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Abstract. This paper addresses the few-shot image classification prob-

lem, where the classification task is performed on unlabeled query sam-

ples given a small amount of labeled support samples only. One major

challenge of the few-shot learning problem is the large variety of ob-

ject visual appearances that prevents the support samples to represent

that object comprehensively. This might result in a significant difference

between support and query samples, therefore undermining the perfor-

mance of few-shot algorithms. In this paper, we tackle the problem by

proposing Few-shot Cosine Transformer (FS-CT), where the relational

map between supports and queries is effectively obtained for the few-

shot tasks. The FS-CT consists of two parts, a learnable prototypical

embedding network to obtain categorical representations from support

samples with hard cases, and a transformer encoder to effectively achieve

the relational map from two different support and query samples. We in-

troduce Cosine Attention, a more robust and stable attention module

that enhances the transformer module significantly and therefore im-

proves FS-CT performance from 5% to over 20% in accuracy compared

to the default scaled dot-product mechanism. Our method performs com-

petitive results in mini-ImageNet, CUB-200, and CIFAR-FS on 1-shot

learning and 5-shot learning tasks across backbones and few-shot con-

figurations. We also developed a custom few-shot dataset for Yoga pose

recognition to demonstrate the potential of our algorithm for practical

application. Our FS-CT with cosine attention is a lightweight, simple

few-shot algorithm that can be applied for a wide range of applications,

such as healthcare, medical, and security surveillance. The official im-

plementation code of our Few-shot Cosine Transformer is available at

https://github.com/vinuni-vishc/Few-Shot-Cosine-Transformer.3

3 This paper is published at IEEE Access with DOI: 10.1109/ACCESS.2023.3298299.
Please visit the official version of this paper at IEEE Xplore for appropriate citation.

ar
X

iv
:2

21
1.

06
82

8v
3 

 [
cs

.C
V

] 
 2

1 
Ju

l 2
02

3

https://github.com/vinuni-vishc/Few-Shot-Cosine-Transformer
https://doi.org/10.1109/ACCESS.2023.3298299


2 Quang-Huy Nguyen et al.

1 Introduction

Deep learning methods have shown promising performances in numerous com-

puter vision tasks and real-world applications by leveraging large-scale annotated

data [10, 37]. However, collecting and labeling an adequate amount of data for

training such methods is extremely costly and time-consuming, particularly in

some special contexts such as medical treatment, healthcare monitoring, or se-

curity surveillance, where data availability is limited due to scarcity, expensive,

or privacy concerns arising respectively. In many practical applications, the bal-

ance between quality and quantity for building datasets often be considered for

the optimal cost of training and maintenance. For example, developing a smart

system that can simultaneously monitor body movement, heart rate, and respi-

ration of yoga learners effectively requires building an extremely costly dataset

annotated by various tracking devices under the supervision of specialists in dif-

ferent domains, making by far large-scale dataset development impractical. To

address such data limitation challenges in deep learning, few-shot image classi-

fication [8,24,43] is proposed as one solution for learning to predict unseen data

with a very restricted quantity of labeled instances.

In a few-shot learning scenario, typically, the feature representation network

is trained with a constrained amount of labeled support data to classify un-

labeled query instances sharing the same categories [15, 45, 48]. This approach

enables the model to recognize images with only a small quantity of data. To

evaluate the few-shot learning model effectively, the training set and the testing

set are disjoint in terms of categories and divided into episodic tasks. From a

learning perspective, few-shot learning can be categorized into two approaches:

(i) inductive learning [35, 36, 49] that categorizes query instance independently

by exploiting per query instance representation for decision making and (ii)

transductive learning [29, 30, 52] that categorizes query instances concurrently,

exploring the entire relationship between support and query instances within a

task. From an algorithmic perspective, few-shot learning can be divided into two

strategies: (i) learning an embedding space to cluster data features by category

under a distance-based metric [1,40,46] and (ii) fine-tuning model’s parameters

effectively for a novel task with only a few gradient steps [21,32,39].

While few-shot learning methods have shown promise in dealing with limited

data problems, they still face two critical challenges that significantly affect

their learning capacity. First, the limited quantity of support instances may

not fully represent the target categories under various visual conditions such as

appearance, point of view, and object shape. As the support instances are often

chosen randomly, the selected samples might only focus on the hard cases and do

not adequately capture the characteristics of the target object. Thus, effectively

handling hard samples is crucial in few-shot learning. Second, the support and

query distribution might differ greatly due to random sampling and extremely
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small sample sizes. Therefore, it is crucial to establish a meaningful relationship

between these two sets, particularly in transductive learning approaches, where

aligning the support and query distributions becomes essential.

To tackle these challenges, we have developed a novel framework aimed at

improving support representations and enhancing the transductive few-shot clas-

sification process. Our framework consists of two main modules: enhanced proto-

typical embedding and transformer encoder with a cross-attention mechanism for

effective support-query relational mapping. Firstly, the prototypical embedding

is enhanced with learnable and adjustable mean weights for computing centroids.

This ensures that the prototypical representations take into account both easy

and hard samples, resulting in more comprehensive embeddings. Secondly, we

introduce a novel Cosine Attention mechanism based on cosine similarity, replac-

ing the traditionally scaled dot-product one. This cosine attention eliminates the

disparities between two feature sets, leading to a more stable and effective rela-

tional map. It significantly highlights the correlation between support and query

samples that share the same characteristic. The correlation map is then used for

query prediction in a transductive learning manner. These two improvements

on the baseline framework enhance the few-shot image classification methods,

resulting in our proposed method Few-shot Cosine Transformer (FS-CT).

Through a comprehensive and empirical evaluation, we demonstrate the ef-

fectiveness of our proposed FS-CT under various configurations and datasets.

We further analyze the effectiveness of the proposed cosine attention under var-

ious transformer-based few-shot algorithms in ablation studies. These studies

validate the impact of our improvements for few-shot image classification. To

showcase the real-world applicability of our method, we developed a small-scale

custom dataset specifically for yoga poses recognition. This dataset consists of

50 categories and nearly 2,500 images. The performance results of FS-CT on

this Yoga dataset showcase the potential of few-shot learning in healthcare prac-

tical applications in general, and smart Yoga monitoring systems in particular.

The official implementation code for FS-CT along with the proposed Yoga Poses

Recognition dataset are available at https://github.com/vinuni-vishc/Few

-Shot-Cosine-Transformer.

Our contributions can be summarized as follows:

– We propose a novel few-shot image classification method called Few-shot

Cosine Transformer (FS-CT), which incorporates a prototypical embedding

module and a Transformer encoder architecture.

