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LOGOVIT: LOCAL-GLOBAL VISION TRANSFORMER FOR OBJECT RE-IDENTIFICATION
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ABSTRACT

Object re-identification (ReID) is prone to errors under varia-
tions in scale, illumination, complex background, and object
occlusion scenarios. To overcome these challenges, attention
mechanisms are employed to concentrate on interesting parts
of an object to extract better discriminative features. This pa-
per introduces local-global vision transformer (LoGoViT) for
object re-identification by learning a hierarchical-level repre-
sentation from fine-grained (local) to general (global) context
features. It comprises two components: (i) shift and shuffle
operations generate robust local features, and (ii) local-global
module which aggregates the multi-level hierarchy features
of an object. Extensive experiments show that our method
achieves state-of-the-art on ReID benchmarks. We further in-
vestigate effective augmentation operations and discuss how
patch modifications can help the model generalize under oc-
clusion. Our code is available at https://github.com/
nguyenphan99/LoGoViT

Index Terms— object re-id, public security, vision trans-
former, multi-scale, patch modification augmentation

1. INTRODUCTION

ReID is a task to retrieve and assign the identities of particular
objects across different cameras or viewpoints. It is prevalent
in surveillance camera applications regarding object retrieval
or crow behavior analysis. Approaches for ReID usually in-
clude extracting the visual features of an object to match with
the visual features of its other occurrences. The previous
works summarize and propose a strong baseline for person
and vehicle ReID task [1–3]. Convolutional neural network
(CNN) -based methods have been widely adopted as a natu-
ral choice for the feature extractors due to its efficiency [4–7].
CNN architectures always embody pooling operations that re-
duce the spatial dimension of the feature maps to increase the
receptive field of the model. This prevents the visual repre-
sentation of objects from fine-grained spatial information.

Several attempts, e.g., attention and multi-scale ap-
proaches, have been made to learn the finer granularity
representation of the objects by modifying the architecture
[4, 8, 9]. The attention mechanism is incorporated into CNN
to exploit the long-range dependencies as well as the global

context of the image [9–11] . The presence of various back-
grounds, illumination variation, and occlusions are still the
main challenges for those attempts.

Vision Transformer (ViT), which is a new architecture
and is able to combine the structural patterns in the global
scope and the fine-grained features in local patches. The self-
supervised and unsupervised learning method [12, 13] was
introduced to reduce the domain gap between ImageNet and
ReID dataset and archive state-of-the-art results. TransReID
[14] is the first ViT-based approach for the object ReID task,
in which it uses the transformer instead of CNN backbone
and introduces the jigsaw patch module (JPM) and side infor-
mation embedding (SIE). Thus, TransReID avoids the lost of
spatial information due to the pooling operation in CNN and
attention on the small discriminative area due to the small
receptive field, thereby producing promising ReID results.
Transformer-based approaches [15–19] also investigate the
possibility of applying to ReID task and then customized the
improved version from the vanilla transformer. However, the
variation in object scales, which could be a potential chal-
lenge for ReID, has not been carefully discussed.

This paper presents a novel object ReID framework
that is able to hierarchically extract both global structure
and fine-grained robust features with a high generalization.
The proposed framework contains a local-global module
(LGM), which is an extension of JPM, to associate multi-
scale features with their respective hierarchy level in the
JPM. Experimental results demonstrate the superiority of
LGM compared to JPM. The proposed framework also in-
cludes the patch modification augmentation to simulate the
occlusion phenomenon, aiming to address the occlusion sce-
nario. Evaluation on both person and vehicle ReID datasets,
i.e. MSMT17, Market-1501, DukeMTMC-ReID, Occluded
Duke and, VeRi-776 and VehicleID, the proposed method
achieves state-of-the-art among several ReID methods.

2. PROPOSED METHOD

This paper introduces a novel framework, called LoGoViT,
for visual re-identification. Figure 1 illustrates an overview of
the proposed LoGoViT. The novelty of LoGoViT is twofold:
i) the local-global module extracts the hierarchical structure



of the object, and ii) patch modification operations are treated
as the augmentation techniques to improve the generalizabil-
ity over the occlusion scenario of the proposed method. In this
section, we first present the transformer-based strong baseline
in Section 2.1. We then introduce patch modification augmen-
tation and the proposed LGM module in Sections 2.2 and 2.3,
respectively.

