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Abstract: Background: There is an urgent need to identify biomarkers for advanced adenoma, an
important precursor of colorectal cancer (CRC). We aimed to determine alterations in ileal juice
bile acids associated with colorectal advanced adenoma. Methods: We quantified a comprehensive
panel of primary and secondary bile acids and their conjugates using an ultraperformance liquid
chromatography triple-quadrupole mass spectrometric assay in ileal juice collected at colonoscopy
from 46 study subjects (i.e., 14 biopsy-confirmed advanced adenomas and 32 controls free of adenoma
or cancer). Using analysis of covariance (ANCOVA), we examined the differences in bile acid
concentrations by disease status, adjusting for age, sex, body mass index, smoking status and type
2 diabetes. Results: The concentrations of hyodeoxycholic acid (HCA) species in ileal juice of the
advanced adenoma patients (geometric mean = 4501.9 nM) were significantly higher than those
of controls (geometric mean = 1292.3 nM, p = 0.001). The relative abundance of ursodeoxycholic
acid (UDCA) in total bile acids was significantly reduced in cases than controls (0.73% in cases vs.
1.33% in controls; p = 0.046). No significant difference between cases and controls was observed
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for concentrations of total or specific primary bile acids (i.e., cholic acid (CA), chenodeoxycholic
acid (CDCA) and their glycine- and taurine-conjugates) and total and specific major secondary bile
acids (i.e., deoxycholic acid and lithocholic acid). Conclusions: Colorectal advanced adenoma was
associated with altered bile acids in ileal juice. The HCA species may promote the development of
colorectal advanced adenoma, whereas gut microbiota responsible for the conversion of CDCA to
UDCA may protect against it. Our findings have important implications for the use of bile acids as
biomarkers in early detection of colorectal cancer.

Keywords: ileal juice; bile acids; biomarker; colorectal adenomas; colorectal cancer

1. Introduction

Colorectal cancer (CRC) is the second- and third-most common cancer among men
and women worldwide, respectively (estimated age-standardized incidence rates per
100,000: 20.6 in men and 14.3 in women) [1], with approximately 1,360,000 new cases and
690,000 deaths per year [2]. Colorectal cancer is also ranked among the top 20 causes of
death globally, and its burden is expected to rise in the coming decades [3]. Adenomatous
polyps (or adenomas) are considered the most significant precursor lesion of CRC [4,5].
Patients with a history of an advanced adenoma have approximately a three-fold increased
risk of CRC compared to those without adenomas [6]. In the US, the prevalence of any
adenoma is approximately 25% among 50 years or older and increased to 50% by age
70 or older [7], whereas advanced adenomas are observed in about 7–10% of subjects
undergoing screening. One of the major concerns is the increasing trend of CRC among
those who are younger than 50 years of age, in which a 1.5% increase in incidence and
an 13% increase in mortality were observed from 2000 to 2013–2014 [8]. Although the
reasons for the increasing rate of CRC among young population are unclear, obesity and
Western diet (i.e., high saturated fat, high meat and low fiber) are thought to play an
important role. To reduce the burden of CRC, there is an urgent need to identify biomarkers
associated with advanced adenomas, precursor lesions with high potential to progress to
cancer. Biomarkers which are associated with the underlying biological mechanisms for
disease progression are preferred since they have potential to elucidate targets for primary
prevention of CRC.

