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ABSTRACT

Pairwise dot product-based self-attention is key to the success
of transformers which achieve state-of-the-art performance
across a variety of applications in language and vision, but are
costly to compute. It has been shown that most attention scores
and keys in transformers are redundant and can be removed
without loss of accuracy. In this paper, we develop a novel
probabilistic framework for pruning attention scores and keys
in transformers. We first formulate an admixture model of
attention keys whose input data to be clustered are attention
queries. We show that attention scores in self-attention corre-
spond to the posterior distribution of this model when attention
keys admit a uniform prior distribution. We then relax this uni-
form prior constraint and let the model learn these priors from
data, resulting in a new Finite Admixture of Keys (FiAK). The
learned priors are used for pruning away redundant attention
scores and keys in the baseline transformers, improving the
diversity of attention patterns that the models capture. We cor-
roborate the efficiency of transformers pruned with FiAK on
the ImageNet object classification and WikiText-103 language
modeling tasks. Our experiments demonstrate that transform-
ers pruned with FiAK yield similar or better accuracy than the
baseline dense transformers while being much more efficient
in terms of memory and computational cost.

Index Terms— Transformers, admixture models, pruning

1 Introduction
Transformers [1] have been becoming the method of choice

in computer vision and machine learning [2, 3, 4, 5]. Thanks
to their ability to learn from unlabeled data and from different
data modalities, transformers have achieved state-of-the-art
performance on a wide range of tasks and applications, includ-
ing image recognition, object detection, and language model-
ing [6, 7, 8]. At the core of transformers is the self-attention

∗Co-first author.
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Fig. 1. Our Finite Admixture of Keys (FiAK) models the distribution
of the queries qi in self-attention by an admixture model whose
cluster components center around the attention keys kj , i.e. p(qi) =∑N

j=1 πijN (qi |kj , σ
2
j I), i, j = 1, . . . , N . The prior distributions

πij in the admixture are used to prune redundant attention scores

aij = softmax
(

q⊤
i kj√
D

)
. The scores S(j) =

∑
i |πij | are used to

prune redundant keys kj . A fraction of attention scores aij and keys
kj with the smallest |πij | and S(j), respectively, will be pruned away
to save memory and computation.

mechanism, which captures the contextual representation of
the input sequence by allowing each token in the input se-
quence to pay attention to other tokens [1, 9]. The capability
of self-attention to attain diverse syntactic and semantic repre-
sentations accounts for the success of transformers [10, 11].

Self-Attention. Given an input X = [x1, . . . ,xN ]⊤

∈ RN×Dx of N feature vectors, the self-attention transforms
it into sequence V̂ = [v̂1, . . . , v̂N ]⊤ ∈ RN×Dv as follows

v̂i =

N∑
j=1

softmax
(q⊤

i kj√
D

)
vj , for i = 1, . . . , N, (1)

where the scalar softmax((q⊤
i kj)/

√
D) can be understood

as the attention v̂i pays to the input feature xj . The vectors
qi,kj , and vj are called the query, key, and value vectors,



respectively; these vectors are computed as follows

[q1, q2, . . . , qN ]⊤ := Q = XW⊤
Q ∈ RN×D,

[k1,k2, . . . ,kN ]⊤ := K = XW⊤
K ∈ RN×D,

[v1,v2, . . . ,vN ]⊤ := V = XW⊤
V ∈ RN×Dv ,

(2)

where WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are the
weight matrices. We can write Eqn. 1 into the following form

V̂ = softmax
(QK⊤

√
D

)
V = AV, (3)

where the softmax function is applied row-wise.
For each query vector qi for i = 1, · · · , N , an equivalent

form of Eqn. 3 to compute the output vector v̂i is given by

v̂i =

N∑
j=1

softmax
(q⊤

i kj√
D

)
vj :=

N∑
j=1

aijvj . (4)

The matrix A ∈ RN×N and its component aij for i, j =
1, · · · , N are the attention matrix and attention scores, respec-
tively. Eqn. 3 is also called the “scaled dot-product attention”
or “softmax attention”. The attention matrix A after training
captures the contextual representation of each token.

