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Abstract— This paper addresses the problem of minimis-
ing latency in computation offloading with digital twin (DT)
wireless edge networks for industrial Internet-of-Things (IoT)
environment via ultra-reliable and low latency communications
(URLLC) links. The considered DT-aided edge networks pro-
vide a powerful computing framework to enable computation-
intensive services, where the DT is used to model the computing
capacity of edge servers and optimise the resource allocation
of the entire system. The objective function is comprised of
local processing latency, URLLC-based transmission latency and
edge processing latency, subject to both communication and
computation resources budgets. In this regard, the minimum
latency is obtained by jointly optimising the transmit power,
user association, offloading portions, the processing rate of users
and edge servers. The formulated problem is highly complicated
due to complex non-convex constraints and strong coupling
variables. To deal with this computationally intractable problem,
we propose an iterative algorithm which decomposes the original
problem into three sub-problems and resolve this problem in
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the fashion of alternating optimisation approach combined with
an inner convex approximation framework. Simulation results
demonstrate the effectiveness of the proposed method in reducing
the latency compared with other benchmark schemes.

Index Terms— Alternating optimization, digital twin, industrial
Internet-of-Things, mobile edge computing (MEC), ultra-reliable
and low latency communications (URLLC).

I. INTRODUCTION

ADVANCED development of communication technologies
and powerful computing architecture can enable a variety

of computation-intensive and time-sensitive services. In this
regard, the ultra-reliable and low latency communications
(URLLC) in 5G provides powerful ability to implement a
wide range of mission-critical applications [2]. According to
the 3GPP Release 15, URLLC aims for stringent requirement
with the targeted 1 ms latency and block error rate (BLER)
of 10−9− 10−5 depending on the use cases [3]. This technol-
ogy opens opportunities to empower various applications in
different domains, including factory automation, autonomous
vehicles, e-healthcare, and immersive applications. There-
fore, combining URLLC with other emerging technologies
has attracted much interest from active research groups in
both academia and industry. However, there are still many
open issues and research challenges in the implementation of
URLLC-based communication in practical scenarios due to
the complex relationship between the low latency and high
reliability requirements [4].

In terms of computing, the mobile edge computing (MEC)
technology leverages the powerful computation and storage
capacity of nearby edge servers to reduce the overall latency
of services. In MEC, task offloading is a key technique
that allows constrained devices to fully or partially offload
computation-intensive tasks to higher layers equipped with
more powerful processors to minimise the latency [5]. Task
offloading in the edge computing paradigm opens tremendous
opportunities for enabling a large number of novel Internet-
of-things (IoT) applications with high quality-of-experience
(QoE) and quality-of-service (QoS) requirements. Neverthe-
less, designing an effective solution for task offloading in
edge computing is still challenging due to many issues such
as joint computations and communications, heterogeneous
architecture, task integration [6], [7], [8].

Recently, digital twin (DT) has emerged as a promising
technology which is able to create virtual twins of physical
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objects and benefit many domains such as real-time man-
agement. DT was firstly introduced by Michael Grieves in
2002 based on the concept of product lifecycle management
(PLM) [9]. In 2010, the first practical application of DT
was developed by NASA with two identical space vehicles
for the Apollo project. During the period from 2011 to
present, DT has attracted more attention and its applications
span in various domains such as manufacturing, healthcare,
entertainment, intelligent transport system, and 6G networks.
Therefore, integrating DT with other promising technologies,
such as MEC and URLLC opens many opportunities as well
as research challenges to enable a next generation of future
networked systems.

A. Literature Review

Recent studies in MEC task offloading have mainly focused
on the development of optimal designs, aiming to reduce
the response time delay [10], [11] and improve energy effi-
ciency [12], [13], [14] and resource management [15], [16],
[17], [18]. In particular, a game-theoretic model and a distrib-
uted best-response solution have been introduced in [10] to
deal with a problem of maximising the expected offloading rate
in multiple agents MEC networks. Another distributed solution
for optimising long-term average of response time delay with
optimal computation offloading strategies was investigated
in [11]. In [12], an energy-efficient problem in offloading was
addressed and solved with distributed optimisation algorithms
based on the subgradient and alternating direction method of
multipliers. The energy-efficiency issue was also considered
in [14], where an NP-hard intractable problem was tackled
by a distributed framework based on a parallel processing
approach. In [15], the resource procurement and allocation
decisions have been investigated with both offline and online
optimisation algorithms. An improved hierarchical adaptive
search algorithm has been proposed in [16] to minimise the
ultra-dense IoT network energy consumption with joint device
association, resource allocation and computation offloading.
From the economic perspectives, resource allocation in task
offloading has been explored to maximise the utility of services
subject to their budget constraints [18].

In order to meet the stringent requirements of low latency
and ultra-high reliability, URLLC with finite blocklength [19]
has attracted much attention recently. Due to the complexity
of short packet transmissions in URLLC, many studies have
newly focused on the resource allocation problem for URLLC
in industrial automation [20], [21], [22], [23]. In particular,
an intensive resource allocation and beamforming design
for downlink URLLC systems has been investigated with
path-following algorithms in [20]. In [21], a decoding error
probability minimisation problem subject to transmit power
and latency constraints has been addressed, which is also
solved by a path-following algorithm. For uplink URLLC
transmission, [22] introduced the closed-form expression of
lower bound of achievable date rate for massive multiple-
input multiple-output (MIMO) systems and then a joint
pilot and payload transmission optimisation was provided
for both maximum-ratio combining (MRC) and zero-forcing
(ZF) designs. The resource optimisation for URLLC was also
presented in [23], where URLLC requirements, application
scenarios, and mathematical tools for optimising resource allo-
cation were sufficiently suggested. More recently, combining

URLLC with other emerging technologies such as MEC [24],
digital twin [25] for mission-critical applications, e.g., Industry
4.0 [26], augmented/virtual reality (AR/VR) has attracted
much attention. However, this is still in its infancy, and there
are many research issues that can be explored to contribute to
this research area [27].

As a promising technology for the next generation of
industrial automation, the development of DT opens new
opportunities for transforming the cyber-physical systems in
terms of intelligence, efficiency and flexibility [9]. In [28],
an intelligent cooperation of unmanned aerial vehicle (UAV)
swarms combining machine learning and the DT framework
has been discussed, which provides more efficient decisions
for real-time management. In combining with the MEC archi-
tecture, many active researchers recently have shown great
interest in DT-assisted task offloading [29], [30], [31], [32].
In this regard, a DT edge network (DITEN) was introduced
in [29] to minimise the offloading latency subject to consumed
service migration cost based on the Lyapunov optimisation
method and deep reinforcement learning (DRL). In [30],
DT has combined with DRL to find the optimal solution
for edge association in reducing system cost and enhancing
the convergence rate with respect to the dynamic network
states. Another DT solution for task offloading based on edge
collaboration was investigated in [31], where a DRL-based
solution was explored to reduce the system power overhead
and network delay. In [32], the latency minimisation problem
of the DT-aided offloading in edge network has recently been
addressed with the alternating optimisation approach.