– We improve the conventional prototypical embedding by introducing a learn-

able weighted mean operation. This helps enhance the categorical represen-

tations for the support set and mitigates the impact of hard samples in

few-shot tasks.

https://github.com/vinuni-vishc/Few-Shot-Cosine-Transformer
https://github.com/vinuni-vishc/Few-Shot-Cosine-Transformer
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– We develop a new attention mechanism called cosine attention, which en-

hances the transformer layer’s ability to map support and query features.

These results in a more stable and significant correlation map, leading to

improved transformer outputs and more accurate few-shot predictions.

– We demonstrate the effectiveness of our proposed FS-CT method, particu-

larly in conjunction with the improved cosine attention mechanism through

detailed empirical evaluations and ablation studies across few-shot datasets.

– We develop a custom few-shot dataset for the Yoga pose recognition task,

where our method’s performance showcases the potential of few-shot learn-

ing in practical healthcare applications, particularly in Yoga scoring and

monitoring system.

The rest of this paper is organized as follows. Section 2 reviews the previous

studies. Section 3 provides a mathematical formulation of the few-shot classifica-

tion problem and Section 4 specifies the proposed FS-CT with Cosine Attention

mechanism. Section 5 presents our experimental settings and evaluation. Section

6 discusses limitations and future works. Section 7 concludes the paper.

2 Related Work

The main objective of this study is to enhance the accuracy of few-shot im-

age classification in a transductive learning setting by computing a correlational

map between the support and query sets using transformer attention. This sec-

tion provides a brief overview of the related research on the image classification

method, few-shot learning, and the Transformer attention mechanism employed

to compute the correlational map to support our proposed method.

2.1 Image Classification

Image classification is one of the fundamental tasks of computer vision, where

deep models are developed to recognize images based on their content. Although

general Deep learning methods have demonstrated their effectiveness in perform-

ing classification tasks on large-scale datasets with deep neural network archi-

tectures for most tasks [10, 18, 37], image classification often faces challenges in

specific domain areas or suffering under various conditions, e.g. imbalance data,

or data in small scales. Therefore, improvements for deep neural networks often

be made to tackle the problem. For example, in dealing with small dataset prob-

lems, improvements often be made for network architecture, cost function, data

augmentation, latent augmentation (adversarial training), and warm-starting

method with pre-trained model [6]. Zhou et. al. [51] improved neural network

by developing an entanglement coefficient algorithm between pixels based on

quantum physics perspective as a general case of various traditional distance



Enhancing Few-Shot Image Classification with Cosine Transformer 5

functions on geometric sensing images. Zhou et. al. [50] considered both local

and global features for blind quality prediction of natural scene images without

prior knowledge. Ban et. al. [2] focused on enhancing the quality of microscopic

images captured by a monocular camera using depth estimation techniques.

Their aim was to improve the images before applying image recognition tasks.

While these improvements often bring benefits for specific domain tasks, hyper-

parameter optimization is currently underestimated and should be considered in

future studies to ensure more accurate evaluations and fair comparisons between

methods [6].

Instead of exploring deeply the nature of images from various perspectives

for domain-specific tasks, we focus in our research on enhancing network ar-

chitectures to address small dataset challenges in few-shot learning for various

domain tasks. Our technique is highly adaptable, as it can be constructed on any

feature backbone architecture using pre-trained models. We conduct a thorough

evaluation procedure for our proposed method and provide a fair comparison

between ours and existing studies under very detailed experiments and ablation

studies with an optimized hyper-parameter configuration.

2.2 Few-shot Learning

Few-shot learning is a subset of meta-learning [22,32,39], which develops models

that are able to adapt to unseen tasks with small training data. Meta-learning

algorithms take an advance on prior knowledge from a large-scale dataset (e.g., a

pre-trained deep network) to effectively learn on a small novel dataset via ameta-

learner (or few-shot learner) [13, 14]. Based on the learning method, few-shot

learning algorithms can be divided into two categories. (i) Metric-based learn-

ing [11,20,31,36,38] focuses on learning an embedding space where samples from

the same category are mapped closely together under a distance metric: Active

Instance Selection [36] fits categorical distribution for support set, and selects

new instances for support set based on a clustering algorithm using a metric

distance, thereby improving few-shot learning performance. This method relies

on the assumption that the distribution of the support set can be well approxi-

mated by a specific model, which may not hold true in all scenarios. Prototypical

Network [38] computes prototypical embeddings by averaging support features

within the same category as prototypical embeddings, and then measures the

Euclidean distance between queries and prototypical embeddings. However, it

relies solely on averaging support features without considering the relative im-

portance of different samples, leading to suboptimal representations, especially

when dealing with hard or challenging samples. (ii) Optimization-based learn-

ing [8, 15, 21, 23, 32] fine-tune model’s parameters to quickly adapt to the new

task with only a few effective gradient descent steps: Baseline++ [8] improves the

fine-tuning step by replacing the dot product operation with cosine similarity
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in the linear classifier layer. Meta-Learner LSTM [32] employs LSTM for up-

dating and tracking parameters across few-shot tasks, enabling fast adaptation.

P>M>F [21] adopts a three-stage approach: pre-training the feature backbone

on unlabeled external data, re-training the model using the prototypical net-

work, and finally fine-tuning it on novel tasks with a few gradient steps while

employing data augmentation.

Among the two categories of few-shot learning methods, metric-based learn-

ing stands out as a straightforward yet effective approach. It typically comprises

two stages: feature extraction to obtain extracted features from both labeled

and unlabeled samples under the same embedding space, and metric function

to utilize a similarity or distance metric for categorizing unlabeled samples by

comparing [40] or clustering [38] the embedded features. Based on the inference

settings, there are two learning approaches for the few-shot algorithm, includ-

ing inductive learning [14, 35, 43] and transductive learning [3, 26, 40]. Inductive

learning classifies each query sample individually, while transductive learning

classifies every query sample collectively [5, 36]. The latter learning method al-

lows additional information in data distribution or visual resemblance can be

obtained and leveraged among query samples, thus potentially improving the

overall performance.

In this study, we explore the alignment between support and query features

for few-shot recognition in a transductive manner with a metric-based learning

approach. We focus on the cross-attention mechanism in the transformer as an

effective method for support-query correlation maps and discuss its advantages

and limitations in the following section.