Despite the success of transformers in capturing the contex-
tual representation of tokens in the input sequence, it has been
shown that the contextual representation learned by the self-
attention are redundant and many attention scores and keys
explain the same patterns and are not needed [12, 13, 14, 15].
Such redundancy wastes memory and computation during both
training and inference while limiting the model’s capacity, pos-
ing a challenge to scale up transformers to large-scale tasks.

Contribution. We propose a novel probabilistic model
for self-attention, namely the Finite Admixture of Keys
(FiAK), that allows pruning attention scores and keys using
the prior distributions of attention keys. FiAK models the
query distribution p(qi) as an admixture of Gaussian distribu-
tions N (qi |kj , σ

2
j I) centering around the attention keys kj ,

i, j = 1, . . . , N . Our admixture approach uses different mix-
ture models to represent the queries qi and thus helps increase
the diversity of attention patterns. Since these mixture models
share the same set of component distributions N (qi |kj , σ

2
j I),

FiAK is efficient. The prior distributions of attention keys in
FiAK are then used to prune redundant attention scores and
keys to improve the memory and computational cost of the
model. An illustration of FiAK and our pruning scheme is
given in Fig. 1. Our contribution is three-fold:

1. We develop FiAK, a new finite admixture of keys for
self-attention that allows key sharing to diversify atten-
tion patterns while guaranteeing the model’s efficiency.

2. We design a probabilistic framework for pruning trans-
formers that employs the prior distributions of keys in
FiAK to remove redundant attention scores and keys.

3. We demonstrate the advantages of our FiAK-based prun-
ing on ImageNet object classification, and WikiText-103
language modeling tasks.

2 A Finite Admixture of Keys
In this section, we first review the connection between

attention scores in self-attention with the posterior distributions
from a Gaussian mixture model (GMM) in [16]. We then
extend this GMM into a finite admixture of keys (FiAK).
2.1 Background: Attention Scores are Poste-

rior Distributions from a GMM
Given a query qi ∈ Q and a key kj ∈ K, let t be a

K-dimensional binary random variable having a 1-of-K repre-
sentation in which a particular element tj is equal to 1 and all
other elements are equal to 0. The distribution p(qi|tj = 1) is
the likelihood of the query qi belongs to the j-th cluster center-
ing around the key kj . In particular, let 1 be an identity matrix
and πj be the prior distribution p(tj = 1), the distribution
p(qi) is given by the following GMM:

p(qi) =

N∑
j=1

πjp(qi|tj = 1) =

N∑
j=1

πjN (qi |kj , σ
2
j1). (5)

Following Eqn. 5, the posterior p(tj = 1|qi) captures how
much the query qi matches the key kj and is computed by

p(tj = 1|qi) =
πjN (qi |kj , σ

2
j )∑

j′ πj′N (qi |kj′ , σ2
j′)

=
πj exp

[
−
(
∥qi∥2 + ∥kj∥2

)
/2σ2

j

]
exp

(
q⊤
i kj/σ

2
j

)
∑

j′ πj′ exp
[
− (∥qi∥2 + ∥kj′∥2) /2σ2

j′

]
exp

(
q⊤
i kj′/σ2

j′

) .
Assuming that the query qi and the key kj are normalized, the
prior πj is uniform, and let σ2

j = σ2, j = 1, 2, . . . ,K, the
posterior p(tj = 1|qi) can be written in the following form

p(tj = 1|qi) =
exp

(
q⊤
i kj/σ

2
)∑

j′ exp
(
q⊤
i kj′/σ2

) = softmax
(
q⊤
i kj/σ

2
)
.