In recent years, impaired bile acid metabolism has been shown to potentially contribute
to the pathophysiology of metabolic diseases. Physiologically, bile acids play important
roles in metabolic homeostasis and regulation of insulin sensitivity [9,10]. Primary bile acids,
including cholic acid (CA), chenodeoxycholic acid (CDCA) and hyocholic acid (HCA), are
synthesized by hepatocytes. Following conjugation in the liver with glycine or taurine, CA
forms glycocholic acid (GCA) or taurocholic acid (TCA), whereas CDCA forms glycochen-
odeoxycholic acid (GCDCA) or taurochenodeoxycholic acid (TCDCA). These conjugated
primary bile acids are secreted into the bile and released into the intestinal lumen, where
they are unconjugated by bacterial metabolism, and facilitate emulsification and absorption
of lipids and fat-soluble vitamins [11,12]. In the intestine, gut anaerobes of the genera
Bacteroides and Clostridium convert CA to deoxycholic acid (DCA) and CDCA to lithocholic
acid (LCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA) [13,14]. Un-
der normal conditions, over 95% of conjugated and unconjugated secondary bile acids
are reabsorbed and recycled via the portal vein into the liver [15,16]. At high concentra-
tions, secondary bile acids cause cell membrane damage, resulting in focal destruction of
intestinal epithelium. This induces an inflammatory reaction and hyperproliferation of
undifferentiated cells, potentiating transition into a precancerous state [17]. The role of bile
acids and type and species of intestinal bacteria involved in the transformation of bile acids
were extensively reviewed in a recent publication by Jia et al. [16]

Patients with CRC have been shown to have elevated levels of secondary bile acids in
fecal samples [18–20], suggesting a potential role for these metabolites in carcinogenesis.
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DCA at physiological concentrations activates signaling pathways that lead to selective
resistance to apoptosis, angiogenesis, proliferation and oxidative stress [21,22]. Dietary
DCA also induces development of colon adenomas or cancer in mouse models [23]. Prior
human studies have used fecal samples to report high concentration of LCA [24], and
DCA [25,26], and total secondary bile acids in CRC cases versus controls [24]. Healthy
rural Africans had significantly lower concentrations of primary and secondary bile acids
compared to healthy African-Americans, who have a higher risk of CRC [27]. Two other
studies have examined the associations between bile acids and CRC. Accordingly, a study by
Kühn et al. [28], using plasma samples, found a positive association between glycohyocholic
acid (GHCA) and CRC risk, whereas Weir et al. [25] examined fecal samples and reported
that UDCA level was elevated in healthy controls compared to that of colon cancer patients.
While blood or fecal samples are logistically easier to acquire, they are not necessarily
representative of gut bacterial composition [26,29] or gut bile acid profiles. There is also a
gap to be filled in understanding the role of bile acids in colorectal adenomas, particularly
advanced adenoma, an important precursor of CRC, because these prior studies only
evaluated the roles of bile acids in CRC risk.

The objective of this study was to characterize changes in the ileal bile acid profiles in
a case-control study design with 14 advanced adenomas and 32 participants who were free
of cancer or any adenomas.

2. Methods
2.1. Study Population

The current analysis was a proof-of-concept study with a case-control design, compris-
ing 46 participants (i.e., 14 advanced adenomas, defined as any adenoma with maximum
diameter ≥ 1 cm, high-grade dysplasia, or with tubulovillous or villous histology [6], and
32 free of adenoma and CRC) recruited at Vinmec Healthcare System in Hanoi, Vietnam.
All cases were males and females aged 40–75 years old with a new pathologic diagnosis of
advanced adenoma. Controls were matched to cases by frequency of age (5-year group) and
sex. A short questionnaire was used in the in-person interview, which was conducted by a
trained interviewer to obtain information of demographics, history of cigarette smoking,
alcohol intake, medical history and medication use. Adenoma status was confirmed by
pathologic evaluation.

Study participants provided the following: (1) ileal juice (2 mL) obtained by inserting
the colonoscope into the terminal ileum and aspirating into a trap or an extractor (DVR-
3858-Symphon Co., Ltd., Tongluo Township, Miaoli County, Taiwan, R.O.C); ileal fluid was
transferred into a 2 mL tube containing 1 mL RNAlater RNA Stabilization Reagent following
standardized protocols [30]; (2) fecal samples collected prior to colonoscopy, using Zymo
Research kit (DNA/RNA) Shield Fecal Collection Tube, following protocol of UPMC Center
for Medicine & Microbiome (http://www.microbiome.pitt.edu/wp-content/uploads/2017
/08/Stool-Instructions-to-Participants-FINAL.pdf (accessed on 25 May, 2023)); (3) a 10 mL
fasting blood (EDTA acid vacutainer); and (4) a mouth rinse sample. All collected samples
were immediately placed in insulated boxes with ice (0–2 ◦C) after the collection and were
processed within 4 h for long-term storage at −80 ◦C. REDCap [31] was used to store and
track (real-time) both questionnaire data and sample inventory for each study participant.