2.3 Transformer Attention mechanism

After being introduced in [42] for natural language processing tasks, transformer

soon rose to dominance in computer vision [7,9,12]. The core of the transformer

is the attention mechanism, which calculates an attention map that indicates

the similarity between features for solving tasks. The mechanism comes with

two variants, self-attention determines the internal relationships within a fea-

ture set, and cross-transformer calculates the external relationships between

two feature sets. Several few-shot learning studies are inspired by the trans-

former and its attention mechanism [1, 11, 17, 25, 47], where the methods, in

general, involve attention mechanism to align labeled and unlabeled feature for

classification. SetFeat [1] tackles few-shot classification by matching support and

query features at multiple scales using shallow attention mechanisms, incorpo-

rating various distance-based methods. CTX [11] focuses on obtaining a coarse

alignment between query and support samples by emphasizing local features

through an improved spatial attention mechanism. URT [25] takes a different
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approach by computing a universal representation between labeled and unla-

beled samples through the averaging of multiple scaled dot-product attention

on domain-specific representation. While attention is a powerful mechanism, it

has critical problems of missing good insight about attention and an expensive

quadratic computational cost. Thus, research on the attention mechanism fo-

cuses on three main directions: (ii) reducing the computation cost, (ii) obtaining

a good insight for attention, and (iii) designing a good attention mechanism

for a specific task. Most studies on attention often focus on the self-attention

mechanism with one set of features as input rather than two in cross-attention.

Therefore, the difference between two feature sets that might happen in cross-

attention becomes unnoticed. This made the attention output becomes unstable,

thus reducing the transformer performance.

In this study, we investigate this limitation inside the scaled dot-product

attention mechanism and propose a replacement cosine attention to tackle the

problem. Although prior research has utilized the cross-attention mechanism for

few-shot learning, our work stands out as the first to investigate deeply the cross-

attention limitation for the few-shot classification problem. To the best of our

knowledge, this is the first time the cosine similarity-based attention mechanism

has been explored and proven its effectiveness in the tasks of few-shot learning.

3 Problem formulation and notations

We first formalize a standard few-shot classification problem while introducing

some notations. In the few-shot learning problem, the objective is to develop a

few-shot model that is able to perform tasks, in this case, image classification, on

any set of random categories given only a very small amount of labeled samples

per category as support information. Given a train setDtrain and few-shot learner

A(. | θ). The objective of few-shot classification is to learn the optimal parameter

θ∗ so that it can achieve a good performance of algorithm A(. | θ) on a test set

Dtest. Dtrain and Dtest must be disjoined in categories.

A few-shot learning problem is usually trained with an episodic learning

strategy, where the proposed approach is trained and tested on different tasks

with different sets of categories. The episodic learning with m tasks is generally

described in Fig. 1. Individual task T = {S, Q} ∼ p(D) is derived randomly

from data set D, where D can be either the training set Dtrain or testing set

Dtest depending on the training scheme and p(D) is the distribution over D.

Each task T consists of two sub-sets: labeled support set S and unlabeled query

set Q that share the same n ground truth categories. The objective is to train

the few-shot model to be able to classify Q given only S as support information

on any arbitrary n categories. Task T = {S, Q} is also called episodic batch or

episode for short. One training epoch may contain various episodes.
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  :

:

  :

  :

n-way

k-shot

Fig. 1: Formulation of few-shot learning problem including the training
set Dtrain with m tasks and the testing set Dtest with v tasks. Here, m and v
could be equal or different. Each task T comes with different sets of categories
and consists of labeled support set S and unlabeled query set Q that share the
same categories. Support set S follows the n-way k -shot setting. Dtrain and Dtest

are disjointed in categories. A few-shot learner A is trained on Dtrain to perform
test on Dtest.

Let (x, y) be defined as the input image sample and its ground truth, respec-

tively. The objective for a few-shot classification task is to predict labels of the

query set Q =
{
xi
q

}q

i=1
, given the support set S =

{
(xs, ys)

i,j
}j=1,··· ,k
i=1,··· ,n , where

ys ∈ C for a set of n categories (n-way), k is the number of training samples

per category (k-shot), and q is the total number of Q samples. The number of

k must be small in a few-shot setting. In this paper, we explore two configura-

tions: 5-way 5-shot and 5-way 1-shot. The few-shot classification problem can

be formulated with the following optimization formula:

θ∗ = argmin
θ

E(S,Q)∼p(D)L
(
S,Q; A(. | θ)

)
, (1)
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(q, n, d)

Cosine Attention

Transpose Matrix Multiplication

Matrix cosine similarity

Q
Queries

Q
Supports

softmax1

2-layer
FFN

Add
&

Norm

Linear

Linear Linear
Add

&
Norm

softmax

Linear

Linear Weight
mean

Cosine
LinearEmbedding

network

Embedding space

Learnable proto-representation
Cosine Transformer

Fig. 2: The overall architecture of the proposed Few-shot Cosine
Transformer, which includes two main components: (a) learnable proto-
representation that calculates the categorical proto representation given ran-
dom support features that might be either in the far margin of the distribution
or very close to each other and (b) Cosine Transformer that determines the
similarity matrix between proto representations and query samples for the few-
shot classification tasks. The heart of the transformer architecture is Cosine
Attention, a cross-attention mechanism with cosine similarity and no softmax
function to deal with two different sets of features. The Cosine transformer shares
a similar architecture with a standard transformer encoder block, with two skip
connections to preserve information, a two-layer feed-forward network, and layer
normalization between them to reduce noise. The outcome value is through a
cosine linear layer, with cosine similarity replacing the dot-product, before feed-
ing to softmax for query prediction. This figure is better viewed in color.

where

L
(
S,Q; A(. | θ)

)
=
−1
q

∑
(xq,y)∈Q

log
[
p
(
y
∣∣ A(xq | θ); S

)]
+ λR(θ),

with p
(
y
∣∣ A(xq | θ); S

)
is the probabilistic prediction of sample xq ∈ Q on

true label y using few-shot algorithm A(.|θ) given for xq and support set S. λR(θ)

is an optional regularization with factor λ. The loss function L
(
S,Q; A(.|θ)

)
is

dependent on the few-shot problem and method. In this work, the Categorical

Cross-entropy loss Equation 1 is explored for categorical classification.

4 Few-Shot Cosine Transformer (FS-CT)

In this section, we describe the proposed Few-Shot Cosine Transformer (FS-CT)

architecture, which utilizes transformer framework to learn the similarities be-

tween labeled support and unlabeled query features to recognize query samples

following the transductive learning approach. Fig. 2 presents the overall architec-

ture of FS-CT, with two main components: learnable prototypical embedding,

and Cosine Transformer.
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Overall, FS-CT shares a similar architecture with the transformer encoder

architecture. Given two input support set S and query set Q, their images are

fed into a backbone feature extractor to obtain two feature tensors ZS and ZQ,

and then features from ZS are averaged along individual categories to obtain the

prototypical representation ZP like the prototypical network [38]. Unlike other

conventional transformer-based architectures, positional encoding is removed,

since the arrangement of features is unimportance. After that, ZP and ZQ are

brought into three linear layers to split into a multi-head of three features ⟨q∗,

k, v⟩4, then go through a multi-head cross-attention mechanism to obtain the

weight attention features of ZQ on ZP . Instead of using the vanilla softmax

attention, we propose a variation of the attention mechanism named “cosine

attention”, which utilizes cosine similarity to calculate the attention weight. The

outcome attention values between heads are then fed to an output linear layer

to combine heads together, followed by a two-layer MLP with GELU activation

function. Two skip-connected layers are applied to prevent losing information

and layer normalization is applied before the linear layer for smoothing values

throughout the FS-CT. Finally, the outcome feature is brought through a Cosine

linear layer followed by the softmax to yield probabilistic scores on individual

categories to predict queries’ labels. In the following subsections, we will describe

in detail the essential modules within our FS-CT method.