Overall, URLLC, MEC and DT are three promising tech-
nologies to enable the next generation of industrial IoT
applications. Each technology itself consists of many tech-
nical hurdles to deal with, e.g., short packet transmission in
URLLC, optimal resource scheduling in MEC, and integrating
DT for management. Therefore, combining these challenging
technologies in practical scenarios is likely to open a wide
range of opportunities as well as challenges for exploring and
contributing to the research community.

B. Motivation and Contributions

Recently, the problem of computation offloading in edge
computing with the support of DT has been investigated in
the literature [29], [30], [31], [32], [33], [34], [35]. The
DT concept has been shown to empower edge networks by
creating a digital replica of physical systems. DTs can optimise
resource allocation and make accurate decisions to improve
system performance. To doing so, recent studies are focusing
on the model of dynamic computing allocation in DT-assisted
edge networks [29], [30], [31]. The deviation between the
estimated processing rate and the real-world configurations
of devices is carefully considered to practically model the
DT-aided edge network. However, these studies mainly focus
on the general task offloading in the MEC architecture while
the integration with URLLC and short packet transmission has
not taken into consideration. For instance, [33] and [34] have
adopted DRL-based algorithms to address the problem of task
offloading for the scenarios of industrial IoT and vehicular
edge networks, respectively. Again, although these studies
target industrial IoT applications, short packet transmissions
in URLLC are not considered. In addition, entirely joint
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user association, offloading decisions, and resource allocation
solutions have not been fully addressed in these studies. The
combined problem of MEC, URLLC and DT was firstly
investigated in [25], which aims to empower hybrid MEC
systems, including URLLC and delay-tolerant services. The
solution proposed in [25] targeted to minimise the energy
consumption by optimising user association, resource allo-
cation and offloading portions under URLLC-based trans-
mission. A deep learning (DL) architecture was developed
with the support of DT to find optimal resource allocation
and offloading decisions. However, the important computation
parameters (e.g. the processing rate of users and edge servers)
has not been considered. In addition, the impact of DT on the
system performance (i.e. computing capacity) and the certain
deviation existing in DT deployment have been not taken into
account in [25]. Thus so far, designing effective solutions for
task offloading in MEC with DT technology is still an open
research issue, especially for mission-critical applications in
industrial scenarios.

Moving beyond the above background, this work pro-
poses a joint communication and computation offloading in
URLLC-based edge networks with DT that takes into account
all the above issues. We aim to minimise the worst-case
latency of task offloading by optimising the user association,
transmission power and the processing rate of user equipments
(UEs), the offloading portions, and the processing rate of
edge servers (ESs). The problem is formulated based on
edge network architecture under the DT paradigm, while the
wireless communications between UEs and ESs are estab-
lished via URLLC links, which is applicable in the context
of industrial automation. The main contributions of this paper
are summarised as follows:

• We first formulate the end-to-end (e2e) latency of
DT-empowered URLLC edge networks with joint user
association and computation task offloading. The consid-
ered problem takes into account both computation and
communication aspects. Specifically, the generalised e2e
latency minimisation problem deals with user association,
transmit power, offloading policies and processing rate
of UEs and ESs subject to the service delay and energy
consumption requirements of UEs, resulting in a mixed-
integer non-convex optimisation problem.

• Combining tools from the inner approximation (IA)
framework and alternating optimisation (AO) approach,
we develop a low-complexity algorithm to solve the
formulated problem in an iterative manner. In particu-
lar, we first decompose the original problem into three
sub-problems comprising of optimal user association,
resource optimisation and optimal offloading. Then, the
approximate convex functions are developed base on IA
framework to convexify the non-convex constraints which
can be solved by the AO-based algorithm.

• For comparison, we provide sub-optimal designs to solve
the problem for given user association strategies, namely
the heuristic approach (HEU) based on the channel
condition and random association (RAN). In particular,
the heuristic approach directly matches UEs with access
points (APs) that have the best channel condition while
UEs and APs are randomly assigned to the random user
associations.

• Finally, extensive simulations are provided to obtain
key insights and investigate the impacts of the involved
parameters on the e2e latency of the system. The pro-
vided numerical results prove that the proposed solution
effectively minimises the e2e latency of the DT-aided
URLLC-based wireless edge networks.

C. Paper Structure and Notations

The remainder of this paper is organised as follows. The
system model and problem formulation for the DT-aided
URLLC-based edge networks are described in Section II.
Section III presents our proposed solution to deal with the
computation offloading problem taking into account various
communication and computation variables. For comparison,
we propose sub-optimal designs for user association in
Section IV. Next, numerical results and discussions are
provided in Section V. Finally, concluding remarks are given
in Section VI.

Notation: Throughout the paper, numbers are denoted in
lowercase while matrices and vectors are written as bold
uppercase and lowercase letters, respectively. We use the
notation x ∼ CN (., .) to represent that x is complex circularly
symmetric Gaussian distributed. � · � stands for the vector’s
Euclidean norm and C denotes the set of all complex numbers.
Finally, we denote xmk as a variable x that involves the m-th
user (UE) and k-th edge server (ES).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. DT-Empowered Edge Networks With URLLC Model

Fig. 1 illustrates a system model of DT-empowered edge
network architecture with URLLC for industrial automation.
In this model, the physical layer consists of many UEs and
ESs. Meanwhile, the DT layer is able to virtually replicate the
physical system, optimise resources, and make decisions to
control the whole system via the real-time interaction mecha-
nism. To guarantee stringent requirements on low latency and
ultra-high reliable communications, UEs connect with ESs via
URLLC links, which is highly applicable for the scenarios
of industrial automation. Subsections below fully describe the
system model for formulating a latency minimisation problem.

1) URLLC-Based MEC Architecture: We assume M UEs
in the set of M = {1, 2, . . . , M} and K ESs in the set of
K = {1, 2, . . . , K}. Each ES is associated with an access point
(AP) to provide connections of UEs. User associations of UEs
and ESs are indicated by binary variables π = {πmk}∀m,k =
{0, 1}, when πmk = 1 there is a connection from m-th UE to
the k-th ES; otherwise, πmk = 0. To guarantee performance,
we assume that each ES only serves a maximum of Mmax

UEs, i.e.,
�

m∈M
πmk ≤ Mmax, ∀k ∈ K. The transmissions

between UEs and APs are based on URLLC links with short
packet communications to meet high demands on reliability
and low latency in industrial automation.

2) Offloading Model in Edge Networks: A computational
task from the m-th UE is characterised by Jm = {ηm, T max

m },
where ηm = Cm/Dm is the task complexity (cycles/bit),
in which Dm is the task size (bits), Cm is the required
CPU cycles (cycles) to execute the task, and T max

m (s) is the
maximum latency for task Jm.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 28,2024 at 08:30:31 UTC from IEEE Xplore.  Restrictions apply. 



7672 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 11, NOVEMBER 2022

Fig. 1. An exemplary illustration of the DT-empowered URLLC-based edge
network model.