The equation above becomes Eqn. (4) of the attention score
aij when σ2 =

√
D. Thus, under right assumptions, the

attention score aij between the query qi and the key kj in
a self-attention layer of a transformer plays the role of the
posterior distribution p(tj = 1|qi).
2.2 FiAK: A Finite Admixture of Keys

We extend the GMM of keys for self-attention in Eqn. 5
into a finite admixture of keys so that the attention score aij
can capture more diverse attention patterns and provide a prob-
abilistic framework for pruning transformers.
2.2.1 Finite Admixture Models

A finite mixture distribution of N components for a ran-
dom array X ∈ RM×D is given by

xi ∼
N∑
j=1

pjf(x; θj),

N∑
j=1

pj = 1, pj ≥ 0, (6)

where xi ∈ RD is the i-th row of X randomly sampled from
the mixture distribution. f is a chosen probability measure,
such as a Gaussian distribution as in Eqn. 5, p = {p1, . . . , pN}
are mixture weights that correspond to the prior πj , and θj
denotes the parameter values for the k-th component.



A finite admixture models (FAM) is a generalization of a
FMM, in which rows xi, i = 1, . . . ,M , are drawn from differ-
ent mixture distributions that share N components f(x; θj),
j = 1, . . . , N with different mixture weights

xi ∼
N∑
j=1

pijf(x; θj),

N∑
j=1

pij = 1, pij ≥ 0. (7)

Comparing to FMM, FAM has better representation capac-
ity thanks to its flexibility in choosing the mixture components.
Since all components are shared between mixtures in FAM,
FAM is efficient in term of the model size and computational
cost for sampling samples from the model.
2.2.2 Finite Admixture of Keys

We propose the finite admixture of keys (FiAK) for the
queries in self-attention. In Eqn. 7, let the function f(x; θj) =
p(qi|tj = 1) = N (qi |kj , σ

2
j I) and pij = πij = pi(tj = 1)

where πij = pi(tj = 1) is the prior distribution p(tj = 1) of
the mixture corresponding to the query qi. FiAK is defined as:
Definition 1 (Finite Admixture of Keys). Given a set of
queries qi and keys kj in self-attention, i, j = 1, . . . , N , the
queries qi admit a finite admixture of keys if qi are sampled
from the following finite admixture model:

qi ∼ =

N∑
j=1

πijN (qi |kj , σ
2
j I),

N∑
j=1

πij = 1, πij ≥ 0. (8)

3 Prior-based Pruning via FiAK
Using the prior πij in FiAK, we propose two novel pruning

methods: 1) attention score pruning via FiAK and 2) mixed
pruning via FiAK. For comparison with the GMM of keys
in Section 2.1, we also derive 3) key pruning via GMM. In
all of our proposed methods, attention scores and keys with
the smallest importance weights, i.e. |π̂ij |, Ŝ(j), and |π̂j | in
Algorithm 1, 2, and 3 are pruned away.

Attention Score Pruning. The magnitude of the prior,
|πij |, in FiAK implies how much the key kj is needed to
explain the query qi. These priors act as importance weights
of the keys kj given the query qi and can be used to prune away
the attention score aij , thus saving memory and computation
when computing the self-attention (see Algorithm 1).

Mixed Pruning. To further reduce the computational
complexity of the model, we introduce mixed pruning via
FiAK in Algorithm 2. In addition to pruning the attention
score aij , we derive the importance weights of the keys kj

and remove the pairs (kj ,vj) whose importance weights are
the smallest. This strategy enables the pruned model to save
computation not only at the attention calculation step, but also
removes the key vector kj and the value vector vj , as well as
other computations related to these vectors in Eqn. 4.

Key Pruning. We introduce key pruning via GMM (Algo-
rithm 3), which uses the learned prior |πj | in the GMM defined
by Eqn. 5 as importance weights to prune the pairs (kj ,vj).