4.1 Learnable Prototypical representation

Given support set S = (XS , YS) and query set Q = (XQ, YQ) follows few-shot

setting (n-way, k-shot, q query samples) with YS , YQ ∈ n categories; XS , XQ ∈
Rc×h×w; XS and XQ are first fed to a backbone feature extraction f(. | θ) to

obtain the feature representations ZS ∈ Rn×k×d, ZQ ∈ Rq×d. Then, all k learned

features {zic} ∈ ZS , i ∈ [1, k] that share the same category c are then average

equally (arithmetic mean) to obtain the prototypical representation ZP ∈ Rn×d,

with zc ∈ ZP represented for the centroid of category c. However, with the

few supporting samples chosen randomly, the prototypical representations are

not guaranteed to be well represented using this arithmetic mean approach. This

may happen when the embeddings of chosen samples are in the far margin of the

categorical distribution space or close to each other as in Fig. 2. This problem

becomes critical when the number of shots is low. To tackle the problem, we

propose an improvement to turn the arithmetic mean into mean as weighted sum

(or weighted mean), where the weights can be adjusted through the learning

process to obtain a better prototypical representation for each category given

4 To avoid the conflict from double usage of the term “query”, we denote the queries
q∗ of the attention mechanism to distinguish with the query set Q with sample size
q in the few-shot tasks.
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the same small support samples. The formula for the learnable prototypical

embedding is described by:

zP =

k∑
i=1

zis . Softmax [g(a | θP )] , (2)

Initially, the mean weights Wavg = g(a | θP ) for calculating categories’ cen-

troid are obtained by feeding a fixed scalar input a into the linear layer g(. | θP )
with learnable weight θP ∈ Rn×k×1 and no bias. We used a = 1 so that the

output Wavg can have the same value with the weight θP . After achieving the

mean weight, Softmax is applied along the k axis to ensure that components

within that axis form the weight distribution with the sum of 1. Then, the pro-

totypical representation ZP ∈ Rn×d is obtained by element-wise multiplication

between Zs ∈ Rn×k×d and Wavg ∈ Rn×k×1, then summarize values along the k

axis to achieve the weighted mean representation on each category, which is the

prototypical representation.

In our implementation, instead of feeding a fixed scalar into a linear layer,

we directly initiate a learnable parameter with value a = 1 that shares the same

dimensional space Rn×k×d and fed it to a softmax function for Wavg. We used

the initial value of 1 for the learnable parameter as we want to begin with aver-

aging equally among feature vectors within the same category at first, but then

weight values w ∈Wavg will vary through the training process to obtain a better

prototypical representation that fits best with given data. In the experiment, the

improved learnable prototypical embedding helps us achieve a better represen-

tation than the standard one and thus comes with higher performances in many

scenarios.

4.2 Cosine Transformer

Cosine similarity between two matrices Given two vectors a,b ∈ Rn, the

cosine similarity score between a and b is calculated by the dot-product of two

vectors divided by the product of their magnitudes, by:

SC(a,b) =
a · b
∥a∥ · ∥b∥

=

∑n
i=1 ai · bi√∑n

i=1 a
2
i .
√∑n

i=1 b
2
i

, (3)

From the formula for vectors above, we expanded the definition of cosine sim-

ilarity on matrices. Specifically, the cosine similarity SC(A,B) ∈ Rn×m between

matrix A ∈ Rn×k and B ∈ Rk×m is the Hadamard division between the matrix

multiplication of A and B⊤ and the outer product between vectors MA ∈ Rn

and MB⊤ ∈ Rm, where MA and MB⊤ are the vectorization of the magnitude

values of the row vectors of two matrices A and B⊤, respectively. The definition

of cosine similarity on two matrices is described by:
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SC(A,B) = (A ·B)⊘ (MA ⊗MB⊤) (4)

= (A ·B)⊘
([√∑k

i=1 a
2
1,i, · · · ,

√∑k
i=1 a

2
n,i

]
⊗

[√∑k
i=1 b

2
i,1, · · · ,

√∑k
i=1 b

2
i,m

])
,

With that definition, individual element SC(A,B)i,j is the cosine similarity

score between the row vector ai of matrix A and the column vector bj of matrix

B, where i ∈ [1, n], j ∈ [1, m].

Cosine attention mechanism Initially, as n and q are different in values, we

reshaped the proto-feature ZP ∈ Rn×d into the 1× n× d tensor and ZQ ∈ Rq×d

into a q × 1 × d tensor so we can maintain both n and q dimensions in the

attention output ha ∈ Rq×n×d, providing the similarity matrix between ZP and

ZQ. With the two reshaped tensors, a set of three representations ⟨q∗, k, v⟩
are obtained by linear layers: q∗ = ZP · θ⊤q∗ ; k = ZQ · θ⊤k ; v = ZQ · θ⊤v where

θq∗ , θk, θv ∈ Rd×dh are the weight matrices, dh is the dimension inside attention.

The output attention head ha can be computed using the scaled dot-product or

“Softmax Attention” (Soft Attn) by:

hSoft Attn
a = A · v

= softmax
[
(q∗ · k⊤)/

√
d
]
· v, (5)

Specifically, in the softmax attention, the matrix multiplication performs

dot-product operation between every pair of feature vectors between q∗ and

k⊤, then divided by a scaling factor
√
d before feeding to a softmax function

for an attention map A ∈ Rq×n×1, then multiplies with v ∈ Rq×1×d for the

attention output ha ∈ Rq×n×d. However, as there is an extra dimension for

both A and v, the matrix multiplication becomes the Hadamard product under

tensor broadcasting. Therefore, in nature, the attention output ha becomes the

element-wise multiplication between query features and the attention map of

query samples and support proto-representations. While it is quite different from

the usual concept, the nature of the attention mechanism is still preserved in ha.

The core of the Softmax attention is the dot product operation, which calcu-

lates the similarity involving vector angle and length (magnitude). The involve-

ment of feature-length comes with limitations. First, the feature magnitude is a

distinguishing yet unimportant factor in calculating attention, and the similar-

ity output map can become unstable when feature magnitudes vary. This can

be critical when q and k come from two distributions: few-shot support and
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query sets respectively. Second, the enlarging in magnitude makes the softmax

function produces an extremely small gradient output, thus leading to gradient

vanishing [42]. While the division of the fixed scaling factor
√
d in softmax at-

tention helps counter this phenomenon, the differential in feature magnitudes

still remains.