Fig. 1. Our proposed framework. CutMix and GPR and
the augmentations mentioned in subsection 3.1 are applied to
training images. An image is split into patches and projected
into a sequence of embeddings. Each embedding, with the
positional embedding and the side information embedding, is
summed to feed into layers of the transformer encoder. Be-
sides the global branch for ReID task in the last layer, the
auxiliary LGM branch shuffles and regroups all patches in
multiple levels. Each scale level shares the same parameter
set and is penalized separately with multi-scale ReID loss.
Please zoom in for better view.

2.1. Transformer-based strong baseline

Following the pipeline for person and vehicle ReID [1, 14],
an input image x ∈ RH×W×C is split into N patches, where
H,W,C represent the height, width, number of channels, re-
spectively. An extra learnable classification embedding to-
ken xcls ∈ RD is considered as a global feature representa-
tion and prepended to the input sequences. The input could
be defined as Iinput0 = [xcls;x

1
p;x

2
p; ...;x

N
p ], where Iinput ∈

R(1+N)×D is the input sequence embedding. {xi
p ∈ RD :

i = 1, 2, 3, ..., N} represents the embedding of N patches
after linear projection mapping to D dimensions.
Overlapping patches. To preserve the continuity of all
patches in the image, we employ overlapping sliding win-
dows to enhance patch linkage. With an input image of size
W × H , a patch size p, and step size s, N splitting patches
can be calculated as below:

N = NH ×NW = ⌊H + s− p

s
⌋ × ⌊W + s− p

s
⌋, (1)

where NH and NW are the number of patches in height and
width, respectively. The operation ⌊.⌋ represents the floor
function. Step size s is set smaller than patch size p. The
smaller step size s, the more overlapping patches are gener-
ated. Noted that the increased number of patches comes with
higher performance and a trade-off in computational cost.
Position embedding and additional information. We fol-
low [14] to interpolate pretrained learnable position embed-
ding P ∈ R(1+N)×D to any image size of object. Side
information embedding contains camera ID or viewpoint
of the object which is represented as SC ∈ RNC×D and
SV ∈ RNV ×D, respectively, where NC and NV are the
numbers of cameras and viewpoints. If the camera ID and
viewpoint of an image are r and q, the embeddings could
be defined SC [r] and SV [q] for all patches of an image. It
might be counteract if we directly add two embeddings SC [r]
+ SV [q] due to redundant or adversarial information. Thus,
we follow [14] to joinly encode the camera and viewpoint as
SC/V ∈ R(NC×NV )×D, and add to the input sequences. The
input sequences with camera ID r and viewpoint q are now:

Iinput0 = [xcls;x
1
p;x

2
p; ...;x

N
p ]+P+αSC/V [r∗NV +q], (2)

where α is the coefficient of the SIE. Noted that SIE are the
same for each patch but may have different values for differ-
ent images. In contrast, position embeddings are different for
each patch but the same for all images.

2.2. Patch modification augmentation

Grayscale patch replacement in ReID. To close the gap be-
tween domains or handle the part-occluded object, we deploy
grayscale patch replacement (GPR) [20]. GPR randomly se-
lects a rectangular region and replaces it with the pixels of
the same rectangular in the corresponding grayscale image.
In this work, we apply it as an effective data augmentation to
improve the model’s generalizability.
CutMix in ReID. We propose to regularize the model while
training with ID and triplet losses with strong localizable fea-
tures. We apply CutMix [21] into this scheme. CutMix pro-
poses to generate new training samples by combining two im-
ages (x1, y1) and (x2, y2). A generated example is formu-
lated as below:

xnew = M ⊙ x1 + (1−M)⊙ x2,

ynew = λy1 + (1− λ)y2
(3)

where M denotes binary region dropping out to replace an-
other image. Operators ⊙ denote element-wised multiplica-
tion. λ denotes the combination ratio between the two images.
CutMix replaces an image region with a patch from another
training example that generates more locally nature images.
Supervision loss. Two losses applied in this work are ID loss
and triplet loss. ID is cross-entropy loss (LID), and triplet
loss (Ltriplet) is defined as in Eq. 4:

Ltriplet = log
[
1 + exp

(
||fa − fp||22 − ||fa − fn||22

)]
, (4)



where (fa, fp, fn) are triplet embedding of the triplet (a, p, n).
The triplet (a, p, n) contains three samples including anchor,
positive and negative. For the combination of LID and Ltriplet
losses, we reformulate the loss function LReID-mix regarding
Equation (3):

LReID = LID + Ltriplet, (5)

LReID-mix = λLReID(xnew, y1) + (1− λ)LReID(xnew, y2). (6)

2.3. Local-global module (LGM)

Inspired by the jigsaw patch module [14], we propose a local-
global module that can hierarchically capture fine-grained lo-
cal features. Let IinputLGM

= [x1
l−1, x

2
l−1, ...x

N
l−1] denote the

input sequence to the last transformer layer. We first ap-
ply shift and shuffle operations to IinputLGM

. The order of
each hidden feature is shifted to the end with the value of
m as IinputLGM

= [xm+1
l−1 , xm+2

l−1 , ...xN
l−1, x

1
l−1, x

2
l−1, ..., x

m
l−1].

Then, the shifted patches are shuffled with k groups, where m
and k are hyperparameters.
Our local-global module can be configured with different
hierarchical levels. Suppose three levels of scale are defined
in the network after applying shift and shuffle modules; the
hidden features are in the hierarchy structure flow. Each
local features [f i

1 : i = 1, 2, 3, 4] at scale 1 contains N/4
patches (the light red block in Figure 1), this will turn the
output [Flast(f

i
1) : i = 1, 2, 3, 4], where Flast is the last

transformer layer. The combination between two consecu-
tive features at scale level 1 is considered as input for scale
2 f1

2 = [Flast(f
1
1 ),Flast(f

2
1 )]. Similarly, local features at

the final scale are formed f1
3 = [Flast(f

1
2 ),Flast(f

2
2 )]. The

other branch (the light green block as shown in Figure 1)
is standard transformer, which will turn the feature output
of I = [fglobal;x

1
l , x

2
l , x

3
l , ..., x

N
l ]. It is noted that global

branch features and features at every scale fed into the last
transformer layer are all used to calculate the ReID loss.

Ltotal = LReID-mix(fglobal) +
1

S

S∑
i=1

Si∑
j=1

LReID-mix(f
j
i ), (7)

where S and Si represent the scale level and the number
of features at each scale, respectively. fglobal represents the
global feature, and f j

i denotes the jth feature at ith scale .

3. EXPERIMENTS

3.1. Datasets and settings

We evaluated the proposed method on the four person-ReID
datasets, Market-1501 [22], MSMT17 [23], DukeMTMC-
ReID [24] and Occlude Duke [25] and two vehicle ReID
datasets, VeRi-776 [26], VehicleID [27]. Table 3.1 shows the
statistic of the datasets in detail. All the person images were
resized to 256 × 128, and the vehicle images were resized

to 256 × 256. In addition to the patch modification aug-
mentation, the augmentations: random horizontal flipping,
padding, random cropping, and random erasing, were used
in training the model. To implement the proposed LoGoViT

Dataset Object #ID #Image #cam #view
Market-1501 Person 1,501 32,668 6 -
MSMT17 Person 4,101 126,441 15 -
DukeMTMC-ReID Person 1,404 36,441 8 -
Occluded Duke Person 1,404 36,441 8 -
VeRi-776 Vehicle 776 49,357 20 8
VehicleID Vehicle 26,328 221,567 - 2

Table 1. Information of six datasets including the figures of
ID, Image, camera, view and object type.

framework, ViT-B/16 was used as the backbone, in which the
initial weight was loaded from pretrained on ImageNet-21K
before finetuning on ImageNet-1K. The proposed LGM was
created by modifying the last transformer block of ViT-B/16.
The level of hierarchy in LGM is set to 3 by default. The
model was trained with a batch size of 64 for 150 epochs.
The SGD optimizer was used with weight decay 1e − 4 and
momentum 0.9. The learning rate was 0.008 with cosine
learning rate decay. The hyperparameters m = 5 and k = 4
for the person datasets and m = 8 and k = 4 for the vehicle
datasets as suggested in [14]. The coefficient of the SIE was
set to 3.

