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Abstract—Sleep apnea (SA) is a type of sleep disorder charac-
terized by snoring and chronic sleeplessness, which can lead to
serious conditions such as high blood pressure, heart failure, and
cardiomyopathy (enlargement of the muscle tissue of the heart).
The electrocardiogram (ECG) plays a critical role in identifying
SA since it might reveal abnormal cardiac activity. Recent
research on ECG-based SA detection has focused on feature
engineering techniques that extract specific characteristics from
multiple-lead ECG signals and use them as classification model
inputs. In this study, a novel method of feature extraction which
based on the detection of S peaks is proposed to enhance the
detection of adjacent SA segments using a single-lead ECG. In
particular, ECG features collected from a single lead (V2) are
used to identify SA episodes. On the extracted features, a CNN
model is trained to detect SA. Experimental results demonstrate
that the proposed method detects SA from single-lead ECG data
is more accurate than existing state-of-the-art methods, with
91.13% classification accuracy, 92.58% sensitivity, and 88.75%
specificity. Moreover, the further usage of features associated with
the S peaks enhances the classification accuracy by 0.85%. Our
findings indicate that the proposed machine learning system has
the potential to be an effective method for detecting SA episodes.

I. INTRODUCTION

Sleep apnea (SA) is the most prevalent breathing problem
associated with sleep [1]. It causes people to repeatedly
stop and start breathing during sleep. There are various
types of sleep apnea, but obstructive sleep apnea is the most
prominent, which occurs when upper airway muscles relax
during sleep and obstruct the airway, preventing adequate
airflow [1]. Patients’ breathing may stop for 10 seconds or
longer before the reflexes kick in and then resume breathing.
Sleep apnea affects approximately 3% of normal-weight
adults, but over 20% of obese individuals, and in general,
men are more susceptible to sleep apnea than women [2].

Sleep apnea is frequently associated with heart disease
and metabolic disorders such as diabetes [3]. Several studies
have demonstrated a link between sleep apnea and health
issues such as type 2 diabetes, strokes, heart attacks, and
even a shorter lifespan [3]–[6]. It is essential to diagnose
and detect sleep apnea in order to avoid long-term health
repercussions. The questionnaire, which includes the STOP-
Bang Questionnaire [7], [8] and Berline Questionnaire [9], is
one method for screening patients at risk for SA syndrome.
The gold standard for diagnosing sleep-related breathing
disorders, however, is polysomnography — a method

for collecting physiologic parameters during sleep [10].
A polysomnogram (PSG) is a diagnostic test that uses
electroencephalogram (EEG), electrooculogram (EOG),
electromyogram (EMG), electrocardiogram (ECG), and pulse
oximetry, in addition to airflow and respiratory effort, to
identify the underlying reasons of sleep abnormalities [10].
However, this diagnostic procedure is time-consuming,
expensive, and inconvenient. Patients must be connected to at
least 22 electrodes for several nights in order to measure 11
channels of sleep signals in the laboratory using specialized
equipment [11]. This is a barrier for patients to independently
install and use the device at home. Moreover, to diagnose a
patient, physicians must spend considerable time monitoring
and interpreting that data. Consequently, the PSG-based
technique is costly, complicated, and cumbersome. That
trigger a need for a simple, affordable, and user-friendly
alternative.