Therefore, to remove the effect of the differences in vectors’ magnitude, we

replaced the dot-product with cosine similarity for calculating A. We clarify that

the concept of replacing the dot-product operation with cosine similarity is not

new and has been studied in [28] and applied in few-shot image classification

in [8, 16] in terms of a cosine similarity-based classification/recognition model.

In this study, the replacement of cosine similarity in the attention mechanism

helps us highlight the alignment between two representations by features’ con-

tent. Specifically, instead of using a fixed number for scaling the entire weight

matrix, individual components of the multiplicated matrix will be divided with

the product of their corresponding vector’s magnitude. We refer to this atten-

tion mechanism as “Cosine Attention” (Cos Attn) by Equation 6, based on the

definition of cosine similarity for matrices as in Equation 4.

hCos Attn
a =

[
(q∗ · k⊤)⊘ (M q∗ ⊗M k)

]
· v, (6)

With cosine similarity, the attention mapA focuses more on the features’ con-

tent and determines a better correlation matrix between every pair of features

⟨q∗i ∈ q∗, kj ∈ k⊤⟩. Furthermore, the output distribution of cosine attention can

be stable even if its input magnitude varies [28]. By removing the magnitude,

the output of cosine similarity is bounded into the range of [−1, 1], indicat-

ing the similarity between the two features. Thus, the Softmax function is no

longer necessary for scaling the values. Without the softmax, attention map A
still maintains the probabilistic distributions in the row vectors as well as its

components’ ratio. Moreover, as cosine similarity does not scale the weight dis-

tributions into the sum of 1, ai,j ∈ A possesses a wider range of value. This helps

emphasize query features on aligned categories in ha and vice versa, hence boost-

ing the model’s performances. In our empirical experiment, removing softmax

operation in cosine attention helps increase our proposed FS-CT performance

significantly, and normalizing q and k before feeding to the Softmax attention

does not procedure an attention map as adequate as using the cosine attention

alone.

In our FS-CT method, we apply the multi-head mechanism for cosine atten-

tion. The initial three linear layers split ZP and ZQ into sets of ⟨q∗
t, kt, vt⟩

where t ∈ [1, 8]. For each set, a corresponding attention output ht
a is computed

by either softmax or cosine attention, represented for the projection output in

different perspectives. Then, the Hout ∈ Rq×n×d is obtained with the output

weight matrix θ◦ ∈ Rdh×d by:
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Hout = concat(ht
a) · θ⊤◦ , t = 1, · · · , 8. (7)

Cosine linear layer for queries prediction After the attention block, two

skip connections are performed on Hout = (ZP + Hout) + FFN(ZP + Hout)

with layer normalization before each step. The feed-forward network FFN is a

simple two linear layers with GELU [19] activation function in between. With

the final outcome feature Hout ∈ Rq×n×d, a linear layer with weight θout ∈ Rd×1

is applied follows by softmax for Pout ∈ Rq×n, which represent the probabilistic

prediction for every query features on n categories. Instead of using a conven-

tional linear layer, we used a cosine linear layer from [8]. Furthermore, instead

of performing the dot-product between Hout and θout, cosine similarity SC(a, b)

is replaced between two L2-normalized tensors with Equation 3. The replace-

ment of cosine similarity instead of the convention dot-product operation helps

us achieve a better prediction score for Pout. Overall, the probabilistic prediction

p(c | hq,c; θout) for representation score hq,c on label c of query sample xq over

n categories and the predicted label ŷ are calculated by:

p(c | hq,c; θout) =
exp[SC(hq,c, θ⊤out)]∑n
i=1 exp[SC(hq,i, θ⊤out)]

, (8)

ŷ = argmax
c

p(c | hq,c, θout), (9)

4.3 Episodic Training

We train our proposed FS-CT method with an episodic learning strategy, pre-

sented in detail in Algorithm 1. For each training step, task T = {S, Q} are

selected randomly from Dtrain with n categories. For convenience, all learning

parameters are referred to as a general parameter θ. With FS-CT, includes back-

bone feature extraction f(. | θf ), is performed, we obtain the probabilistic pre-

diction p(y | xQ, S; θ) of sample xQ ∈ Q on label y given S. Finally, Categorical

Cross-entropy loss is applied to update parameters at the end of each training

step as in Equation 1.

5 Experiment Results

5.1 Datasets and Experimental setup

To evaluate our method, we adopt three standardized few-shot image classifica-

tion datasets mini-ImageNet [43], CIFAR-FS [4], and CUB-200 [44]. The mini-

ImageNet dataset is the subset of ImageNet dataset (ILSVRC-2012) [33] that
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Algorithm 1: Episodic training algorithm of FS-CT over one
training epoch with N tasks (episodic batch). Each task Ti is chosen
randomly from the training set Dtrain with a different set of categories
to train and update the general parameter θ of our proposed FS-CT,
including the embedding backbone f(. | θf ).

Input : Training set Dtrain. The number of learning tasks N .
Learnable parameters θ, learning rate θ

Output: Updated parameters θ

for i in {1, ..., N} do
1 Randomly chosen task Ti = {S, Q} ∼ p(Dtrain).
2 Obtain feature representations ZS , ZQ from S and Q by the

backbone f(. | θf )
3 Calculate the prototypical representation ZP using Equation (2).
4 Obtain ⟨q∗, k, v⟩ for attention by:

q∗ ← ZP · θ⊤q∗ ; k← ZQ · θ⊤k ; v← ZQ · θ⊤v
5 Calculate Hout by Cosine Attention by Equations (6) and (7).
6 Perform two skip-connections and FFN for Cosine Transformer :

Hout ← (ZP + Hout) + linear(GELU[linear(ZP + Hout)])
7 Obtain the query prediction scores ŷ with Equation (9).
8 Compute the loss function L as in Equation (1).
9 Perform gradient descent step to update the parameter:

θ ← θ − α∇θL
end

consists of 100 different categories with 600 image samples per each, each image

having the size 84×84 pixels. In our implementation, we used the splits by Ravi

and Laroche [32] including 64 training categories, 16 validation categories, and

20 testing categories. CIFAR-FS including 100 categories containing 600 images

for each label with the size of 32×32 pixels. The splits of this dataset are similar

to mini-ImageNet. The CUB-200 dataset contains 200 categories of bird species

with 11,788 images of 84 × 84 pixels, which are divided into 100 categories for

training, 50 categories for validating, and 50 categories for testing.