All the experiments was conducted on a 40GB GPU in the
NVIDIA A100 server. For the evaluation metrics, we mea-
sured the results on two main popular metrics to compare the
performance in ReID task: mean Average Precision (mAP)
and Cumulative Matching Characteristic (CMC) [14].

Market1501 MSMT17
mAP (%) R1 (%) mAP (%) R1 (%)

Baseline 87.0 94.5 61.0 81.8
+GPR 87.4 (+0.4) 94.4 (-0.1) 61.6 (+0.6) 81.7 (-0.1)
+CutMix 88.9 (+1.9) 94.9 (+0.4) 63.5 (+2.5) 82.3 (+0.5)
+LGM 89.5 (+2.5) 95.2 (+0.7) 65.1 (+4.1) 83.3 (+1.5)
+SIE 89.5 (+2.5) 95.1 (+0.6) 67.3 (+6.3) 84.5 (+2.7)
+GPR OP 89.1 (+2.1) 95.1 (+0.6) 65.8 (+4.8) 84.6 (+2.8)
+CutMix OP 90.2 (+3.2) 95.6 (+1.1) 68.6 (+7.6) 85.5 (+3.7)
+LGM OP 90.5 (+3.5) 95.4 (+0.9) 69.3 (+8.3) 86.2 (+4.4)
+SIE OP 90.7 (+3.7) 95.5 (+1.0) 70.9 (+9.9) 87.0 (+5.2)

Table 2. The ablation study of each component contributes
to the model. GPR, LGM, SIE, and OP are abbreviated to
grayscale patch replacement, local-global module, side infor-
mation embedding, and overlapping patches, respectively.

3.2. Ablation study

We conducted several experiments on Market1501 and MSMT17
to determine each component’s impact on the model’s perfor-
mance. Firstly, we opted for ViT-B/16 as the baseline. We
then added on each module, including GPR, CutMix, LGM,



and SIE modules [14]. Table 2 shows the improvement when
applying one-by-one components to the model.

MSMT17 Occlude Duke VeRi-776
mAP R@1 mAP R@1 mAP R@1

Two Scale 71.1 87.1 62.1 67.6 84.3 97.1
Three Scale 70.9 87.0 61.4 67.4 84.1 97.4
Four Scale 71.3 87.3 62.8 69.2 83.5 98.0

Table 3. Results of different scales in LGM.

The effect of the depth in LGM. We evaluated saturation
by increasing the ’deep’ of the hierarchy multi-scale. The ex-
perimental results show that the deeper hierarchy might bring
higher results. Particularly, we measured the changing effect
of the ’deep’ in the LGM at three scales Dl ∈ {2, 3, 4} on
three datasets MSMT17, OccludeDuke, and VeRi-776. As
shown in Table 3, the performance of our proposed method
on three levels of scale gains stable results on both person
and vehicle datasets.

Backbone Method MSMT17 Market1501 DukeMTMC Occluded-DUKE
mAP R@1 mAP R@1 mAP R@1 mAP R@1

CNN SAN AAAI’20 [28] 55.7 79.2 88.0 96.1 75.7 87.9 - -
RGA-SC CVPR’20 [9] 57.5 80.3 88.4 96.1 - - - -
SCSN CVPR’20 [11] 58.5 83.8 88.5 95.7 79.0 91.0 - -
ABDNet ICCV’19 [10] 60.8 82.3 88.3 95.6 78.6 89.0 - -
CAL ICCV’21 [7] 64.0 84.2 89.5 95.5 80.5 90.0 - -
HOReID CVPR’20 [29] - - 84.9 94.2 75.6 86.9 43.8 55.1
RGA+APRA ICIP’22 [30] - - 88.7 95.4 78.6 88.8 - -
FED CVPR’22 [31] - - 86.3 95.0 78.0 89.4 56.4 68.1

Transformer TransReID ICCV’21 [14] 67.4 85.3 88.9 95.2 82.6 90.7 59.2 66.4
PAT CVPR’21 [17] - - 88.0 95.4 78.2 88.8 53.6 64.5
PFD AAAI’22 [18] 65.1 82.7 89.7 95.5 83.2 91.2 61.8 69.5
LoGoViT (Ours) 70.9 87.0 90.7 95.5 84.5 91.0 61.4 67.4

Table 4. Comparison of our LoGoViT with state-of-the-art
methods on Rank-1 and mAP on person ReID datasets. The
top performance is highlighted in bold and the next best is
underlined.