All study participants provided written consents before participating in the study. The
study was approved by the Institutional Review Boards (IRBs) of the Vinmec Healthcare
System and the University of Pittsburgh.

2.2. Metabolomic Assay

Ileal bile acids were quantified by ultraperformance liquid chromatography triple-
quadrupole mass spectrometry (LC-TQMS) assays as described previously [32–34]. Briefly,
each 100 µL of ileal juice was lyophilized to dry powder in a BA-free matrix using
a freeze dryer. The residues were reconstituted in 1:1 (v/v) mobile phase B (acetoni-
trile/methanol = 95:5, v/v) and mobile phase A (water with formic acid) and centrifuged

http://www.microbiome.pitt.edu/wp-content/uploads/2017/08/Stool-Instructions-to-Participants-FINAL.pdf
http://www.microbiome.pitt.edu/wp-content/uploads/2017/08/Stool-Instructions-to-Participants-FINAL.pdf
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at 13,500× g and 4 ◦C for 20 min. The supernatant was then transferred to a 96-well plate
for LC-TQMS analysis. A UPLC-TQMS) system (ACQUITY UPLC-Xevo TQ-S, Waters
Corp., Milford, MA, USA) was used to quantify BAs in the human samples. The raw data
were processed using the TargetLynx application manager (Waters Corp., Milford, MA,
USA) to obtain calibration equations and the measured concentration of each BA in the
individual samples. The intra- and inter-batch CVs are less than 10% and the recovery
rate is higher than 95–110% for all BAs in quality control samples in the current study. To
ensure the comparability between groups, lab personnel were blinded to disease status of
biospecimens.

2.3. Statistical Analysis

Means and standard deviation (SD) were calculated for continuous variables, while
counts and proportions were computed for categorical variables. Analysis of variance
(ANOVA) and χ2 test were used to compare the distributions of continuous and categorical
variables, respectively, among cases and controls.

The distributions of ileal bile acids measured were markedly skewed toward high
values, which were normalized to a large extent by transformation to natural logarithmic
values. Therefore, formal statistical testing was performed on logarithmically transformed
values, and geometric means are presented. The analysis of covariance (ANCOVA) was
used to examine the difference in absolute and relative levels of BAs between case and
control status with adjustment for age, sex, body mass index, smoking status and type
2 diabetes.

We followed the proposal of bile acid grouping by Hofmann et al. (1992) [33]. For
the present analysis, the classifications and groups of specified bile acids are depicted in
Supplementary Table S1. We also calculated the ratios of specific secondary bile acids to
their parent bile acids, specifically the DCA/CA, LCA/CDCA, UDCA/CDCA species and
secondary Bas/primary Bas ratios. Statistical analyses were performed using SAS version
9.4 (SAS Institute Inc., Cary, NC, USA) and R version 3.6. All p values were two-sided, and
0.05 was used as a threshold of statistical significance.

3. Results

Cases were more likely to be male and current drinkers (both p-values < 0.05). There
was no difference between cases and controls for age, BMI, smoking status, history of
diabetes and medication use (i.e., antibiotics in the past 6 months, metformin, statin, aspirin
or other NSAIDs) (Table 1).

Table 1. Selected Characteristics of Study Participants by Disease Status.

Cases (n, %) Controls (n, %) p-Value

No. of subjects 14 32
Age (Mean ± SD) 62.79 ± 8.05 61.06 ± 10.53 0.71

Gender
Male 12 (85.7) 12 (37.5) 0.003

Female 2 (14.3) 20 (62.5)
BMI (Mean ± SD) 22.3 ± 2.8 22.6 ± 2.7 0.71

Smoking status
Never 7 (50.0) 23 (71.9) 0.31

Former smoker 3 (21.4) 5 (15.6)
Current smoker 4 (20.6) 4 (12.5)

Current alcohol use a

No 4 (28.6) 24 (75.0) 0.007
Yes 10 (71.4) 8 (25.0)

History of diabetes
Yes 12 (85.7) 26 (81.2) 0.71
No 2 (14.3) 6 (18.7)
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Table 1. Cont.