Besides the three few-shot datasets above, we also created a custom dataset

for yoga poses scoring, including 50 categories of main yoga poses with 2,480

images. We developed this small-scale dataset as an initial step toward mak-

ing a smart monitoring and study scheme for yoga participants. The dataset is

partially derived from Kaggle [34] and stored in our implementation code on

GitHub5. The number of images are ranging from 30 to 81 samples per cate-

gory with arbitrary size. Furthermore, some categories’ samples are different in

viewpoint, appearance, or visual condition, which makes the dataset more chal-

5 https://github.com/vinuni-vishc/Few-shot-transformer/tree/main/dataset

/Yoga

https://github.com/vinuni-vishc/Few-shot-transformer/tree/main/dataset/Yoga
https://github.com/vinuni-vishc/Few-shot-transformer/tree/main/dataset/Yoga
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lenging. We split the dataset into 25 categories for training, 13 categories for

validating, and 12 categories for testing. Some example poses from the dataset

are presented in Fig. 3, with the statistics of the dataset distribution presented

in Table 1.

Fig. 3: Several exemplary samples for categorial poses of the yoga
poses dataset, consisting of 50 different poses with a total of 2,480 images.

Table 1: Statistical description of the custom image dataset for Yoga
poses over three main sets for training, validation, and testing few-shot image
classification method.

Train Val Test Total

Number of Categories 25 13 12 50

Min number of samples per category 30 39 31 30

Max number of samples per category 80 81 67 81

Average of samples per category 50.2 49.9 48.0 49.6

Total samples 1,255 649 576 2,480

5.2 Implementation Details

We implemented our method and conducted experiments on PyTorch, using a

CPU Intel Core i9-10900X 3.7GHz with a GPU NVIDIA GeForce RTX 3090
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Table 2: Performance of our proposed FS-CT for 5-way setting on
mini -ImageNet, CUB-200, and CIFAR-FS, using either the baseline softmax at-
tention (Soft Attn) or the proposed cosine attention (Cos Attn) with two shallow
backbones Conv4 and Conv6 with 50 training epoch and data augmentation.
Similar to [8], we report the mean of 600 randomly generated test episodic tasks.
The best and second best results are bolded and underlined, respectively. The
evaluation metric is accuracy in percentage.

mini-ImageNet CUB-200 CIFAR-FS

Methods
Conv4 Conv6 Conv4 Conv6 Conv4 Conv6

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FS-CT + Soft Attn (baseline) 42.55 58.08 39.11 56.52 53.44 66.14 55.41 65.87 48.57 66.22 46.66 65.43

FS-CT + Soft Attn + Aug 38.11 57.14 33.89 54.26 51.50 69.73 48.61 71.62 40.95 64.31 43.74 60.41

FS-CT + Cos Attn (proposed) 45.69 60.38 40.52 59.85 56.41 67.12 55.27 66.90 53.86 69.03 51.04 68.76

FS-CT + Cos Attn + Aug 40.73 60.21 35.33 57.81 56.34 75.88 55.68 76.93 47.85 68.35 45.06 67.40

Table 3: Performance of the baseline CTX [11] and our proposed
FS-CT for 5-way setting on three datasets mini -ImageNet, CUB-200, and
CIFAR-FS, using the baseline softmax attention (Soft Attn) or the proposed
cosine attention (Cos attn), with two embedding backbones ResNet-18 and
ResNet-34, pre-trained on ImageNet. Data augmentation is applied for our FS-
CT method only. Similar to Table 2, we validate the methods with 600 random
task episode tasks and report the mean value. The best and second best results
are bolded and underlined, respectively. The evaluation metric is accuracy in
percentage.

mini-ImageNet* CUB-200 CIFAR-FS

Methods
ResNet-18 ResNet-34 ResNet-18 ResNet-34 ResNet-18 ResNet-34

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

CTX (baseline) + Soft Attn 62.37 63.09 65.08 65.66 61.24 62.12 64.28 66.02 41.16 43.05 44.54 48.01

CTX + Cos Attn 77.21 92.18 82.09 93.41 73.14 85.71 76.54 88.15 60.18 73.97 61.82 74.83

FS-CT (our) + Soft Attn 72.36 84.13 73.90 85.58 74.69 85.38 75.97 87.03 63.40 77.98 63.05 78.04

FS-CT + Cos Attn (proposed) 75.93 90.12 79.01 91.64 77.72 89.13 77.72 89.63 64.29 80.57 65.67 81.44

FS-CT + Soft Attn + Aug 73.84 84.65 74.61 88.74 75.89 88.06 77.01 89.05 62.41 78.17 62.14 79.17

FS-CT + Cos Attn + Aug 77.40 91.33 80.32 93.82 81.12 91.96 81.23 92.35 64.49 81.46 67.06 82.89

* For mini-ImageNet, we will have a different experiment using

more suitable pre-trained backbones for a fair comparison.

24GB and 16GB RAM memory. Methods were trained and experimented with

the learning rate 0.001 without modification scheduler, AdamW [27] optimiza-

tion function with weight decay 1 × 10−5, and no dropout. The model is opti-

mized by Categorical Cross-entropy Loss Equation 1. These hyper-parameters

are fixed as we want to make a fair comparison between all experiment sce-

narios. We performed two configurations: 5-way 5-shot and 5-way 1-shot, with

16 query samples for each category, making a total of 80 queries. All training
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steps are trained on 50 training epochs with 200 episodic batches (episodes) for

each. Each training epoch is followed by a validating step with 200 episodes to

select the best-performed model for the testing phase on 600 episodes. All train-

ing, validating, and testing sets are disjoined in categories. To increase training

data samples for training models, we applied augmentation, including random

resizing, cropping, horizontal flipping, color jittering, and image normalizing. All

experiments were conducted in the same common ground of code, setting, and

environment for a fair evaluation and comparison.

For backbone feature extraction, we mainly utilized four backbone models

Conv4, Conv6, ResNet-18, and ResNet-32 [18] for the experiments. Conv4 and

Conv6 are lightweight CNN models with 4 and 6 layers respectively and trained

from scratch without pre-training. These models have been used in previous stud-

ies on few-shot classification [8,40,43]. On the other hand, the ResNet backbone

networks and pre-trained on mini-ImageNet are available on Torchvision. How-

ever, as the mini-ImageNet is a subset of the ImageNet, we deployed a special

pre-trained model named FETI [3] for evaluating the dataset, which will be de-

scribed in detail later. For each type of backbone architecture, we resized sample

images before training, depending on the dataset and backbone model. Particu-

larly, with CNN backbones, we resize images into 64 × 64 pixels for CIFAR-FS

(due to its small size originally) and 84 pixels for other datasets, and with Res-

Net backbones, the resized input image is 112× 112 and 224× 224, respectively.

For all experiments, we report results with Accuracy Equation 10 in percentage

as the sole metric and use this performance metric for comparisons. The offi-

cial implementation of our Few-shot Cosine Transformer and all experimental

configurations are presented on our GitHub6.

