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ABSTRACT
Deep metric learning (or simply called metric learning)
uses the deep neural network to learn the representation
of images, leading to widely used in many applications,
e.g. image retrieval and face recognition. In the met-
ric learning approaches, proxy anchor takes advantage of
proxy-based and pair-based approaches to enable fast con-
vergence time and robustness to noisy labels. However,
in training the proxy anchor, selecting the hyperparameter
margin is important to achieve a good performance. This
selection requires expertise and is time-consuming. This
paper proposes a novel method to learn the margin while
training the proxy anchor approach adaptively. The proposed
adaptive proxy anchor simplifies the hyperparameter tun-
ing process while advancing the proxy anchor. We achieve
state of the art on three public datasets with a noticeably
faster convergence time. Our code is available at https:
//github.com/tks1998/Adaptive-Proxy-Anchor

Index Terms— Deep metric learning, image retrieval,
proxy-based loss, proxy anchor, adaptive margin

1. INTRODUCTION

Recently, deep metric learning (DML) has been of interest
due to its visual recognition applications, e.g. face recogni-
tion and image retrieval [1–6]. DML aims to learn a repre-
sentation function, mapping the images of objects to an em-
bedded space in which embeddings of the same-class data are
closed and ones of the different classes are far apart [7]. Sev-
eral DML methods have been proposed, they are varied by the
loss functions, being split into two categories: pair-based and
proxy-based.

Pair-based metric learning is trained with the loss derived
from the embedding-based distances between pairs of data
[8]. The first pair-based loss, named contrastive loss [9], aims
to minimize the embedding distance of identical-class input
pairs and maximize the distance otherwise. Alternatively, the
triplet loss uses three data points (two of the same class and
one of the other) and constraints the embedding distance of
the samples, i.e. minimizing the distance between the anchor
and positive sample and maximizing the distance between the
anchor and the negative sample [10]. The model trained with

⋆ These authors contributed equally.

Fig. 1. The comparison of decision margin between PA [12],
and the proposed APA for two classes. C1 is a hard class and
C2 is an easy class. The dotted line represents the actual de-
cision boundary between the two classes. The areas between
the dashed lines and dotted lines are decision margins.

contrastive or triplet loss mostly depends on effective sam-
pling strategies; precisely, the easy pairs (i.e. inter-class with
distinctive content or intra-class with similar content) do not
help to improve the convergence rates [5]. To overcome the
issue, N-pair loss [6] and lifted-structure loss [7] are proposed
to consider the hard pairs into the training process. N-pair
loss picks out one positive sample from N-1 negative sam-
ples, while lifted-structure loss picks out one positive sample
with all negative samples in a training batch. Although the
n-pair and lifted structure losses involve the hardness of data,
they do not reveal the entire data-to-data relationship [11].
Pair-based methods generally have high training complexity
as the input always includes multiple data pairs, subsequently
resulting in slow convergence [12].

Proxy-based metric learning introduces the proxies repre-
senting groups of same-class data from the training set. The
proxy-based loss is derived from the proxy-data pairs instead
of data-data pairs, significantly reducing the number of in-
put pairs during the training [5]. In other words, the proxy-
based approach addresses the training complexity issue of
the pair-based approach. The first proxy-based loss, named
ProxyNCA, builds the proxies using neighborhood compo-
nent analysis [13]. ProxyNCA pulls input samples with their
respective class proxies together and pushes them apart oth-
erwise. SoftTriple loss uses multiple proxies for a class in-
stead of only one in ProxyNCA; providing more flexibility
for modeling intra-class variance in real-world datasets [14].
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An extension of ProxyNCA is ProxyNCA++, it renovates the
components of ProxyNCA [15]. ProxyNCA is insensitive to
noisy data and is potential to enable faster training conver-
gence. However, it does not exploit data-to-data relations
since it associates each data point only with proxies. Proxy
anchor (PA) loss is proposed to handle entire data in the batch
and associate them with each proxy by their relative hardness
in data-to-data relations [12]. PA achieves state of the art on
several datasets [12].