In MEC, there are two main approaches for the task
offloading model, including binary offloading [36], [37] and
partial offloading. Although the binary offloading is consid-
ered as a simple solution to implement practical systems,
the partial offloading scheme has been widely investigated
for delay-constrained applications [11], [25]. In addition, the
partial offloading allows the MEC systems to take advantages
of parallel processing, which can further reduce the overall
latency [38]. Therefore, we consider the partial offloading
model in this paper. Let α = {αm}∀m be a portion of the
task processed locally, and β = {βmk}∀m,k be the offloading
factors of the m-th UE to the k-th ES, which satisfy 0 ≤
αm ≤ 1, 0 ≤ βmk ≤ 1. We assume that the computational
task can be planned at a high granularity to provide the
partial task offloading ability. By this way, with the Jm task
coming from the m-th UE, we have Dm = αmDm +�
k∈K

πmkβmkDm and Cm = αmCm +
�

k∈K

πmkβmkCm,

satisfying αm +
�

k∈K

πmkβmk = 1.

3) DT Model: The DT services virtually replicate the
physical systems which includes the hardware information,
operating applications, real-time states. The DT can interact
in real-time with the physical system to control and manage
efficiently. According to [9], from the perspective of technical
implementation, the main principles of DT are the model of
system and data exchanged by the model. DT collects and
analyses the state information of objects via functional com-
ponents, including real-time monitoring and dynamic control
services. There are several existing tools and libraries that
implement the DT concept in real-world products, such as
Modelica, DELMIA, FlexSim, Automod, etc. [9].

The DT of URLLC-based MEC model can be represented as

DT = {M̃, K̃} (1)

where {M̃, K̃} are the virtual representation of the physical
systems including M UEs and K ESs. Based on real-time
updated information from physical objects, digital services in
the DT layer provides comprehensive functions to manage and
control the system automatically. These services can be listed
as data collection, visualisation, analysis, decision-making,
and real-time optimisation. The DT services have to promptly
provide optimised solutions on tasks offloading, edge
selection, estimated processing rate as well as transmit power
allocation to guarantee the performance of the entire system.

The DT model for the m-th UE is denoted by DTlo
m, which

is expressed as
DTlo

m = (f lo
m, f̂ lo

m) (2)

where f lo
m is the estimated processing rate, and f̂ lo

m is the
deviation in the processing rate between the physical device
and its DT [29], [30], [32]. The DT layer has the estimated
processing rate f lo

m to replicate the behaviours of UEs and
trigger decisions on optimising physical devices configuration.
In this paper, the estimated processing rate is considered as
the optimisation variables. The deviation is pre-defined as a
percentage of the estimated processing rate for simulations.
Similarly, for the k-th ES, its DT (DTes

k ) can be expressed as

DTes
k = (f es

mk, f̂ es
mk) (3)

where f es
mk is the estimated processing rate of the real ES

and f̂ es
mk is the deviation value in processing rate estimation

between the real ES and its DT. The DT replica of ESs provide
the estimated processing rate of ESs to allocate the computing
capacity of ESs. This allows the DT services to minimise
the processing latency by adjusting offloading portions, user
association and computing resource allocation.

B. Communication Model

1) Transmission Model: Each AP is equipped with L
antennas and each UE is equipped with single antenna.
Let hmk ∈ CL×1 be the channel vector between
the k-th BS and the m-th UE and can be modelled as
hmk =

√
gmkh̄mk, where gmk denotes the large-scale

channel coefficient including the pathloss and shadowing and
h̄mk denotes the small-scale fading following the distribution
of CN (0, I). Let us denote Hk ∈ C

L×M as the channel
matrix between M devices and the k-th AP, with Hk =
[h1k,h2k, ..,hMk]. Then, the L × 1 received signal vector at
the k-th AP is given by yk =

�M
m=1 hmk

√
pmksmk + nk,

where pmk is the transmission power of the m-th device,
smk is the zero mean and unit variance Gaussian information
message from the m-th UE, and nk ∼ CN (0, N0IL) is
the additive white Gaussian noise (AWGN) during the data
transmission in which N0 is the noise power.

To improve the wireless transmission performance, we adopt
the matched filtering and successive interference cancellation
(MF-SIC) at APs. This technique has been widely used for the
uplink transmission, which can improve the throughput of the
user by removing the strong interference [39]. By applying
MF-SIC technique, the decoding order is followed the UEs’
index by ordering the channel vector as �h1k�2 ≥ �h2k�2 ≥
, · · · ,≥ �hMk�2, ∀k. Then, the signal-to-interference-plus-
noise (SINR) at the k-th AP of signal transmitted by the m-th
UE can be expressed as

γmk(p, π) =
πmkpmk�hmk�2

Imk(p, π) + N0
(4)

where Imk(p, π) =
M�

n>m
πnkpnk

|hH
mkhnk|2
�hmk�2 is the interference

power produced by UEs n > m.
2) URLLC Uplink Transmission Rate: The approximation

of transmission rate (bits/s) in URLLC-based connections
is given by [22], [23]

Rmk (p, π) ≈ B log2 [1 + γmk (p, π)]
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−B

�
Vmk (p, π)

N

Q−1 (�)
ln 2

(5)

where B is the system bandwidth, N is the blocklength, �
is decoding error probability, γmk (p, π) denotes the SINR,

Q−1(.) is the inverse function Q(x) = 1√
2π

�∞
x exp

�
−t2
2

�
dt,

and Vmk is the channel dispersion given by Vmk (p, π) =
1− [1 + γmk (p, π)]−2. When the blocklength N approaches
to infinity, the data rate Rmk approaches the classic Shannon’s
equation.

Then, the uplink wireless transmission latency from the
m-th UE to the k-th ES for task offloading can be expressed
as

T co
mk (p, π, βmk) = max

∀k∈K

�
βmkDm

Rmk (p, π)

�
. (6)

C. Computation Model

1) Local Processing: The computational task Jm at m-th
UE is partially executed a portion of αm with the estimated
processing rate fm. As a result, the estimated latency to
process the task locally is given by

T̃ lo
m

�
αm, f lo

m

�
=

αmCm

f lo
m

. (7)

Assuming the deviation between the physical m-th UE and
its DT representation can be acquired in advance and the
computing latency gap between real latency and DT estimation
can be obtained by

ΔT lo
m

�
αm, f lo

m

�
=

αmCmf̂ lo
m

f lo
m

	
f lo

m − f̂ lo
m


 . (8)

Consequently, the actual time for local processing is given by

T lo
m = ΔT lo

m + T̃ lo
m. (9)

2) Edge Processing: At the k-th ES, let us denote the
estimated processing rate of the k-th ES as f es

mk, the estimated
latency of the k-th ES to process the offloaded task Jm is given
by

T̃ es
mk (πmk, βmk, f es

mk) = max
∀k∈K

�
πmkβmkCm

f es
mk

�
. (10)

Then, the gap ΔT ed
m between real latency value and DT

estimation latency can be calculated as

ΔT es
mk (πmk, βmk, f es

mk) =
πmkβmkCmf̂ es

mk

f es
mk

	
f es

mk − f̂ es
mk


 . (11)

As a result, the actual DT latency to process the offloaded task
at ESs can be expressed as

T es
mk = ΔT es

mk + T̃ es
mk. (12)

By defining the DT latency of local processing and edge
processing in this way, if the deviation increases, the process-
ing time of UEs and ESs rises that results in decreasing the
performance of the system. This makes sense in practical sce-
narios, where the DT tries to estimate as exactly as possible the
physical system to perform real-time control and management.