ECG is a viable tool for diagnosing and detecting
sleep apnea, which has lately generated considerable
interest. While some study groups have demonstrated that
a patient’s cardiovascular activity changes during sleep
apnea, resulting in typical ECG readings [12], [13], other
studies have demonstrated a link between patients with SA
and other cardiovascular disorders [14]. Thus, the Apnea-
ECG database [15] was developed by PhysioNet to spot
abnormalities in patients’ ECG signals when they have SA.
Various research use ECG data to identify SA episodes, some
of which employ traditional machine learning techniques
based on feature engineering. [16]–[22] and others applying
deep learning techniques [17], [23] for their classification
tasks. In [24], Li et al. suggested a technique for detecting SA
using ECG data, which is based on a deep neural network and
a Hidden Markov model (HMM). The approach used a sparse
auto-encoder to learn features, which were then fed into two
types of classifiers (SVM and ANN). In the per-segment
SA detection, they achieve 84.5% classification accuracy.
In [22], a Sgolay filter was applied to extract the Heart Rate
Variability (HRV) and the ECG-Derived Respiration (EDR),
then they were used for the training procedure to achieve
82.2% accuracy. Shen et al. introduced a method that based
on a weighted-loss time-dependent (WLTD) classification
model and a multiscale dilation attention 1-D convolutional
neural network (MSDA-1DCNN) [18]. That study obtained
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89.4% accuracy, 89.8% sensitivity and 89.1% specificity. A
novel method for diagnosing SA using a pre-trained AlexNet
model is reported in [21], in which per-minute segments of a
single-lead ECG recording are decomposed using continuous
wavelet transform (CWT) and subsequently 2D scalogram
images are created. Following that, a CNN based on a
deep learning algorithm is used to improve classification
performance.

While recent studies have sought to utilize ECG signals
as direct input to deep learning models, research using hand-
crafted features offers the potential for development because
of its transparency and interpretability. However, recent re-
search targeted at identifying SA by feature engineering only
consider the position of the R peak in the ECG, neglecting
the remaining four peaks (P, Q, S, and T). In this work, we
not only identify the R peak, but also determine the position
of the S peak and demonstrate that using the S peak enhances
the model’s performance. To reduce noise and signal artifacts,
we first applied a Finite Impulse Response (FIR) band-pass
filter to the signal. Afterward, features are extracted based on
the detection of the R and S peaks. We employ the feature
extraction approach given by Wang et al. [25], in which an
ECG record is divided into 5 minute-long segments, then the
R peak is detected. In this work, the detection of S peak is
added, followed by cubic interpolation to generate 900 values
for each feature. The extracted features were used as input
to the SE-ResNext 50 model to classify ECG signals with
and without SA. Our model achieved 91.13% classification
accuracy, 92.58% sensitivity, and 88.75% specificity. It has
been demonstrated that using additional features extracted
from S peaks improves accuracy by 0.85% compared to using
only R-peak-related features, which may indicate anomalies
in the S peak morphology during SA.

The rest of this paper is structured as follows. Methods
for ECG signal preprocessing, feature extraction, and classi-
fication are introduced in section II. Section III describes the
dataset and experimental setups. In Section III and V we report
experimental results and summarize the key findings of this
work.

II. METHODS

Methods for preprocessing the ECG signal, extracting hand-
crafted features, and developing a classifier for ECG with
and without SA are described in this section. The proposed
system’s schematic is depicted in Fig. 1.

A. Pre-processing data

ECG signal is frequently contaminated by a variety of noise
sources, such as 50/60 Hz interference from power lines,
EMG signal from muscles, motion artefacts, and variations
in electrode-skin contact. Therefore, a band-pass filter with a
frequency range of 8 to 12 Hz was applied to remove noise
and artifacts while maintaining the ECG signal’s QRS complex
properties [26]. The signals before and after passing the band-
pass filter are shown in Fig. 2a and Fig. 2b, respectively.

Fig. 1: An overview of the proposed approach for detecting
sleep apnea.