The performance of PA depends on the selection of hy-
perparameters, such as the margin and scaling parameters.
In practice, the hyperparameter selection is often done via
grid search or optimization algorithm, e.g. Tree of Parzen
Estimator algorithm [16, 17]. Both methods are very time-
consuming and expertise-required. Furthermore, the effects
of the margin value are not thoroughly mentioned, implying a
certain number of trials and several training tricks to be con-
ducted for the best performance. Besides, whether equal or
different margin among classes is good for proxy-anchor met-
ric learning has not been solved. There is a need to investigate
the margin setting of classes in metric learning.

In this paper, we propose to learn the margin in the proxy
anchor loss instead of fixing it. The proposed method is called
adaptive proxy anchor (APA). The contributions of our study
are highlighted as follows:

1. The proposed APA treats the margin as the learnable
parameter (Fig. 1). Thus, APA does not require many
trials or expertise to select an optimal margin value
while achieving state-of-the-art results on three public
datasets with a faster convergence rate.

2. We conduct extensive ablation experiments to pro-
vide insights into several configurations of APA: (i) in
proxy anchor learning, there is no need to set the in-
dividual margin for every class; (ii) APA is insensitive
to the additional hyperparameter, demonstrating the
hyperparameter-free of the proposed method.

The organization of the paper is as follows. Section 2 de-
scribes APA and its advancements compared to Proxy An-
chor. Section 3 reports the results of APA compared with
other state-of-the-art (SOTA) methods on four public datasets
and analyzes the effects of different settings. Section 4 con-
cludes our paper.

2. PROPOSED METHOD

The proxy anchor metric learning assigns a proxy as an an-
chor to represent a class and associates the proxy with all data
points in a batch [12]. This mechanism allows the sample
to interact with each other via proxies during training. And
the fine-grained data-to-data relation is actively considered,
which is combined with margin leading to intra-class com-
pactness and inter-class separability.

Let X be a batch embedding vectors. Let P+ denote the
proxies of existing classes in the batch (known as positive
proxies), and P denote all proxies in the training set. The
PA loss is defined as:

Lproxy(X) =
1

|P+|
∑

p∈P+

log(1 +
∑

x∈X+
p

e−α(s(x,p)−m))

+
1

|P|
∑
p∈P

log(1 +
∑

x∈X−
p

eα(s(x,p)+m)),

(1)

where m is the margin and α is the scaling factor. The op-
erator |.| denotes the cardinality of the set and s(, ) denotes
the cosine similarity (distance) between the two input vectors.
X+

p represents the subset of X which has the same class as
proxy p. Similarly, X−

p represents the subset of X which has
the different class as proxy p. Minimizing the loss in Eq. (1)
means pulling the representation of the proxy and data points
of the same class close together, and pushing the represen-
tation of the proxy and data points from different classes far
away. Experiments in [12] show that the performance of the
model is sensitive to m and the performance is high and stable
with any α greater than 16. The choice of an optimal margin
could be different for each dataset, making it time-consuming
for hyperparameter tuning. Fig. 2 shows the change of mar-
gin during training APA. Motivated by margin-selection free,

Initial state APA-trained state
Anchors Data points

Fig. 2. Visualization of the flowchart of the margin state dur-
ing training APA.

we explore the margin effect and propose a method to auto-
matically adjust the margin during the training. More pre-
cisely, for better generalization, we assign a learnable margin
for each class. We then introduce an adaptive loss with two
components: Lproxy to guarantee the compactness of intra-
class and the separability of inter-class, and Lmargin to control
the variance of margins. Let mx be the learnable margin of
the same class as embedding x. The new proxy anchor loss is
now written as:

Lproxy(X) =
1

|P+|
∑

p∈P+

log(1 +
∑

x∈X+
p

e−α(s(x,p)−mx))

+
1

|P|
∑
p∈P

log(1 +
∑

x∈X−
p

eα(s(x,p)+mx)).