Cases (n, %) Controls (n, %) p-Value

Medication usage
Antibiotic, past 6 m 6 (42.9) 13 (40.6) 0.89

Metformin 1 (7.1) 3 (9.4) 0.80
Statin 3 (21.4) 0 (0.0) 0.79

Aspirin 1 (7.1) 1 (3.1) 0.53
Other NSAIDs 0 (0.0) 1 (3.1) 0.50

a During the past 6 months. Bold: p < 0.05.

Compared with controls, cases had a non-statistically significant higher level of
summed total bile acids (p = 0.196), summed primary (p = 0.158) and summed secondary
bile acids (p = 0.514), respectively (Figure 1, Supplementary Table S2). Among the primary
bile acids, HCA species was the most abundant, followed by CDCA species and CA species.
Cases had significantly higher concentrations of HCA species than controls (geometric
mean = 4501.0 versus 1292.3 nM, p = 0.001). When measured as percentage of total bile
acids, the relative abundance of UDCA in cases was significantly lower than that in controls
(1.22% versus 1.85%, p = 0.046) (Figure 2).
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Figure 1. Mean concentrations of ileum CA, CDCA, CDA, LCA, UDCA and primary BAs, secondary 

BAs and total BAs in case and control groups. 

Figure 1. Mean concentrations of ileum CA, CDCA, CDA, LCA, UDCA and primary BAs, secondary
BAs and total BAs in case and control groups.

The ratios of secondary bile acids to primary bile acids reflected the abundance
and functional activities of gut microbiota that produced secondary bile acids from their
corresponding primary bile acids. Compared with controls, cases had lower ratio of
total secondary to total primary bile acids, although this difference was not statistically
significant (0.68 versus 0.94, p = 0.286; Figure 3, Supplementary Table S2). For the ratios of
individual bile acid species, the ratios of UDCA species to CDCA species and LCA species
to CDCA species were lower, whereas the ratio of DCA species to CDCA species was higher
in cases than in controls, but these differences were not statistically significant.
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Both DCA and LCA species were positively correlated with metformin, while HCA
and total primary BAs were negatively correlated with statin (all ps < 0.05) (Supplementary
Table S3). No significant correlation was observed for bile acid species with patient charac-
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teristics, cigarette smoking, alcohol intake, history of diabetes, and use of aspirin or other
non-steroidal anti-inflammatory drugs (NSAIDs) (Supplementary Table S3).

Overall, the concentrations of summed secondary bile acid species in ileal juice were
strongly correlated with the summed primary bile acid species (Spearman Correlation
Coefficient (r) = 0.93, p < 0.01) (Figure 4). Among specific bile acid species, the summed
CA species in ileal juice was highly correlated with the summed CDCA species and the
summed DCA species (r ≥ 0.80, both ps < 0.01), whereas the summed UDCA species was
moderately correlated with the summed CA species (r = 0.717), the summed CDCA species
(r = 0.643), the summed DCA species (r = 0.779) and the summed LCA species (r = 0.747)
(all ps < 0.05). Interestingly, TCA and TUDCA were inversely correlated with most of the
bile acids measured.
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4. Discussion

The current study, which collected ileal juice from patients with biopsy-confirmed col-
orectal advanced adenomas, provides deep understanding of the complex inter-relationship
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between colorectal advanced adenoma pathogenesis and bile acid physiology. We found
that the concentrations of HCA species in ileum juice were significantly elevated in patients
with advanced adenoma. In addition, the relative abundance of UDCA was significantly
lower in patients with advanced adenoma than in those free of adenoma and cancer. The
present study did not show significant differences in ileum juice concentrations of total
and individual primary bile acids including CA and CDCA as well as total and individual
secondary bile acids including DCA, HDCA and LCA.