B. Feature extraction

In order to detect ECG segments in patients with SA,
abnormal characteristics of the ECG signal are extracted and
fed into a machine learning classifier. As low QRS voltage
and a leftward shift of the electrical axis may be associated
with certain ECG abnormalities of SA patients [27], features
associated to the QRS complex of the ECG signal can be
utilized to detect SA episodes efficiently. Previous studies
have classified ECG signals with and without SA based on
characteristics associated to R peaks, which has limitations
as other peaks are neglected (P, Q, S, T). To the best of our
knowledge, this study is the first to recover features linked
to S peaks and then then feed them into a CNN model in
order to distinguish between SA and non-SA ECG. We use
the following features for the classification purpose:

• Amplitude of R peaks
• Amplitude of S peaks
• RR interval (duration between two consecutive R peaks)
• SS interval (duration between consecutive S peaks)

The distributions of R-peak-related features and S-peak-
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Fig. 2: (a) The original signal of V2 lead ECG and (b) The
component falls within the 8 to 20 Hz frequency range of the
ECG signal.

related features are depicted in Fig. 3 and Fig. 4, respectively.
It is noteworthy that both R peaks and S peaks in SA ECG
have significantly lower amplitude than those in Non-SA ECG.
In addition, the RR and SS intervals of SA ECG are shorter
than those of non-SA ECG. These analyses suggest that these
features can be used to distinguish between SA and Non-SA.

To determine the positions of the R and S peaks, the
following steps are taken:

• R peaks detection: In order to determine the positions of
the R peaks and calculate the RR intervals, we first used
the Hamilton algorithm [28] to locate the R peaks. The
amplitude of the R peaks are then extracted, and their
positions are utilized to estimate the RR intervals. To
remove redundant R peaks due to false detection, a local
median filter proposed in [29] is applied. As the suspected
irregular RR intervals can be caused by either false R
peaks or missed R peaks, a lower bound and an upper
bound are defined based on the physiological range of RR
intervals in order to distinguish between these two types
of uninterpretable data points. For abnormal RR intervals
caused by false R peaks detection, the RR intervals in

(a)

(b)

Fig. 3: (a) The histogram of R peaks and (b) The histogram
of RR intervals.

a sliding window are compared to the lower bound and
rectified using either averaging or merging procedures.
For irregular RR intervals caused by a missed R wave
detection, the RR intervals in the current window are
divided into several equal values or averaged with the
neighboring window based on the specified criteria.

• S peaks detection: A method for detecting S peaks based
on the position of R peaks is proposed, in which, the
resulting S peak is the first negative peak (in the case of
a positive R peak). S peak detection algorithm is specified
in algorithm 1.

Fig. 5a and Fig. 5b display the location of the R and S
peaks found by the algorithm described above on the filtered
signal and the corresponding raw signal, respectively.

The effectiveness of the method for detecting R and S peaks
is evaluated by manually labeling the positions of R and S
peaks, followed by a comparison with the algorithm’s return
values. We randomly labeled 200 R peaks and 200 S peaks in
both classes (with and without SA); the accuracy and F1-score
of R and S peaks detection algorithms are reported in Table I.
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Fig. 4: (a) The histogram of S peaks and (b) The histogram
of SS intervals.

Algorithm 1 Algorithm for determining the ECG S peaks
function FIND S PEAKS(data ecg, R peaks)

num peaks ← R peaks.shape[0]
S peaks ← list()
N ←length(num peaks)
for index← 0 to N do

i ← R peaks[index]
cnt ← i
if cnt+1 >= data ecg.shape[0] then

break
end if
while data ecg[cnt] > data ecg[cnt+1] do

cnt ← cnt+1
if cnt >= data ecg.shape[0] then

break
end if

end while
S peaks.append(cnt)

end for
return S peaks

end function

(a)

(b)

Fig. 5: Positions R and S peaks are detected on the original
signal (a) and on the filtered signal (b).

All the statistics are performed on the PhysioNet Apnea–ECG
dataset.

TABLE I: R and S peaks detection results for filtered signal.

#beats TP TN FP FN Acc F1-score
R peaks 200 196 0 0 4 98% 98.99%
S peaks 200 196 0 0 4 98% 98.99%

Due to the disparity in units (amplitude in millivolts and
time interval in seconds), feature values are normalized to the
normal distribution before feeding them into the neural net-
work. Based on the findings on study [25], cubic interpolation
yielding 900 points of each feature every 5-minute segment is
utilized as an effective data augmentation technique.