D. Latency Model

The considered end-to-end (e2e) DT latency in the system
can be expressed as follows

T e2e
m = T lo

m + T co
mk + T es

m =
αmCm

f lo
m − f̂ lo

m

+ max
∀k∈K

�
πmkβmkDm

Rmk (p, π)

�
+ max

∀k∈K

�
πmkβmkCm

f es
mk − f̂ es

mk

�

(13)

which includes the local processing latency at UEs, trans-
mission latency for task offloading, and the edge processing
latency at ESs. As mentioned in the task offloading model, the
computational task can be offloaded to multiple ESs simultane-
ously; however, there is a considerable variety of the offloaded
portions, transmission time, and ESs’ computing capacity to
execute the task. To reduce the straggler effect and improve the
fairness in the optimisation solution, we apply the maximum
operator, i.e., max(.) in the transmission latency and the ESs’
processing latency in (13). Since computation responses from
ESs to UEs are typically very small (e.g., control messages)
and APs can deliver these signals with very high power, the
downlink transmission latency is negligible [5], [11], [29].

E. Energy Consumption Model

Total energy consumption of the m-th UE can be modelled
as

Etot
m

�
αm, β,p, π, f lo

m

�
= Ecp

m + Ecm
m

= αm
θ

2
Cm

�
f lo

m − f̂ lo
m

�2 +
K

k=1

pmk
βmkπmkDm

Rmk (p, π)
(14)

where Ecp
m , Ecm

m are the energy consumption expression for
computation and communication, respectively while the con-
stant θm/2 represents the average switched capacitance and
the average activity factor of the m-th UE [24].

F. Problem Formulation

In this paper, we aim to minimise the worst-case of e2e
DT latency by optimising user association, offloading poli-
cies, transmission power and the estimated processing rates
of UEs and ESs, subject to constraints of quality-of-service
(QoS), energy consumption budget and computation resources
budget of UEs and ESs. The problem is mathematically
formulated as (15). The constraint (15b) presents maximum
latency constraint for every incoming task. The constraint
(15c) means that each ES can serve maximum of Mmax

UEs. The constraints (15e) and (15f) are the requirement of
minimum transmission rate and the maximum energy con-
sumption requirement of the UEs, respectively. Finally, the
constraint (15g) ensures the computation resources of ESs are
not allocated in excess.

min
α,β,π,p,f

max
∀m∈M

�
T e2e

m (π, αm, βmk, f ,p)
�

(15a)

s.t. T e2e
m (π, αm, βmk, f ,p) ≤ T max

m , ∀m (15b)
m∈M

πmk ≤ Mmax, ∀k (15c)
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αm +

k∈K

πmkβmk = 1, ∀m (15d)

Rmk (p, π) ≥ πmkRmin, ∀m, k (15e)

Etot
m

�
π, αm, β,p, f lo

m

� ≤ Emax
m , ∀m (15f)

m∈M
πmkβmkf es

mk ≤ F es
max, ∀k (15g)

α, β ∈ D , π ∈ Π,p ∈ P, f ∈ F (15h)

where D � {αm, βmk, ∀m, k|0 ≤ αm ≤ 1, 0 ≤ βmk ≤
1, ∀m, k}, P � {pmk, ∀m, k|0 ≤ �

k∈K πmkpmk ≤
Pmax

m , ∀m}, F � {f lo
m, f es

mk, ∀m, k|0 ≤ f lo
m ≤ F lo

max, ∀m; 0 ≤
f es

mk ≤ F es
max, ∀k}, and Π � {πmk, ∀m, k|πmk ∈

{0, 1} , ∀m, k} are the set constraints of offloading decisions,
uplink transmission power, processing rates, and association
policies, respectively.

III. PROPOSED SOLUTION

As we can see from problem (15), the objective function
(15a) is non-concave and non-smooth while the constraints
(15b) to (15h) are highly complicated non-convex constraints.
In addition, there are binary variables π ∈ Π strongly
coupling with other continuous variables, which produces a
mixed-integer non-convex optimisation problem. As a result,
solving (15) directly with a well-known brute-force search
(BFS) approach or branch-and-bound method is computation-
ally challenging and inapplicable, especially in large-scale
scenarios.

Therefore, to deal with (15), we first transform the original
problem into a computationally tractable problem by replacing
the objective function with its upper bound function to provide
a smooth linear function. In this regard, with introduced
variables t � {tlo, tco, tes} that satisfy τm

�
tlo, tco, tes

�
� tlo+

tco + tes, problem (15) can be equivalently
transformed to

min
α,β,π,p,f,t

max
∀m∈M

{τm(t)} (16a)

s.t. (15c) − (15h) (16b)

τm(t) ≤ T max
m , ∀m (16c)

tlo ≥ αmCm

f lo
m − f̂ lo

m

, ∀m (16d)

tco ≥ πmkβmkDm

Rul
mk (p, π)

, ∀m, k (16e)

tes ≥ πmkβmkCm

f es
mk − f̂ es

mk

, ∀m, k. (16f)

Lemma 1: Let (α�, β�, π�,p�, f�, t�) be the optimal solu-
tion to problem (16), then (α�, β�, π�,p�, f�) is also the
optimal solution to problem (15) and vice versa.

Proof: Please refer to Appendix A. �
Next, to deal with the highly complex non-convex problem

(16), we decompose (16) into three sub-problems and solve the
problem by applying the AO-IA framework [40], [41]. Three
decomposed sub-problems, namely user association optimisa-
tion, computation and communication resources optimisation,
and offloading policies optimisation which are solved at the
i-th iteration. The following subsections clearly demonstrate
the development of our proposed solution by approximating
non-convex constraints in the three sub-problems.

A. User Association Optimisation

In this sub-problem, we solve problem (16) with fixed
values of (α(i), β(i), f (i),p(i)) to find the next optimal of
user association (π(i+1)). The addressed sub-problem for
optimising user association strategies is given as follows

SP-1: minimize
π,t|p(i),f (i),α(i),β(i)

max
∀m∈M

{τm(t)} (17a)

s.t. (15c) − (15h), (16c), (16e), (16f). (17b)

As we can observe from (17), the constraints (15e), (15f),
and (16e) are non-convex. Therefore, we process these con-
straints through the following approximations to generate a
convex program of (17).

Convexity of (15e): To address the non-convex constraint
(15e), we first rewrite γmk

�
p(i), π

�
= πmk

qmk(p(i),π) , where

qmk

�
p(i), π

�
is defined as

qmk

�
p(i), π

�
� Imk(p(i), π) + N0

p
(i)
mk�hmk�2

, ∀m, k. (18)

We then express the uplink transmission rate in (5) as follows

Rmk(p(i), π) =
B

ln 2

�
Gmk(p(i), π) − κWmk(p(i), π)

�
,

(19)

where Gmk(p(i), π) = ln(1+γmk(p(i), π)), Wmk(p(i), π) =�
1 − [1 + γmk (p, π)]−2 and κ = Q−1(�)/

√
N .