Accuracy =
Number of correct predictions

Total number of predictions
× 100, (10)

5.3 Ablation study

Evaluation on mini-ImageNet, CIFAR-FS, and CUB-200 datasets For

the experiment, besides the FS-CT model, we also deploy another attention-

based few-shot learning algorithm CTX [11] as a baseline for the comparison

with our proposed FS-CT method. We utilized both two attention mechanisms:

the baseline Softmax attention Equation 5 and our proposed cosine attention

Equation 6 for two few-shot methods for our ablation evaluation. The two main

experiment results on mini-ImageNet, CIFAR-FS, and CUB-200 datasets are

presented in Table 2 for the FS-CT method only with two embedding back-

bones Conv4 and Conv6, and Table 3 for both CTX and FS-CT methods with

ResNet-18, and ResNet-32 backbones. Both experiments are conducted in 5-way

6 https://github.com/vinuni-vishc/Few-Shot-Cosine-Transformer

https://github.com/vinuni-vishc/Few-Shot-Cosine-Transformer
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1-shot and 5-way 5-shot settings. We use the full ImageNet pre-trained models

on ResNet backbones for Table 3 and we will have a separate experiment for

a fair evaluation on mini-ImageNet in the latter section. Data augmentation is

applied for our proposed FS-CT method only.
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Fig. 4: Testing accuracies between CTX and FS-CT across the three
few-shot datasets with softmax and cosine attention mechanisms and
augmentation for FS-CT, using ResNet-34 as the backbone. Generally, FS-
CT achieved higher accuracies than CTX, with the only exception in mini-
ImageNet, where the performances of CTX are nearly equal (in 5-shot learning)
or higher (in 1-shot learning) than FS-CT. However, CTX only achieves these
performances with our cosine attention mechanism as the core. Cosine attention
improves the performances of two few-shot methods, and data augmentation
further enhances them.

In general, our FS-CT outperformed CTX in different ResNet backbones,

datasets, and few-shot settings in most cases with both two softmax attention

and cosine attention, with the only exceptions on mini-ImageNet, where CTX

outperformed FS-CT on 5-shot learning with ResNet-18 backbones and 1-shot

learning with ResNet-34 backbones (Table 3). However, in both two cases, CTX

is embedded with our proposed cosine attention mechanism, rather than the orig-

inal version with softmax attention. On the other hand, cosine attention supports

few-shot algorithms in outperforming the standard Softmax mechanisms across
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all backbones, few-shot settings, and datasets, with the improved performances

increasing from nearly 5% to over 20% across cases. Overall, 5-shot learning

comes with better performance than 1-shot learning. This happens typically on

few-shot algorithms as more label samples come with better centroid represen-

tation for individual categories, thus classifying queries better. Furthermore,

augmentation helps improve classifier performances on FS-CT, mainly on the

5-shot setting. In particular, in Table 3, the second-best and best results mainly

are FC-CT using cosine attention and its corresponding method training with

augmentation, respectively. There are some occasions when augmentation does

not help improve performance in one-shot learning. This could be explained by

augmentation that comes with the growth in noise in categorical representation,

therefore affecting the performances on one-shot learning. Augmentation seems

to be effective on ResNet backbones, as FS-CT using cosine attention with aug-

mentation mainly achieves the best result within individual scenarios. Across

scenarios, deeper backbones comes with better performances, as increasing the

number of layers helps both CNN and ResNet backbones achieve higher results.

Moreover, the models’ performance is heavily affected by the choice of back-

bone, as in most cases, ResNet-34 backbone as feature extractor comes with the

highest performance among the four. These observations are further illustrated

in Fig. 4, where the line graphs present the test accuracy correlations between

CTX and FS-CT variants on ResNet-34 backbone across few-shot settings and

datasets in Table 3.

Performances of two attention mechanisms Fig. 5 illustrates the attention

outputs as the correlation heatmap between the baseline Softmax Attention (top)

and the improved Cosine Attention (bottom) for 5-way 5-shot learning, from

the early training phase (left) to the later training phase (right). Each heatmap

point represents the similarity frequency between query samples (x-axis) from

one category and the corresponding prototypical representation (y-axis) of the

same category. All heatmaps are obtained on the performances from the same

few-shot task derived from the testing test of mini-ImageNet. Cosine attention

results in a more robust heatmap as it generates a stronger similarity matrix

between the query and support samples (through proto-representations) that

share the same ground truth, standing by the main diagonal. In the early epoch,

the attention heatmap procedure by the cosine attention achieves a similar, if

not better, than the Softmax attention heatmap from the latter epoch. The

strong connection diagonal between queries and support representations with

the same categorical ground truth becomes more apparent with cosine attention

as training progresses, resulting in a more stable heatmap. This emphasizes the

robustness of our improved cosine attention for the few-shot classification task.
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Fig. 5: Comparison between two attention outputs as the correlation
heatmap of Softmax Attention (top row) and Cosine Attention (bot-
tom row) on FS-CT, taken from epoch 10 (left column) and epoch 40
(right column) of the 50-epoch-training process. The attention heatmap
is between the query samples and support proto-representations that share the
same ground truth categories. We use ResNet-34 as the backbone embedding and
perform the 5-way 5-shot setting on the mini-ImageNet test set for the heatmap.
Cosine attention produces more stable and robust attention heatmaps (through
the main diagonal) from the early phase of training and becomes more apparent
as the training progresses. This figure is better viewed in color.

Across Table 2 and 3, we can observe that using cosine attention helps

achieve more robust performance than Softmax attention. This observation is

further illustrated in Fig. 6, where cosine attention helps both methods acquire

a higher accuracy at the starting point, and learn better training graphs across

50 epochs. The two methods’ performances improve significantly as cosine at-

tention produces a more stable attention outcome. Using cosine attention helps

improve the learning ability consistently across datasets, settings, and methods
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Fig. 6: Accuracy performances of FS-CT and CTX throughout train-
ing for 1-shot and 5-shot setting with ResNet-34 backbone, using either the
standard softmax attention or the proposed cosine attention mechanism. Co-
sine attention significantly improves both few-shot methods among settings and
datasets with higher starting points and better training plots. FS-CT achieves
better training performances than its counterpart CTX with both attention
mechanisms.

compared with the baseline Softmax attention. Additionally, applying cosine at-

tention without normalizing features is more effective than our early attempts

to normalize two input feature sets before calculating the Softmax attention.

This further highlights the robust improvement of our cosine attention for the

cross-attention mechanism compared with the baseline scaled dot-product at-

tention. Furthermore, the training graphs in Fig. 4 and Fig. 6 also show that,

under the same configuration (dataset, few-shot setting, backbone, and atten-

tion mechanism), our FS-CT learns and performs better than the baseline CTX

significantly.