C. Performance metrics

In this study, to evaluate the performance of the machine
learning classifier, we adopt the accuracy, sensitivity, speci-
ficity and F1-score as evaluation metrics.

• Sensitivity: Sensitivity of a class is defined as the ratio
of correctly classified samples to total number of samples



actually belonging to that class.

Sensitivity =
TP

TP + FN
(1)

• Specificity: Specificity is used to measure the proportion
of negatives that are correctly identified. It is defined as
the ratio of true negatives predicted to total number of
samples which belong to negative class.

Specificity =
TN

TN + FP
(2)

• Accuracy: It is defined as the ratio of number of correctly
classified samples to that of total samples.

Accuracy =
TP + TN

TP + FN + TN + FP
(3)

• F1-score: It is the harmonic mean of the precision and
recall.

F1-score =
2TP

2TP + FP + FN
(4)

where TP: True Positive, TN: True Negative, FP: False
Positive, FN: False Negative.

III. EXPERIMENTS

A. Dataset

The PhysioNet Apnea–ECG dataset used to study SA was
made available by Philipps University [15]. The dataset con-
sists of 70 single-lead ECG records (35 recordings from the
public set and 35 from the withheld set). Each recording
ranges in length from just under 7 hours to over 10 hours
and consists of a digitized ECG signal and a set of apnea
annotations, which is derived by human experts on the basis
of simultaneously recorded respiration and related signals. The
ECG signal is separated into 1-minute segments and labeled;
a signal segment is identified as having SA if an apnea event
occurs during that minute. Table II provides details on the
number of 1-minute ECG signal segments identified with and
without SA in the training and test sets.

TABLE II: Number of 1-minute ECG signal segments labeled
with and without SA on training and test sets.

Training set Test set
SA 6,473 (38.74%) 6,490 (38.30%)

Non SA 10,236 (61.26%) 10,455 (61.79%)
Total 16,709 16,945

Previous research has demonstrated that adjacent segments
provide valuable information for SA detection [25], [30]. We
adopt the sampling method in [25], in which, each 1-minute
signal segment and the surrounding 2-minute signal are used
to form a 5-minute signal segment, which is then used for
preprocessing and classification.

B. Implementation details and training methodology

After being preprocessed, the extracted features will be
utilized to train the 1D CNN model. The NVIDIA GeForce
RTX 3080 Ti GPU, 31 GB of RAM, and Intel Core i9-10900X
processor operating at 3.70 GHz are used in all experiments.
With a mini-batch size of 256, we train a specific model
for 100 epochs, evaluating each model after every epoch.
The optimal model for each training procedure will be the
checkpoint with the highest F1-score. To assess the impact of
employing features associated with S peaks, we set up two
experiments as follows:

1) Only R peak amplitude and RR intervals, which are
features related to R peaks, are used.

2) Use a combination of features related to R and S peaks,
including amplitudes and intervals of R and S peaks.

The ECG signal classifier is constructed using the
SE-ResNext 50 [31] model as its backbone. The SE-
ResNext 50 [32] model is a variant of ResNet 50 with the
replacement of the identity connection with a Squeeze-and-
Excitation block. It enables feature recalibration, allowing the
network to learn how to use global information to selectively
emphasize informative characteristics and suppress less helpful
ones. This model has demonstrated its effectiveness with 1D
data and ECG signals in particular [33].

IV. RESULTS AND DISCUSSION

A. Model performance

As previously noted, in order to test the efficacy of using
S peak-related features, we conducted experiments with and
without these features. Table III shows the classification
results of the model employing solely R-related features
versus the model employing all types of features. Our
approach (RR intervals + R Amplitude) reports an accuracy
of 90.28%, a specificity of 90.44%, and a sensitivity of
90.00%. In terms of F1-score, we report an F1-score of 86.85
(for SA class) and 92.30 for non SA class. According to the
results, using features associated to the S peak enhances the
F1-score by up to 1.5% in the SA class and 0.54% in the
Non-SA class. That finding indicates that the characteristics
associated with the S peak may represent an alteration in the
ECG signal of individuals with SA and may contribute to the
capacity to classify SA and Non-SA.