By following Appendix C, the approximation of (19) can
be expressed as

Rmk

�
p(i), π

� ≥ R
(i)
mk

�
p(i), π

�
� B

ln 2

�
G(i)

mk

	
p(i), π



− κW(i)

mk

	
p(i), π


�
(20)

under the following trusted regions [20]:

qmk(p(i), π) + πmk ≤ 2
�
qmk(p(i), πm) + π

(i)
mk

�
, (21)

qmk(p(i), π) + πmk

qm(p(i), π(i)) + π
(i)
mk

≤ 2
qmk(p(i), π)

qmk(p(i), π(i))
, ∀m, k (22)

where G(i)
mk

�
p(i), π

�
, and W(i)

mk

�
p(i), π

�
are defined as (47)

and (53) in the Appendix C. Consequently, we innerly approx-
imate constraint (15e) as

R
(i)
mk

�
p(i), π

� ≥ πmkRmin, ∀m, k. (23)

Convexity of (15f): By introducing new variables r̂ �
{r̂mk}∀m,k that satisfy 1

Rmk(p(i),π)
≤ r̂mk, (15f) is now

equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(i)
m

θ

2
Cm

�
f lo,(i)

m − f̂ lo
m

�2
+ Dm

K
k=1

p
(i)
mkβ

(i)
mkπmk r̂mk ≤ Emax

m , ∀m

1

R
(i)
mk(p(i), π)

≤ r̂mk, ∀m, k.

(24a)

(24b)
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The constraint (24b) is convex now, while (24a) is still non-
convex; so we follow this inequality

xy ≤ 1
2

�
ȳ

x̄
x2 +

x̄

ȳ
y2

�
(25)

with x = πmk, x̄ = π
(i)
mk, y = r̂mk, ȳ = r̂

(i)
mk to approximate

the second part in the left hand-side of (24a). In this regard,
the constraint (24a) is innerly approximated as follows

K
k=1

Dmp
(i)
mkβ

(i)
mk

1
2

�
r̂
(i)
mk

π
(i)
mk

π2
mk +

π
(i)
mk

r̂
(i)
mk

r̂2
mk

�

+α(i)
m

θ

2
Cm

�
f lo,(i)

m − f̂ lo
m

�2 ≤ Emax
m , ∀m (26)

which is now a convex constraint.
Convexity of (16e): Finally, by using variables r̂ as defined

in (24b), we rewrite (16e) as follow

tco ≥ β
(i)
mkDmπmk r̂mk, ∀m ∈ M, k ∈ K. (27)

The constraint (27) is still non-convex so we apply (45) with
x = πmk, x̄ = π

(i)
mk, y = r̂mk, ȳ = r̂

(i)
mk; then (27) is

approximated as follows

tco ≥ β
(i)
mkDm

1
2

�
r̂
(i)
mk

π
(i)
mk

π2
mk +

π
(i)
mk

r̂
(i)
mk

r̂2
mk

�
, ∀m, k (28)

which is now the convex constraint.
Based on the above developments, we solve the following

approximate convex program of (17) at iteration i:

SP-1: Convex minimize
π,r̂,t|

p(i),f (i),α(i),β(i)

max
∀m∈M

{τm(t)} (29a)

s.t. (15c), (15d), (15g), (15h), (16c),

(16f), (21), (22), (23), (24b), (26), (28).

(29b)

This is a convex problem and can be solved effec-
tively with well-known tools such as CVX [42], and
CVXPY [43]. For complexity analysis, the convex problem
(29) consists of 2MK + 3M scalar decision variables
and 7MK + 3M + 2K linear and quadratic constraints
leading to the per-iteration computational complexity of
O �√7MK + 3M + 2K(2MK + 3M)2

�
[44, Sec. 6].

B. Computation and Communication Resource Optimisation

In this subproblem, we solve (16) with given
(π(i+1), α(i), β(i)) to find next optimal values of transmit
power and processing rate of UEs, ESs (p(i+1), f(i+1)). The
addressed problem to find optimal computation and transmit
power is expressed as follows

SP-2: minimize
p,f ,t|

π(i+1),α(i),β(i)

max
∀m∈M

{τm(t)} (30a)

s.t. (15e) − (15h), (16c) − (16f). (30b)

As can be observed from the sub-problem (30), the constraints
(15e), (15f), and (16e) are non-convex. We are now in the
position to approximate these constraints and then transform
the sub-problem (30) into a convex program.

Convexity of (15e): To address this constraint, we process
similarly as in subsection III-A with the inner approximated
rate of Rmk

�
p, π(i+1)

�
constructed from γmk

�
p, π(i+1)

�
=

pmk

qmk(p,π(i+1)) , where qmk

�
p, π(i+1)

�
is given by

qmk

�
p, π(i+1)

�
� Imk(p, π(i+1)) + N0

π
(i+1)
mk �hmk�2

, ∀m, k. (31)

Additionally, by approximating G(i)
mk

�
p, π(i+1)

�
and

W(i)
mk

�
p, π(i+1)

�
similarly as in the subsection III-A,

we obtain the inner approximation of the uplink rate at the
i-th iteration as follows

Rmk

�
p, π(i+1)

�
≥ R

(i)
mk

�
p, π(i+1)

�
� B

ln 2

�
G(i)

mk

	
p, π(i+1)



− κW(i)

mk

	
p, π(i+1)


�
. (32)

Consequently, the constraint (15e) can be iteratively replaced
by

R
(i)
mk

�
p, π(i+1)

� ≥ π
(i+1)
mk Rmin, ∀m, k. (33)

Convexity of (15f): By introducing new variables ř �
{řmk}∀m,k that satisfy 1

Rmk
≤ řmk, then (15f) is equivalent

to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(i)
m

θ

2
Cm

�
f lo

m − f̂ lo
m

�2
+

K
k=1

β
(i)
mkπ

(i+1)
mk Dmpmkřmk ≤ Emax

m , ∀m

1

R
(i)
mk

�
p, π(i+1)

� ≤ řmk, ∀m, k.

(34a)

(34b)

The constraint (34a) is still non-convex so we follow (45) with
x = pmk, y = řmk, x̄ = p

(i)
mk, ȳ = ř

(i)
mk to iteratively express

(34a) as
K

k=1

β
(i)
mkπ

(i+1)
mk Dm

1
2

�
ř
(i)
mk

p
(i)
mk

p2
mk +

p
(i)
mk

ř
(i)
mk

ř2
mk

�

+α(i)
m

θm

2
Cm

�
f lo

m − f̂ lo
m

�2 ≤ Emax
m , ∀m (35)

which is a convex constraint.
Convexity of (16e): By using (ř) defined in (34b), (16f)

can be linearly expressed as

tco ≥ Dmπ
(i+1)
mk β

(i)
mk řmk, ∀m, k. (36)

Finally, based on the above development, we solve the
following approximate convex program of (17) at iteration i:

SP-2: Convex minimize
p,f ,ř,t|

π(i+1),α(i),β(i)

max
∀m∈M

{τm(t)} (37a)

s.t. (15g), (15h), (16c), (16d),

(16f), (33), (34b), (35), (36). (37b)

Problem (37) is a convex program, which can be solved
efficiently by the CVX package. The convex problem (37)
comprises 3MK +4M variables and 6MK +4M +K linear
and quadratic constraints. Therefore, solving (37) requires
per-iteration complexity of O�√6MK + 4M + K (3MK +
4M)2

�
[44, Sec. 6].
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Fig. 2. The flow chart of the optimisation procedure.