The primary bile acids, CA and CDCA, are produced in the liver via two complex
multistep biosynthetic pathways and then conjugated by either taurine and/or glycine
to enhance their water solubility. Bile acids first flow into bile and then are released into
the small intestine after a meal where they facilitate digestion and absorption of fat and
fat-soluble vitamins. Secondary bile acids are formed in the intestines by deconjugation
and dehydroxylation of primary bile acids, and the majority of bile acids (95%) are reab-
sorbed in the brush border membrane of the terminal ileum and undergo enterohepatic
circulation [15,16].

We observed a higher concentration level of ileum juice HCA in cases than in control
subjects. It is noted that two main primary bile acids, CA and CDCA, are present in most
mammals [35], and there are species-specific differences in bile acid synthesis, transport
and metabolism, particularly the composition of the bile acid pool. Accordingly, CDCA
might be partly 6α-hydroxylated into αHCA by CYP3A [36], while murine animals might
have additional primary BA, such as muricholic acids (e.g., αMCA and βMCA) due to
the presence of 6β-hydroxylase [37,38]. Recently, 6β-hydroxylase has been identified as
CYP2C22 in rats and Cyp2c70 in mice, both of which are similar to CYP2C9 in humans,
which has the function of a drug-metabolizing enzyme without BA oxidation activities [39].

In a nested case-control study of 569 colon cancer cases matched with 569 controls
within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort,
Kűhn et al. [26] recently reported that higher level of serum concentration of glycohyocholic
acid (GHCA) was associated with increased risk of colon cancer (OR = 1.65, 95% CI:
1.13–2.40). While this is suggestive evidence on the role of HCA in colorectal cancer, its role
in colorectal adenomas and progression from adenomas to cancer is much less understood
and thus warrants further research.

In the current study, we found that the relative abundance of UDCA species was
significantly lower in cases than in controls. This finding is consistent with results from a
prior study by Weir et al. [27] that evaluated fecal samples of 10 healthy individuals and
11 patients prior to surgical resection for colon cancer and found increased levels of UDCA
(approximately 63%) in healthy individuals compared to colon cancer patients. In a large
population-based study using data from the Taiwan National Health Insurance Research
Database during 2006–2010 period (n = 1,961,788), Huang et al. [40] found that UDCA, a
chemo-preventive drug, was associated with reduced risk of colorectal cancer.

UDCA is considered an important secondary bile acid [41] due to its “protective
properties” or metabolic effects ranging from decreasing endoplasmic reticulum stress,
anti-apoptotic effects and lowering ileum TNF-α concentrations to improving hepatic in-
sulin sensitivity [42]. It is also noted that UDCA is the 7β-OH epimer of CDCA, a primary
bile acid, and the epimerization (or conversion) has two subsequent steps: (1) oxidation
of the 7α-hydroxyl group by 7α-acid hydroxysteroid dehydrogenases (or 7α-HSDH) and
(2) stereospecific reduction of the 7-keto functionality by 7β-acid hydroxysteroid dehy-
drogenases (or 7β-HSDH), resulting in the formation of the corresponding 7β-hydroxyl
group. Different bacteria such as E. coli HB 101 [43], Clostridium sordelii [44], Clostridium
scindens (formerly Eubacterium sp VPI 12708) [45] and Bacteroides fragilis [46] are found
to encode for 7α-HSDH, while Clostridium absonum [41,47], Clostridium limosum [48] and
Stenotrophomonas (formerly Pseudomonas and Xanthomonas) maltophilia [49] are reported
to encode for 7β-HSDH. Recently, Wei et al. [50] showed that Clostridium scidens is an
important bacterial species that can mediate the epimerization process of CDCA to UDCA.
Taken together, it is suggested that the lower UDCA in the bile of patients with adenoma
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reflects lower abundance of these bacteria. Further studies are warranted to elucidate path-
ways and/or bacteria on the role of UDCA in the progression from advanced adenomas to
colorectal cancer.