B. Comparison to state-of-the-art

Table IV show the comparison between the proposed
method and current state-of-the-art approaches to SA detec-
tion. We show that our approach surpassed almost all of the
competitors, with the largest disparity in accuracy is up to
9.1%. These results indicate the robustness of the propose
method.

V. CONCLUSIONS

In this study, we introduce a novel method for detecting
sleep apenea based on SS intervals and S amplitudes. Our



TABLE III: Experimental results using different features.

Results
Feature

combination Classifier Acc (%) Spe (%) Sen (%) F1-score (%)

SA Non
SA

RR intervals
R Amplitude

SE
ResNext

50
90.28 90.44 90.00 86.85 92.30

RR intervals
R Amplitude
SS intervals
S Amplitude

SE
ResNext

50
91.13 92.58 88.75 88.35 92.84

TABLE IV: Comparison with state-of-the-art approaches.

Comparison
Study Classifer Accuracy Sensitivity Specificity

Li
et al. [24]

Decision
fusion 83.80% 88.90% 88.40%

André Pinho
et. al. [22] ANN 82.12% 88.41% 89.10%

Mahsa Bahrami
et. al. [25] LeNet-5 87.6% 83.10% 90.30%

Shen
et. al. [18]

1DCNN
WLTD 89.40% 89.80% 89.10%

Mahsa Bahrami
et. al. [17]

ZFNet
GRU 88.13% 84.26% 92.27%

Singh
et. al. [21] Scalogram 86.22% 90.00% 83.82%

Kaicheng Feng
et. al. [16] FSSAE 85.10% 86.20% 84.40%

Ours [a] SE-ResNext
50 90.28% 90.44% 90.00%

Ours [b] SE-ResNext
50 91.13% 92.58% 88.75%

a: The model solely uses features relating to R peaks (RR intervals and R
amplitude).
b: The model uses additional S-peak-related features (RR intervals, R
amplitude, SS intervals and S amplitude).

experimental results demonstrate that the proposed technique
is effective for SA detection, and its performance outper-
forms state-of-the-art works. Although showing a high-level
of performance, our approach has several disadvantages. For
example, the lack of access to SA patients’ ECG data and the
large volume of data are the primary limitations of this study.
Although proposed method has been tested with a number of
experimental setups, it should be evaluated on a larger dataset.
In the future, we expect to integrate a SA detection module into
a mobile application, which will alert patients suffering from
SA to wake them up. As a result, this application may save the
patient’s life by restoring normal breathing and consciousness
without complex setups.

REFERENCES

[1] Shahrokh Javaheri, Ferran Barbe, Francisco Campos-Rodriguez,
Jerome A Dempsey, Rami Khayat, Sogol Javaheri, Atul Malhotra,
Miguel A Martinez-Garcia, Reena Mehra, Allan I Pack, et al. Sleep
apnea: types, mechanisms, and clinical cardiovascular consequences.
Journal of the American College of Cardiology, 69(7):841–858, 2017.

[2] Johns Hopkins Medicine. The dangers of uncontrolled sleep apnea,
2021.

[3] Richard ST Leung and T Douglas Bradley. Sleep apnea and cardiovascu-
lar disease. American journal of respiratory and critical care medicine,
164(12):2147–2165, 2001.

[4] Terry Young, Mari Palta, Jerome Dempsey, Paul E Peppard, F Javier
Nieto, and K Mae Hla. Burden of sleep apnea: rationale, design,
and major findings of the wisconsin sleep cohort study. WMJ: official
publication of the State Medical Society of Wisconsin, 108(5):246, 2009.