(2)

This loss has the properties of PA, i.e. leveraging the advan-
tages of fine-grained data relation. In training proxy anchor
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loss, a large value of margin easily leads to overfitting. To
constraint the value of margins, we introduce the margin loss
as follows:

Lmargin =
1

C

C∑
i=1

mi, (3)

where mi is the learnable margin value of the ith class and C
is the number of classes in the training set. To summarize, we
introduce an adaptive anchor loss as:

Ladaptive(X) = Lproxy(X) + λ
1

Lmargin
, (4)

where λ is a positive regularization parameter. Therefore, the
proposed APA loss enables actively considering the relative
data hardness in training and flexibly adjusting the margin to
adapt to data distribution.

3. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the datasets and experimental
settings. We then describe the experimental results of the pro-
posed method compared to the state-of-the-art metric learning
methods. Finally, we discuss the configurations of the pro-
posed APA method.

3.1. Datasets and Settings

We evaluated the proposed method on four public datasets:
Stanford Online Products (SOP) [7], CUB-200-2011 [18],
Car196 [19], In-Shop clothes Retrieval (In-shop) [20], in
which Table 1 shows the statistics in detail. For all experi-
ments, the images were resized to 256 × 256 and cropped to
224×224, α was set to 32 for all experiments as suggested in
[12]. Only cropping and flipping were used as augmentations.

Datasets Train Test
Classes Images Classes Images

CUB-200-2011 100 5,864 100 5,924
CAR196 98 8,054 98 8,131
SOP 11,318 59,551 11,316 60,502
In-Shop 3,997 28,882 3,985 28,760

Table 1. Information of four dataset including the figures of
train, test classes and images of each dataset.

For a fair comparison, we reproduced the PA results and
conducted the proposed APA experiments using the same
training pipeline. The proxies were initialized with normal
distribution as suggested in [12]. ResNet-50 [25] was used as
the backbone to extract the features. The last fully-connected
layer was changed to obtain the dimensionality of embedding
vectors and L2-normalized before returning the final output.
To evaluate the methods’ performance, we used Recall@K
in which a higher value indicates a better model. All timing
results were collected on a docker container with a single
A100 GPU of 40GB RAM.

Datasets CUB-200-2011 Cars-196 SOP In-shop
Multi-margin 70.1 88.9 80.0 90.9
Single-margin 70.5 90.3 81.4 91.5

Table 2. Comparison the effect of single-margin and multi-
margin to the performance on four public datasets. All the
results are reported with R@1 (%) for the value λ = 1.

Fig. 3. Relation between multi-margin and single margin dur-
ing training on In-Shop dataset.

3.2. Ablation Study

From multi-margin to single margin. APA can be con-
figured with single-margin (the same margin value for all
classes) or multi-margin (an individual margin for each class).
We recorded the class margin values during training on the
In-shop dataset and plotted the range of values over training
time in Fig. 3. In the multi-margin setting, the margin value
range (boxplots) broadens as the training progresses. This
phenomenon implies the necessity of choosing a suitable
class margin value for optimal performance in each dataset.
In the single-margin setting, the margin (orange-solid line)
converges to the mean margin value of the multi-margin
setting, indicating a correlation between the two settings.

Fig. 4. Convergence speed of Intra-batch, PA, and APA on
the CUB-200-2011 dataset.

We benchmarked the two settings on four datasets (see Ta-
ble 2). The results show that the single-margin setting is
marginally better than the multi-margin. Having a specific
margin for each class in the training distribution leads to an
overfit. Because the classes in the test set are unseen during
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training, multi-margin settings hamper the generalization of
the algorithm on the test dataset. We then recommend using
single margin settings in the proxy-anchor metric learning to
avoid this effect and attain better performance.

In-shop
R@K(%) 1 10 20
Multi-Similarity [11] BN 89.7 97.9 98.5
NormSoftmax [21] R50 89.4 97.8 98.7
Cross-Entropy [22] R50 90.6 98.0 98.6
EPSHN [23] R50 87.8 95.7 96.8
Proxy Anchor [12] R50 91.5 97.5 98.2
ProxyNCA++ [15] R50 90.4 98.1 98.8
Intra-Batch [24] R50 92.8 98.5 99.1
Proposed APA R50 91.5 97.5 98.3

Table 4. Comparison to other methods on In-Shop clothes
Retrieval dataset. The top-2 performances are highlighted
in blue and red. All methods are compared with the size
of 512-embedding, BN: Inception with batch normalization,
R50: ResNet-50. Best viewed in color.