In clinical settings, UDCA is used in treatment of different outcomes such as primary
biliary cholangitis [51] and dissolution of cholesterol gallstones [52,53]. In addition, in a
phase III randomized trial of 1285 individuals who had undergone colorectal adenomas
removal within the past 6 months and received daily treatment with UDCA (6–10 mg/kg of
body weight; n = 661 individuals) or with placebo (n = 624 individuals) for 3 years or until
follow-up colonoscopy, Alberts et al. [54] reported that overall, the oral UDCA treatment
was associated with non-statistically significant reduction in total colorectal adenoma
recurrence but with a statistically significant 39% reduction in recurrence of colorectal
adenomas in patients with high-grade dysplasia. Furthermore, in another study using fecal
samples in a phase III randomized clinical trial of UDCA for the prevention of colorectal
adenomas, Pearson et al. [55] compared the changes in the microbiome composition after a
3-year intervention in a subset of randomized participants including an intervention arm
with oral UDCA (8–10 mg/kg body weight/day) (n = 198) and a placebo arm (n = 203).
They found that in the intervention arm, the relative abundance of Bacteroidetes was
significantly increased, while the relative abundance of Firmicutes decreased significantly
in post-intervention subjects compared with subjects at baseline. Additionally, there was no
significant change in these genera among subjects in the placebo arm. Both Bacteroidetes
and Firmicutes are important microbial phyla of the gut microbiome, and their ratio reflects
the dietary pattern and overall balance of the gut microbiome. Accordingly, a high ratio
of Firmicutes to Bacteroidetes is found to be associated with Western diet consumption,
which is also associated directly to the treatment with UDCA (above-mentioned) [55] and
to adverse metabolic changes in obesity patients [56], while its low ratio is associated with
reduced gut biodiversity [57] and inflammatory bowel disease (IBD) [58].

Our study has several strengths. All study subjects enrolled in our study were well
phenotyped with histologic confirmation. Ileum juice samples were collected in both
cases and controls at the initial performance of colonoscopy and were transferred to the
centralized laboratory for storage for downstream analysis within less than an hour. We
used a comprehensive, state-of-the-art LC-TQMS technology that simultaneously quantified
absolute concentrations of 42 individual bile acids in ileum juice. The use of ileum juice bile
acids had several advantages compared to blood-based bile acids. First, the terminal ileum
location is immediately proximal to the location where adenomas and cancer occur. A recent
study by Gevers et al. [59] showed that microbiome profiles obtained from ileal biopsies
have higher power to predict disease progression in Crohn’s disease patients compared to
rectal biopsies or fecal samples, suggesting that ileal juice may be more informative than
other sample types commonly used in assessing the role of the microbiome in colorectal
lesions. Third, ileal juice avoids the potential problems inherent in the measurement of
serum bile acids, including absorption, hepatic metabolism and transportation (such as
impaired liver function and gallbladder diseases, etc.).

Our study also has several limitations. Patients might have taken medication, such as
antibiotics, that impacted bile acid pools. However, there was no significant difference in
bile acids measured between patients who reported use of antibiotics and those who did
not. In addition, patients enrolled in this study were Vietnamese who had different dietary
habits; therefore, our findings may not be directly generalizable to other populations.
However, given that ileal juice samples were collected after 12–14 h of fasting, the impact
of dietary intake on bile acids in ileum juice would be minimal. The other limitation was
the cross-sectional study design, which did not allow us to examine temporal effects. In
other words, it was unknown whether the differences observed between cases and controls
were due to the presence of colorectal advanced adenomas. Despite these limitations, our
study provided invaluable insights into the relationship between bile acids in ileal juice
and the presence of colorectal adenomas that warrant further study.
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5. Conclusions

In conclusion, we found that the concentration of HCA species in ileal juice was
significantly elevated in patients with biopsy-confirmed colorectal advanced adenomas
compared with normal colonoscopy controls. In contrast, the relative abundance of UDCA
in ileal juice was significantly reduced in patients with colorectal adenomas compared with
controls. Our results support the growing body of evidence on the important role of the
gut microbiome (i.e., Clostridium sordelii, Clostridium scindens, Bacteroides fragilis, Clostridium
absonum, Clostridium limosum and Stenotrophomonas) that convert CDCA into UDCA in the
pathogenesis of colorectal adenomas and cancer. Further studies are warranted to replicate
our findings and to determine the roles of bile-acid-related bacteria in the development
from colorectal adenomas to colorectal cancer. Results from such studies are of significance
to early detection and control of CRC.
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