Finetuning the Pruned Network. FiAK introduces addi-
tional priors πij to capture the importance of the attention score

Algorithm 1 Attention Score Pruning via FiAK
Hyperparameter 0 < k < 1: k fraction of the attention scores
aij to be pruned.
Step 1 Incorporate parameters πij into the self-attentions.
Step 2 Train the transformer with the additional parameters πij

until convergence.
Step 3 Prune k fraction of the attention scores aij whose learned
coefficients |π̂ij | are the smallest.
Step 4 Set the remaining π̂ij = 1, which corresponds to uniform
prior, and finetune the pruned network.

Algorithm 2 Mixed Pruning via FiAK
Hyperparameters 0 < k1, k2 < 1: k1 fraction of the total atten-
tion scores aij to be pruned; k2 fraction of pairs (key, value) to be
pruned.
Step 1 and Step 2 Same as Step 1 and Step 2 of Algorithm 1.
Step 3 Calculate the importance score Ŝ(j) of each pair (kj ,vj):

Ŝ(j) =
∑
i

|π̂ij |, or
1

N − j + 1

∑
i

|π̂ij | for autoregressive tasks.

Then prune k2 fraction of the pairs (kj ,vj) with the smallest
scores Ŝ(j).
Step 4 Prune k̂1 fraction of the remain unpruned aij whose corre-
sponding |π̂ij | are the smallest k̂1 = 1− 1−k1

1−k2
.

Step 5 Follow Step 4 of Algorithm 1.

Algorithm 3 Key Pruning via GMM
Hyperparameter 0 < k < 1: k fraction of the keys to be pruned.
Step 1 Incorporate parameters πj into the self-attentions.
Step 2 Train the transformer with the additional parameters πj

until convergence.
Step 3 Prune k fraction of the key-value pairs (kj,vj), whose
corresponding learned mixing-coefficients |π̂j | are the smallest.
Step 4 Set the remaining π̂j = 1, i.e. uniform prior, and finetune
the pruned network.

aij . After pruning, those extra parameters can be removed by
setting them to 1, which corresponds to using uniform pri-
ors. The network is then finetuned for more epochs to obtain
competitive accuracy compared to the dense baseline network.

4 Experimental Results
We empirically corroborate the advantages of the models

pruned via our proposed FiAK-based pruning methods over
the dense baseline model on the ImageNet object classification
task. We refer to tranformers that use FiAK-based attention
defined by Eqn. 8 as FiAKformer and transformers that use
GMM-based attention defined by Eqn. 5 as GMMformer.

Model and setting. We use the DeiT-tiny model [5] with
12 layers and 4 attention heads per layer. The model dimen-
sion is 192. To train the models, we follow the same setting
and configuration as for the baseline [5], with the initializa-
tion of the learnable priors πij and πj set to be 1√

N
and 1

N ,
respectively, where N is the input sequence’s length.

Results. Pruned models from attention score and mixed
pruning via FiAK attain much better accuracy than the DeiT-
tiny baseline while being significantly more efficient (See Ta-



Table 1. Top-1 and top-5 accuracy (%) of the pruned models from
the attention score and mixed pruning via FiAK on the Imagenet
dataset compared to the dense baseline DeiT-tiny [5].

Method Top-1 Acc Top-5 Acc

Baseline DeiT-tiny 72.23 91.13

GMMformer 72.96 91.64
Key pruning k = 30% 71.57 90.80

FiAKformer 73.50 91.90
Attention-score pruningk = 50% 73.56 91.95
Attention-score pruning k = 60% 73.67 91.91
Attention-score pruning k = 70% 73.09 91.57
Mixed pruning k1 = 70%, k2 = 15% 72.78 91.38
Mixed pruning k1 = 70%, k2 = 20% 72.25 91.14

Table 2. Comparison to other pruning methods on Imagenet task.