Performances of FS-CT on mini-ImageNet with partially pre-trained

model As the mini-ImageNet dataset is a subset of the ImageNet dataset, using

a default pre-trained ResNet on the full ImageNet as feature extraction comes

with a naturally advanced performance on mini-ImageNet, as shown with very

high performance in Table 3. Therefore, it is unfair for us if we want to compare

our FS-CT performances with other few-shot classification methods. To tackle



Enhancing Few-Shot Image Classification with Cosine Transformer 23

Table 4: Performance of FS-CT on mini-ImageNet with a pre-trained
model FETI (Feature Extractor Trained (partially) on ImageNet) that was
trained with non-test-set overlapping ImageNet classes to avoid the natural
advantage of ImageNet pre-trained model. We use two supported backbones
ResNet-12 and ResNet-18 for the pre-trained model, with the same validating
scheme and configurations.

mini-ImageNet

Methods
ResNet-12 ResNet-18

1-shot 5-shot 1-shot 5-shot

FS-CT (FETI) + Soft Attn 45.70 57.03 40.06 58.20

FS-CT (FETI) + Cos Attn 55.62 70.36 41.84 71.34

FS-CT (FETI) + Soft Attn + Aug 38.88 57.16 47.72 62.71

FS-CT (FETI) + Cos Attn + Aug 49.39 73.00 55.67 73.42

the problem, we used a specific pre-trained model that had been trained on a

subset of ImageNet that is non-overlapped with the testing set of mini-ImageNet.

We adapted this pre-trained model, called “Feature Extractor Trained (partially)

on ImageNet” or FETI in abbreviation, from [3]. Because the pre-trained model

was trained only on ResNet-18, we used two backbone models ResNet-18 and

ResNet-12, as ResNet-32 is too different in layer number and layer size, and

ResNet-12 is roughly adequate with ResNet-18 in architecture. Table 4 shows our

FS-CT performance on mini-ImageNet with FETI pre-trained model. In general,

the performances are reduced in the comparison with results from Table 3. This

emphasizes the necessity of having a good embedding through a pre-trained

model in order to address the few-shot problem, as pointed out in [41]. Results

show that FS-CT with cosine attention still outperformed the baseline softmax

attention, demonstrating the robust learning capability of our proposed attention

mechanism.

Evaluation on Yoga poses dataset For the custom Yoga poses dataset, the

results are separately presented in Table 5. While cosine attention still comes

with more robust performances than the baseline Softmax attention, augmen-

tation overall seems not to help the method in improving the outcome results.

The best and second-best performances mainly are FS-CT and CTX, both with

cosine attention, while training with augmentation resulted in much lower per-

formances in FS-CT. Our theory is that this phenomenon is affected by the

significant difference in hard cases and visual variation of the same pose cat-

egory in the dataset. Still, these performance results showcase the potential of

few-shot learning algorithms in general and our proposed FS-ST in particular for
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Table 5: Evaluation of the baseline CTX and our proposed FS-CT
on the custom Yoga dataset using two backbones ResNet-18 and ResNet-34
with 50 training epochs and 600 random testing tasks. The best and second
best results are bolded and underlined, respectively. The evaluation metric is
accuracy in percentage.

Yoga Dataset

Methods
ResNet-18 ResNet-34

1-shot 5-shot 1-shot 5-shot

CTX (baseline) + Soft Attn 49.83 54.88 53.09 55.44

CTX + Cos Attn 59.99 76.61 63.12 77.80

FS-CT (our) + Soft Attn 61.40 69.15 58.89 71.12

FS-CT + Soft Attn + Aug 51.89 66.21 55.08 70.12

FS-CT + Cos Attn 66.38 80.34 64.32 77.66

FS-CT + Cos Attn + Aug 57.98 73.58 59.76 77.92

practical applications on healthcare topics, leading to our future studies in de-

veloping smart monitoring and scoring system for Yoga learners on downstream

devices such as smartphones.

6 Discussion

We have proposed a transformer-based method for a few-shot classification task

with an attention mechanism using cosine similarity. We find the algorithm of

our proposed Few-shot Cosine Transformer (FS-CT, along with the improved

cosine attention, is straightforward and simple to implement, with the detailed

code implementation and experimental configurations presented in the previous

section. Our experiments and ablation studies indicate that cosine similarity

benefits the attention mechanism to produce a better and more consistent cor-

relational map as attention output and enhance our framework performances

across configurations, backbones, and few-shot settings.

However, while our current results in various few-shot datasets are promising,

there are some limitations that should be considered in future research. First,

our method’s performances highly depend on the choice of embedding backbone,

particularly those with a pre-trained model. While the pre-trained backbones

provide good embedding representation that supports few-shot learning algo-

rithms to perform significantly, the dependence of the pre-trained model and its

impact should be further investigated in future studies. Second, the complexity

of architecture may prevent FS-CT from reaching higher performance levels. Al-

though skip-connection was used to preserve information, it is possible that this
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was insufficient. Many few-shot approaches, including those from [8, 38, 40, 43]

share a straightforward pipeline but perform well across few-shot datasets. We

want to continue this line of research. Third, while we consider our improved

learnable prototypical embedding is a simple method to address the support

variation challenge and hard samples in few-shot learning, further exploration

should be conducted in further studies to shed light on our improvement, es-

pecially when the training and testing sets come from two disjoined domains.

Moreover, we believe that more efficient improvements to the prototype net-

work are yet to be discovered, and the balancing between hard and easy samples

has not been fully investigated. Last, due to our limited resources, we are only

able to perform the comparison between our proposed cosine attention to the

standard scaled dot-product attention, neglecting recent other exemplars of the

attention mechanism. We suggest future studies based on our work should con-

sider a more comprehensive and wide comparison across recent variations of

the attention mechanism for vision transformer-based algorithms (not just lim-

ited to few-shot learning or image classification). We leave these limitations and

discussions for future studies.

7 Conclusion

In this study, we introduce Few-shot Cosine Transformer (FS-CT), a lightweight

and straightforward transductive learning method for the few-shot image classi-

fication task based on the prototypical network and vision transformer. We made

two improvements to our framework: (i) learnable prototypical embedding to bal-

ance between easy and hard samples of the provided labeled support instances

and (ii) cosine attention based on cosine similarity to compute correlational map

between support and query samples for few-shot recognition. Throughout exten-

sive experiments and analysis, we prove that the cosine similarity supports the

attention mechanism in providing a better and more consistent attention output

as the correlational map, supporting FS-CT to achieve competitive results across

few-shot datasets under various settings and configurations. The empirical re-

sults further show our proposed cosine attention also enhances the performances

of other vision transformer-based few-shot algorithms as well. Finally, we show-

case the potential of FS-CT in practical application in healthcare research via a

custom yoga pose dataset. However, the potential of the proposed learnable pro-

totypical embedding in dealing with hard samples and the impact of pre-trained

models on few-shot learning algorithms should be investigated in further studies.
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