[5] Renee S Aronsohn, Harry Whitmore, Eve Van Cauter, and Esra Tasali.
Impact of untreated obstructive sleep apnea on glucose control in type
2 diabetes. American journal of respiratory and critical care medicine,
181(5):507–513, 2010.

[6] Christopher John Worsnop, Matthew Thomas Naughton, Colin Edwin
Barter, Trefor Owen Morgan, Adrianne Ila Anderson, and Robert J
Pierce. The prevalence of obstructive sleep apnea in hypertensives.
American journal of respiratory and critical care medicine, 157:111–
115, 1998.

[7] Frances Chung, Hairil R Abdullah, and Pu Liao. Stop-bang question-
naire: a practical approach to screen for obstructive sleep apnea. Chest,
149(3):631–638, 2016.

[8] Mahesh Nagappa, Pu Liao, Jean Wong, Dennis Auckley, Satya Krishna
Ramachandran, Stavros Memtsoudis, Babak Mokhlesi, and Frances
Chung. Validation of the stop-bang questionnaire as a screening tool
for obstructive sleep apnea among different populations: a systematic
review and meta-analysis. PloS one, 10(12):e0143697, 2015.

[9] Nikolaus C Netzer, Riccardo A Stoohs, Cordula M Netzer, Kathryn
Clark, and Kingman P Strohl. Using the berlin questionnaire to identify
patients at risk for the sleep apnea syndrome. Annals of internal
medicine, 131(7):485–491, 1999.

[10] Jessica Vensel Rundo and Ralph Downey III. Polysomnography.
Handbook of clinical neurology, 160:381–392, 2019.

[11] Manish Sharma, Shreyansh Agarwal, and U Rajendra Acharya. Appli-
cation of an optimal class of antisymmetric wavelet filter banks for
obstructive sleep apnea diagnosis using ecg signals. Computers in
biology and medicine, 100:100–113, 2018.

[12] Tom V Cloward, James M Walker, Robert J Farney, and Jeffrey L
Anderson. Left ventricular hypertrophy is a common echocardiographic
abnormality in severe obstructive sleep apnea and reverses with nasal
continuous positive airway pressure. Chest, 124(2):594–601, 2003.

[13] Krzysztof Narkiewicz, Nicola Montano, Chiara Cogliati, Philippe JH
Van De Borne, Mark E Dyken, and Virend K Somers. Altered cardio-
vascular variability in obstructive sleep apnea. Circulation, 98(11):1071–
1077, 1998.

[14] Abu SM Shamsuzzaman, Bernard J Gersh, and Virend K Somers.
Obstructive sleep apnea: implications for cardiac and vascular disease.
Jama, 290(14):1906–1914, 2003.

[15] Thomas Penzel, George B Moody, Roger G Mark, Ary L Goldberger,
and J Hermann Peter. The apnea-ecg database. pages 255–258, 2000.

[16] Kaicheng Feng, Hengji Qin, Shan Wu, Weifeng Pan, and Guanzheng
Liu. A sleep apnea detection method based on unsupervised feature
learning and single-lead electrocardiogram. IEEE Transactions on
Instrumentation and Measurement, 70:1–12, 2020.

[17] Mahsa Bahrami and Mohamad Forouzanfar. Sleep apnea detection
from single-lead ecg: a comprehensive analysis of machine learning
and deep learning algorithms. IEEE Transactions on Instrumentation
and Measurement, 71:1–11, 2022.

[18] Qi Shen, Hengji Qin, Keming Wei, and Guanzheng Liu. Multiscale deep
neural network for obstructive sleep apnea detection using rr interval
from single-lead ecg signal. IEEE Transactions on Instrumentation and
Measurement, 70:1–13, 2021.

[19] Nuno Pombo, Bruno MC Silva, André Miguel Pinho, and Nuno Garcia.
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