Fig. 5. Recall@1 versus λ values on the four datasets.

Effect of scaling λ factor: We examined the effect of the
scaling parameter λ by conducting experiments with different
values of λ ∈ {1, 10, 100, 1000} on the four datasets. The
experimental results in Fig. 5 shows that there is a negligible
difference in the range of the scaling parameter λ from 1 to
1000, making it unnecessary to tune this hyperparameter. We
recommend to set λ to 1.

3.3. Comparison to Other Methods

We compared the proposed APA to seven existing metric
learning methods on four datasets: CUB-200-2011, Cars-
196, SOP, and In-shop. Tables 3 and 4 summarize the results
of the methods on the four datasets. Note that we conducted
the experiments of PA and APA with ResNet-50, and with
an embedding dimension of 512 for a fair comparison. The
results of the other methods are based on published num-
bers. As shown in Tables 3 and 4, the proposed adaptive
method improves the performance of PA without the need
of choosing an optimal margin in many trials. Note that the
best results for PA over several margins are reported. Further-
more, the proposed APA method outperforms state of the arts
approaches in almost all settings, with the highest R@1 score
on CUB-200-2011 at 70.7%, Cars-196 at 90.3%, and SOP at
81.4%. APA achieves a slightly lower recall than Intra-batch
[24], 91.5% compared to 92.8%. The experimental results
demonstrate the convenience of using the adaptive margins
and the superiority of the proposed APA method.

In addition, we evaluated the training complexity, which
plays a crucial role in deep learning, by recording the conver-
gence speed of the proposed APA, AP [12], and Intra-Batch
[24], shown in Fig. 4. The results show that the proxy-anchor
approach proves effective and efficient during training, and
our loss steadily maintains this training convergence property.

4. CONCLUSION

In this paper, we extend the proxy anchor metric learning
method to reduce the requirement of expertise and time for
selecting the best margin value. The proposed method, called
adaptive proxy anchor (APA), adaptively adjusts the margin
for corresponding domains during training. APA achieves
state of the art on three public datasets, i.e. CUB-200-2011,
Cars-196, and SOP, while maintaining the fast convergence
rate compared to the proxy anchor method. We also study the
margin behavior to highlight the effect of the optimal value.
We have not considered the optimal sampling method for our
approach and leave it for future scope of work.

CUB-200-2011 Cars-196 SOP
R@K(%) 1 2 4 8 1 2 4 8 1 10 100 1000
Multi-Similarity [11] BN 65.7 77.0 86.6 91.2 84.1 90.4 94.0 96.5 78.2 90.5 96.0 98.7
NormSoftmax [21] R50 65.3 76.7 85.4 91.8 89.3 94.1 96.4 98 79.5 91.5 96.7 -
Cross-Entropy [22] R50 69.2 79.2 86.9 91.6 89.3 93.9 96.6 98.4 81.1 91.7 96.3 98.8
EPSHN [23] R50 64.9 75.3 83.5 - 82.7 89.3 93.0 - 78.3 90.7 96.3 -
Proxy Anchor [12] R50 70.2 79.7 87.0 92.0 89.2 93.8 96.0 97.8 80.5 91.4 96.4 98.7
ProxyNCA++ [15] R50 69.0 79.8 87.3 92.7 86.5 92.5 95.7 97.7 80.7 92.0 96.7 98.9
Intra-Batch [24] R50 70.3 80.3 87.6 92.7 88.1 93.3 96.2 98.2 81.4 91.3 95.9 -
Proposed APA R50 70.5 79.6 87.2 92.2 90.3 94.4 96.8 98.0 81.4 92.1 96.8 98.8

Table 3. Comparison to other methods on CUB-200-2011, Cars-196, Stanford Online Products datasets. The top-2 perfor-
mances are highlighted in red and blue. All methods are compared with the size of 512-embedding, except ProxyNCA with
64-embedding. BN: Inception with batch normalization, R50: ResNet-50. Best viewed in color.
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