3.3. Comparison with state-of-the-arts

Result on the person ReID datasets. As shown in Table 4,
the proposed LoGoViT consistently improves performance of
baseline on all person ReID datasets. The results of the other
methods are based on published numbers. Particularly, mAP
and rank-1 accuracy on MSMT17 are boosted from 61.0% to
70.9% and 81.8% to 87.0%, respectively. On Market1501,
our LoGoViT achieves 3.7% mAP and 1.0% rank-1 improve-
ment better than baseline. On DukeMTMC, our proposed
method enhances 5.2% mAP and 2.2% rank-1 accuracy. Sim-
ilar to the Occluded-DUKE dataset, the performance is im-
proved from 53.1% to 61.4% mAP and 60.5% to 67.4% rank-
1. Compared with TransReID, our proposed method consis-
tently performs better on all datasets. Regarding CNN-based
approaches, our method outperforms CAL [7] with a large
margin of 6.9% mAP and 2.8% rank-1 accuracy on MSMT17.
Result on the vehicle ReID datasets. To further demonstrate
the generalization of the model, we tested our method on two
vehicle ReID datasets. Table 5 illustrates the performance

of our method compared to previous works on VeRi and Ve-
hicleID. On VeRi-776 dataset, we report 84.1% mAP and
97.4% rank-1 accuracy, which significantly surpasses most of
the works. Specifically, LoGoViT is higher than TransReID
[14] with a large margin of 3.5% of mAP. Although the rank-
1 is more generalize consistent, we also achieve 97.4% com-
pared to 95.4% of CAL [7] and 96.8% of TransReID [14]. Re-
garding VehicleID dataset, most previous works mainly focus
on rank-1 and rank-5 accuracy; thus, we also report the two
mentioned metrics as the core factors to measure the perfor-
mance on this dataset. Although LoGoViT achieve 85.4%,
which is slightly lower than ANet [32] 86.0% at rank-1, Lo-
GoViT still gains better results at rank-5 in comparison with
ANet [32]. LoGoViT achieves state-of-the-art performance
on vehicle ReID dataset, which shows its robustness in the
existing ReID challenge.

Backbone Method VeRi-776 VehicleID
mAP R1 R1 R5

CNN SAN AAAI’20 [28] 72.5 93.3 79.7 94.3
PVEN CVPR’20 [33] 79.5 95.6 84.7 97.0
SAVER ECCV’20 [34] 79.6 96.4 79.9 95.2
CFVMNet ACM Multimedia’20 [5] 77.1 95.3 81.4 94.1
CAL ICCV’21 [7] 74.3 95.4 82.5 94.7
ANet Neurocomputing’21 [32] 80.1 96.9 86.0 97.4
CAMNet ICIP’22 [35] 79.6 96.6 82.5 -

Transformer Baseline 78.2 96.5 82.3 96.1
TransReID ICCV’21 [14] 80.5 96.8 85.2 97.5
LoGoViT (Ours) 84.1 97.4 85.4 97.9

Table 5. Comparison of our LoGoViT with state-of-the-
art methods on Rank-1/Rank-5 and mAP on vehicle ReID
datasets. The top performance is highlighted in bold and the
next best is underlined.

4. CONCLUSION

This paper proposed an end-to-end LoGoViT framework for
object ReID. The proposed LoGoViT comprises the LGM
module to hierarchically extract the robust visual features
from random scenes and the patch modification augmentation
to handle occlusion scenarios. Extensive experiments show
the superiority of our method in comparison with the existing
state-of-the-art ReID methods. Furthermore, the components
of the LGM module were comprehensively studied to suggest
the best configuration of the proposed LoGoViT framework.
Besides, the optimal metric learning loss, which is a promis-
ing factor in training the proposed framework, has not been
carefully investigated. We leave it for future scope of work.
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