct
datasets demonstrate the superiority of the proposed method
when compared to state-of-the-art methods including 3D U-
Net [12], UNETR [4], and SegresnetVAE [2].
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