C. Offloading Policies Optimisation

In this subsection we solve (16) with fixed
(p(i+1), f(i+1), π(i+1)) find next optimal values of offloading
policies, (α(i+1), β(i+1)). The optimisation problem is
expressed as follows

SP-3: Convex minimize
α,β,t|

π(i+1),p(i+1),f (i+1)

max
∀m∈M

{τm(t)} (38a)

s.t. (15d), (15f), (15g), (15h), (16c)−(16f).

(38b)

The sub-problem (38) is obviously a convex program
with all linear constraints, which can be solved by CVX.
The per-iteration complexity required for solving (38) is
O�√3MK + 5M + K (MK + 4M)2

�
, where the numbers

of scalar variables and constraints are MK+4M and 3MK+
5M + K , respectively.

D. Proposed Algorithm

Let us denote S(i)
1 � (π(i), r̂(i)), S(i)

2 � (p(i), f (i), ř(i)),
and S(i)

3 � (α(i), β(i)) at the i-th iteration, respectively.
We now propose Algorithm 1 to solve the problem (16).
Due to the relaxation of binary variables of user associations
for solving the approximate problems, we implement step
8 and step 9 to recover binary values of π, repeat the solving
procedure for other variables and obtain the final output. The
flow chart of the optimisation process is illustrated in Fig. 2.

Complexity and convergence analysis: In the whole algo-
rithm, the major computation complexity comes from solving
the joint communication and computation resource allocation
subproblem. Given the number of the required iterations
I , the worst-case complexity of Algorithm 1 is given by
O �I√6MK + 4M + K(3MK + 4M)2

�
. In terms of con-

vergence, it is important to note that the approximate func-
tions provided in Section III satisfy the properties of IA
framework in [41]. According to [40], Algorithm 1 generates
sequences of improved points (π(i), r̂(i)), (p(i), f (i), ř(i)), and
(α(i), β(i)) by solving (29), (37) and (38), respectively, with
non-increasing e2e latency after each iteration. Additionally,
the feasible sets of three problems (29), (37), and (38) are
convex and connected. Therefore, the sequences of (π(i)),
(p(i), f (i)), and (α(i), β(i)) are guaranteed to achieve at least
the local optimal solution of problems (29), (37), and (38),
respectively.

IV. SUB-OPTIMAL DESIGNS WITH GIVEN USER

ASSOCIATIONS

In this section, we propose two sub-optimal designs for
solving (16) with given user association strategies. In par-
ticular, the user association can be obtained by a heuristic

Algorithm 1 AO-IA Based Algorithm for Solving (16)
Require: Set i = 0 and randomly choose initial feasible points

S(0)
1 , S(0)

2 and S(0)
3 to constraints in (29), (37), (38); Set the

tolerance ε = 10−3 and the maximum number of iterations
Imax = 20.

1: repeat
2: Solve problem (29) for given S(i)

2 ,S(i)
3 to obtain the next

solution of (π∗, r̂∗) and update S(i+1)
1 := (π∗, r̂∗);

3: Solve problem (37) with given S(i+1)
1 ,S(i)

3 to obtain
the next solution of (p∗, f∗, ř∗) and update S(i+1)

2 :=
(p∗, f∗, ř∗);

4: Solve problem (38) with given S(i+1)
1 ,S(i+1)

2 to obtain
the next solution of (α∗, β∗) and update S(i+1)

3 :=
(α∗, β∗);

5: Set i := i + 1;
6: until Convergence or i > Imax.
7: Recover binary values of π∗ s.t. (15c).
8: Repeat from Step 1 to Step 6 with fixed π∗;
9: Output: {α∗, β∗, π∗,p∗, f∗} and max{τm(t)}∀m.

approach or random assignments for some practical scenarios
to reduce the processing time, i.e., small-scale systems and
systems requiring low-complexity.

For the heuristic approach (HEU), the policies of user asso-
ciation (π) are obtained by directly using channel condition
expressed as (39). In this way, at the initial step, UEs are
connected with the ESs having the best channel gain, which
the sub-optimal user association can be found as:

πh =
�
πh

mk

���πh
mk = 1 if k∗ = arg max{�hmk

k∈K
�2};

otherwise, πh
mk = 0 s.t. (15c), (15e)

�
. (39)

In this regard, there is no need to solve the sub-problem III-A
while the resource optimisation and offloading optimisation in
sub-problem III-C and sub-problem III-B are solved with the
given sub-optimal user association (πh) to find the minimised
e2e latency. More specifically, for the communication and
computation optimisation in sub-problem III-B, we now solve
(16) for given (πh, α(i), β(i)) to obtain the next solution
of (p(i+1), f (i+1)). For offloading optimisation, the addressed
problem is also similar as in the sub-section III-C but solving
(38) with given (πh,p(i+1), f (i+1)).

For comparison, we additionally provide random user asso-
ciations (RAN), which randomly assign UEs with ESs to
perform task offloading. The expression of the association
strategy in this scheme is given by

πr =
�
πr

mk is randomly generated
���

s.t. π ∈ Π, (15c), (15e), ∀m, k
�
. (40)

The algorithm of these sub-optimal designs is given as
Algorithm 2. Importantly, we note that Algorithm 2 does not
have binary recovering steps compared with Algorithm 1 since
user associations are established in advance followed (39) or
(40) at the initial step.

V. NUMERICAL RESULTS

In this section, we investigate the effectiveness of the pro-
posed solutions by conducting various simulations. Firstly, the
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Algorithm 2 AO-IA Based Algorithm for Solving (16) With
Given User Associations
Require: Set i = 0 and randomly choose initial feasible points

S(0)
1 , S(0)

2 and S(0)
3 to constraints in (29), (37), (38); Set

the tolerance ε = 10−3 and the maximum number of
iterations Imax = 20; Obtain sub-optimal solution for user
association with (39) or (40).

1: repeat
2: Solve problem (37) with given S(i+1)

1 ,S(i+1)
2 and πh/πr

to obtain the next solution of (p∗, f∗, ř∗) and update
(S(i+1)

3 := (p∗, f∗, ř∗);
3: Solve problem (38) with given S(i+1)

1 ,S(i)
3 and πh/πr to

obtain the next solution of (α∗, β∗) and update S(i+1)
2 :=

(α∗, β∗);
4: Set i := i + 1;
5: until Convergence or i > Imax.
6: Output: {α∗, β∗,p∗, f∗} and max{τm(t)}∀m.

parameter setting is provided as in the following subsection.
Then, the numerical results are discussed in subsection V-B.

For the purpose of performance evaluation, we compare our
proposed solution with some benchmark schemes as follows:

• “Fixed Frequency”: The addressed problem does not
consider optimising the processing rate variables of UEs
and ESs. This scheme assumes all UEs and UEs are
configured with fixed values of processing rate [25],
[31] subject to the energy constraint of UEs (15d) and
maximum computation resource budget of ESs (15e).

• “Fixed Power”: In this scheme, the transmit power of UEs
are fixed and equally set with respective to the maximum
power budget, i.e.,

�
k∈K πmkpmk = Pmax

m , ∀m. This
scheme can be used as a benchmark to compare with
existing solutions that have not considered optimising the
transmit power variables [45].