Method FLOPS reduced (%) Acc-1 (%)

DeiT-tiny 0.00 72.23

Head pruning [12] 23.69 68.59
S2V iTE [17] 23.69 70.12
Attention-score pruning k = 70% 8.50 73.09
Mixed pruning k1 = 70%, k2 = 20% 13.00 72.25

Mixed pruning k1 = 70%, k2 = 20% 22.76 72.24
+ S2V iTE [17]

ble 1). Attention score pruning via FiAK at different pruning
fractions k = 50%, 60% and 70% result in the highest accu-
racies. In particular, at the pruning fractions k = 50% and
60%, we observe substantial accuracy improvement over the
dense baseline (1.33% and 1.44% in top-1 accuracy, respec-
tively). These two pruned models also outperform the dense
FiAKformer. On the other hand, mixed pruning with the same
attention score pruning fraction, k1 = 70% and different key
pruning fractions, k2 = 15% and 20%, gain better accuracy
compared to the baseline while obtaining the most computa-
tion and memory reduction (See Fig. 2). Table 1 also shows the
advantage of the FiAK-based pruning over the GMM-based
pruning and validate the need of using admixture to model the
self-attention and design its effective pruning schemes.

Comparison to Other Pruning Methods. We compare
our FiAK-based pruning schemes with other pruning methods
for transformers on the ImageNet task (see Table 2 below).
Compared to the head pruning [12] and S2V iTE [17], our
schemes prune the model less but increase its accuracy. Com-
bining with the S2V iTE [17], mixed FiAK pruning can in-
crease the FLOPs reduction up to 22.76% while maintaining
similar advantage in accuracy on the ImageNet task.

Other Tasks: Language Modeling on WikiText-103.
To examine the effectiveness of our pruning methods across
different data modalities, we experiment with the word-level
language modeling task on WikiText-103 [18]. We summarize
our results in Table 3.

Efficiency Analysis. We analyze the computation and
memory complexity of the pruned models trained for the Ima-
geNet object classification task (see Fig. 2). We observe that
the efficiency advantage of models pruned via FiAK over the

Table 3. Test perplexity of pruned FiAKformer for the language
modeling task on Wikitext-103 dataset.

Method Perplexity (PPL)

Baseline softmax transformer 34.29

FiAKformer 33.69
Attention score pruning 40% 33.88
Attention score pruning 50% 34.28
Mixed pruning k1 = 40%, k2 = 10% 34.21
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Fig. 2. FLOPS and memory ratios at inference between the models
pruned with FiAK/GMM-based schemes and the Deit-tiny baseline.

baseline model grows with the sequence length. FiAK-based
pruning also wins in real time. On the ImageNet task, the
latency for the dense baseline and our attention-score pruned
FiAKformer, k = 70%, are 508 and 649 images/second (on
GPU) and 76 and 95 images/second (on CPU), respectively.

5 Related Work
Works in pruning transformers can be categorized into two

groups: 1) head pruning and 2) token pruning. An early work
in head pruning calculates the head sensitivity to decide to prun
a head or not [12]. [19] employs layerwise relevance propaga-
tion to decide the head importance. The head importance can
also be learned in a data-driven manner as in [20]. For token
pruning, [21] computes a token’s importance score as average
attention score of other tokens to that token. A dropout-based
approach that stochastically determines a sequence length at
each layer has also been used to prune redundant tokens [22].
[23] learns an attention mask for token pruning adaptively. Our
FiAK-based approach is complementary to these methods.

6 Concluding Remarks
In this paper, we propose FiAK, a novel finite admixture

of keys for self-attention, that model the distribution of queries
qi in self-attention as an admixture of Gaussian distributions
N (qi |kj , σ

2
j I) whose centers are the attention keys kj , i, j =

1, . . . , N . Using the prior distributions of the attention keys
in FiAK, we propose a probabilistic pruning framework to
remove redundant attention scores and keys in transformers.
We verify that models pruned by our FiAK-based pruning
methods improve the memory and computational cost over the
baseline dense transformers while achieving comparable or
better accuracy. Admixture models are equivalent to Latent
Dirichlet Allocation (LDA) models under a uniform Dirichlet
prior. Extending FiAK into an LDA-based framework for
pruning transformers is an interesting research direction.
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