• “Fixed Offloading”: This scheme is used for demonstrat-
ing the impact of offloading optimisation in reducing the
e2e latency. Particularly, the offloading portions are fixed
and equally set up to all UEs, i.e., αm = 0.5 ∀m, while
other variables are normally taken into account when
executing the proposed algorithm.

A. Simulation Setup and Parameters

In this subsection, we present the parameters setting of our
simulations. In particular, we consider a small-scale scenario
for factory automation where all ESs and UEs are located
within an area of 100 m × 100 m [24]. The large-scale
fading of the channel between the m-th UE to the k-th AP
is modelled as gmk = 10PL(dmk)/10, where PL(dmk) =
−35.3−37.6 log10 dmk [20] denotes the path loss in dB, which
is a function of the distance dmk. The noise spectral density
is set to −174 dBm/Hz [20] and the URLLC decoding error
probability is set to � = 10−9 [22]. Other parameters are
summarised in Table I.

B. Numerical Results and Discussions

1) Algorithm Convergence: Fig. 3 clearly illustrates the
convergence behaviour of the proposed algorithms. In partic-
ular, Algorithm 1 has experienced a slight increase in the e2e
latency at the binary recovering point for user association (step
8, Algorithm 1) after sharply declining the latency to obtain

TABLE I

SIMULATION PARAMETERS

Fig. 3. The convergence of proposed algorithms in the scenario of M =
8, K = 2 under two levels of transmit power budget, Pmax = 16 dBm and
Pmax = 23 dBm, with Emax

m = 0.6 J, F es
max = 15GHz.

the optimal solution. In Algorithm 2, since the solutions of
user association are known in advance, the algorithm runs
more quickly. In addition, by jointly solving user association
and other variables, Algorithm 1 has the best performance in
reducing the e2e latency compared with Algorithm 2 for both
heuristic (Algorithm 2 - HEU) and random user association
(Algorithm 2 - RAN). For instance, under the same system
model and transmit power budget of Pmax

m = 23 dBm, Algo-
rithm 1 has gained optimal latency of approximately 350 ms
while these values in Algorithm 2 - HEU, Algorithm 2 -
RAN are about 390 ms and 610 ms, respectively. Fig. 3 also
compares the results obtained from different level of transmit
power budget of UEs. It can be clearly seen that the more
power budget the UEs have the lower latency can be achieved.
These results evidently prove that the optimisation solution for
the transmit power variables has worked effectively.

2) Impact of Maximum Energy Consumption and the Devi-
ation Values: In order to investigate the impacts of the energy
consumption budget of UEs (Emax

m ) and how this parameter
affects the system performance, we therefore have conducted
simulations with different values of Emax

m under the same
system model. Fig. 4 clearly displays the obtained worst-
case e2e latency with a range level of Emax

m from 1 J to
1.4 J. Clearly, as observed from the plots, when the energy
budget increases, the minimised latency gradually declines
in both models of M = {8, 9} UEs and K = 2 ESs. For
instance, the scenario of M = 9 UEs, K = 2 ESs has
witnessed a considerable decrease of 100 ms when Emax

m
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Fig. 4. The worst-case latency obtained by Algorithm 1 with different values
UEs energy budget (Emax

m ) in the scenarios of M = {8, 9} and K = 2.

Fig. 5. The worst-case latency versus the required CPU cycles
(Cm � C, ∀m) in the scenarios of M = 10 and K = 2, with Emax

m = 1 J.

reaches 1.4 J. In addition, Fig. 4 further investigates the impact
of the deviation level in processing rate estimation of DT
services (f̂ lo

m, f̂ es
mk) on the optimal e2e latency. Unsurprisingly,

when the deviations increase, the e2e latency increases and
correctly follows the expression in (13). For instance, under
the same system model and energy budget, the simulations of
f̂ = 3%f, ∀m, k response show slightly higher e2e latency
compared with the best estimation scheme (f̂ = 0, ∀m, k).

3) Impact of Required Computation Resource: To demon-
strate how required computation resource parameters (Cm)
affect the e2e latency, we have conducted simulations among
a range values of (Cm). Fig. 5 clearly displays the numerical
results of the observed simulations. As we can observe from
Fig. 5, increasing the required computation resource under the
same algorithm results in rising the e2e latency. For instance,
the line of Algorithm 1 experiences a considerable increase
in the worst-case e2e latency by approximately 150 ms
when the required computation resource of each task climbs to
960 megacycles. In addition, we also compare the worst-case
latency of the proposed solution with other benchmarks in
Fig. 5. Clearly, the proposed algorithm always outperforms
other schemes. In this regard, at the points of Cm = 800 mega-
cycles, Algorithm 1 obtains much lower latency than that in the
fixed offloading scheme with nearly 650 ms, while comparing
with the fixed transmit power and the fixed frequency schemes,
the gains are around 200 ms and 300 ms, respectively.

Fig. 6. Impact of local processing rate in reducing the worst-case latency
in the scenarios of M = {8, 10} and K = 2, with Emax = 1 J under
Algorithm 1.

Fig. 7. The worst-case latency versus the total computation resource of ESs
in the scenarios of M = 8, K = 2 and M = 10, K = 2, with Emax = 1 J.

4) Impact of Local Processing Rate: Fig. 6 investigates
the impact of the maximum processing rate of UEs (F lo

max)
in reducing the latency as well as offloading behaviour in
different scenarios. As we can observe from the figure, when
the UEs’ processing rate increases, the worst-case latency
gradually decreases in both scenarios of M = 8, K = 2 and
M = 10, K = 2. According to the figure, in the model of
M = 10 UEs, K = 2 ESs, the worst-case latency reduces to
around 0.44 s when the maximum processing rate climbs to
3 GHz. Additionally, Fig. 6 also illustrates that the offloaded
portion of computational tasks continuously increases when
the UEs become more powerful. This is due to the constraint
of maximum energy consumption of UEs presented in (14)
and (15f). More specifically, when the processing rate of UEs
increases, the tasks are quickly executed locally; however, UEs
have to consume much energy for computation. As a result,
in order to satisfy the energy budget, there is a large portion of
the tasks offloaded to the ESs, which is clearly demonstrated
through the bars of Fig. 6.

5) Impact of ES Processing Rate: In the MEC architec-
ture, the computation resource of ESs has a strong impact
on the system performance. To verify this, Fig. 7 shows
the worst-case latency among different values of maximum
processing rate of ESs. The figure clearly indicates that
when the computation resource of ESs increases, both overall
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worst-case latency and edge server processing latency gradu-
ally reduce. For example, with the scenarios of M = 10, K =
2, the worst-case latency reduces by approximately 200 ms
when the total computation resource of ESs climbs to 26 GHz.
These results validate that our intelligent tasks offloading solu-
tion works effectively. In addition, Fig. 7 also displays the edge
processing latency among the range values of F es

max through
the bars of the graph. As we can observe from the figure,
increasing the total computation resource of ESs obviously
decreases the processing latency of ESs. For instance, in the
scenario of M = 10, K = 2, the worst-case edge processing
latency decreases from nearly 340 ms to 190 ms when the
computation resource budget of ESs reaches to 13 GHz.

VI. CONCLUSION

In this paper, we have investigated the computation offload-
ing problem under the digital twin paradigm in URLLC-based
wireless edge networks. The addressed problem has taken
into account various factors in both communication and com-
putation variables of practical systems. In this regard, the
minimised latency is obtained by optimising the offload-
ing policies, user association strategies, transmit power, and
processing rate of UEs and ESs. To solve this challeng-
ing problem, we have proposed the AO-IA based algorithm
dealing with three decomposed sub-problems, namely user
association, offloading policies optimisation, and resource
optimisation. For comparison, we have additionally introduced
two sub-optimal designs for user association, namely the
heuristic approach based on the channel condition and the
random association. Various simulations have been conducted
to investigate the impact of involved parameters. Extensive
numerical results have successfully validated the effectiveness
of the proposed solution. Promising future directions could be
addressing a problem of heterogeneous computation-intensive
tasks in large-scale solutions.

APPENDIX A
PROOF OF LEMMA 1

In order to prove Lemma 1, we indicate that the constraints
(16d)-(16f) must hold with equality at optimal solution.
We prove for constraint (16d) and others follow similarly.
Firstly, we assume that the equality of (16d) does not hold
at the optimum for some m, i.e., existing tlo >

α�
mCm

f lo�
m −f̂ lo

m

.

There exists a positive constant Δtlo > 0 which is defined
as tlo −Δtlo = α�

mCm

f lo�
m −f̂ lo

m

. As a result, tlo −Δtlo is also feasible
solution for problem (16), but this leads to a strictly lower
obtained e2e latency. This disproves the original assumption
that the set (α�, β�, π�,p�, f�) is the optimal solution to
problem (16).

APPENDIX B
FUNDAMENTAL INEQUALITIES

We now provide some fundamental inequalities studied in
[20] and [46] based on the IA properties [41], which are used
to approximate non-convex parts.

1) For all x > 0, y > 0, x̄ > 0 and ȳ > 0, the function
ln
�
1+ x

y

�
is innerly approximated around the point (x̄ > 0, ȳ)

as [20]

ln
�
1 +

x

y

� ≥ a − b

x
− cy (41)

where a � ln
�
1 + x̄

ȳ

�
+ 2 x̄

x̄+ȳ > 0, b � x̄2

x̄+ȳ > 0, and c �
x̄

(x̄+ȳ)ȳ > 0.
2) For the convex function f(x) = 1/x on the domain

x > 0, its lower bounding concave function around the point
x̄ is

f(x) ≥ f(x̄) +
∂f(x)

∂x

���
x=x̄

(x − x̄)

=
1
x̄
− 1

x̄2
(x − x̄) =

2
x̄
− x

x̄2
. (42)

3) For the square-over-linear function f(x, y) = x2/y that is
convex on x ∈ R, y > 0, its lower bounding concave function
around the point (x̄, ȳ) is given as

f(x, y) ≥ f(x̄, ȳ) +
∂f(x, y)

∂x

���
(x,y)=(x̄,ȳ)

(x − x̄)

+
∂f(x, y)

∂y

���
(x,y)=(x̄,ȳ)

(y − ȳ) =
2x̄

ȳ
x − x̄2

ȳ2
y.

(43)

4) The convex function g(x) = 1/x2 with x ∈ R is innerly
approximated around the point x̄ ∈ R as

g(x) ≥ g(x̄) +
∂g(x)
∂x

���
x=x̄

(x − x̄)

=
1
x̄2

− 2
x̄3

(x − x̄) =
3
x̄2

− 2x

x̄3
. (44)

5) The upper bounding convex function of the product
f(x, y) = xy with x > 0 and y > 0 around the point (x̄, ȳ)
is given by [49, Eq. (B1)]:

f(x, y) = xy ≤ 1
2

�
ȳ

x̄
x2 +

x̄

ȳ
y2

�
. (45)

6) Finally, for the concave function h(x) =
√

x over x > 0,
its upper bounding convex function at the point x̄ is

h(x) ≤ h(x̄) +
∂h(x)

∂x

���
x=x̄

(x − x̄) =
√

x̄

2
+

x

2
√

x̄
. (46)

APPENDIX C
TRANSMISSION RATE APPROXIMATION

We first rewrite the SINR of UE m as γmk(p(i), π) =
πmk/qmk(p(i), π). By applying the inequality (41) for x =
π

(i)
mk, y = qmk(p(i), πm), x̄ = π

(i)
mk, and ȳ = q

(i)
mk(p(i), π(i)),

we have

Gmk(p(i), π) ≥ a
(i)
mk − b

(i)
mk

πmk
− c

(i)
mkqmk(p(i), π)

� G(i)
mk(p(i), π) (47)

where

a
(i)
mk = ln

	
1 +

π
(i)
mk

q
(i)
mk(p(i), π)



+

2π
(i)
mk

π
(i)
mk + q

(i)
mk(p(i), π)

,

b
(i)
mk =

(π(i)
mk)2

π
(i)
mk + q

(i)
mk(p(i), π(i))

,

c
(i)
mk =

π
(i)
mk	

q
(i)
mk

�
p(i), π(i)

�
+ π

(i)
mk



q
(i)
mk(p(i), π(i))

. (48)
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To find an upper bounding convex function approximation
of Wmk(p(i), π), we apply the inequality (46) for x = 1 −
1/
�
1+ γmk(p(i), π)

�2
and x̄ = 1− 1/

�
1+ γmk(p(i), π(i))

�2
,

yielding

Wmk(p, π(i)
m ) ≤ d

(i)
mk − e

(i)
mk

γmk(p(i), π)

= d
(i)
mk − e

(i)
mk

q2
mk(p(i), π)�

qmk(p(i), π) + πmk

�2
(49)

where

d
(i)
mk =

�
Vmk(p(i), π(i))

2
+

1

2
�

Vmk(p(i), π(i))
, (50)

e
(i)
mk =

1

2
�

Vmk(p(i), π(i))
. (51)

The function q2
mk(p(i),π)�

qmk(p(i),π)+πmk

�2 in (49) is still not con-

vex [20], which can be further approximated by using inequal-
ities (42) and (43) as

q2
mk(p(i), πm)

qmk(p(i), π) + p
(i)
mk

1
qmk(p(i), π) + πmk

≥ 2

qmk(p(i), π(i)) + π
(i)
mk

	
2f

(i)
mkqmk(p(i), π)

−q2
mkp

(i)
mk

�
qmk(p(i), π) + πmk

�
(q(i)

mk(p(i), π) + π
(i)
mk)2

�

− q2
mk(p(i), π)

(q(i)
mk(p(i), π) + π

(i)
mk)2

(52)

over the trusted regions defined in (21) and (22). By substi-
tuting (52) to (49), yields

W
(i)
mk ≤ d

(i)
mk − 2e

(i)
mk

qmk(p(i), π(i)) + π
(i)
mk�

2f
(i)
mkqmk(p(i), π) − (f (i)

mk)2
�
qmk(p(i), π) + πmk

��

+
(f (i)

mk)2

q2
mk(p(i), π(i))

q2
mk(p(i), π) � W(i)

mk(p(i), π) (53)

where f
(i)
mk � qmk(p(i), π(i))

qmk(p(i), π(i)) + π
(i)
mk

.
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