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Abstract

Chest radiograph (CXR) interpretation is critical for
the diagnosis of various thoracic diseases in pediatric pa-
tients. This task, however, is error-prone and requires a
high level of understanding of radiologic expertise. Re-
cently, deep convolutional neural networks (D-CNNs) have
shown remarkable performance in interpreting CXR in
adults. However, there is a lack of evidence indicating that
D-CNNs can recognize accurately multiple lung patholo-
gies from pediatric CXR scans. In particular, the devel-
opment of diagnostic models for the detection of pediatric
chest diseases faces significant challenges such as (i) lack
of physician-annotated datasets and (ii) class imbalance
problems. In this paper, we retrospectively collect a large
dataset of 5,017 pediatric CXR scans, for which each is
manually labeled by an experienced radiologist for the pres-
ence of 10 common pathologies. A D-CNN model is then
trained on 3,550 annotated scans to classify multiple pedi-
atric lung pathologies automatically. To address the high-
class imbalance issue, we propose to modify and apply
“Distribution-Balanced loss” for training D-CNNs which
reshapes the standard Binary-Cross Entropy loss (BCE)
to efficiently learn harder samples by down-weighting the
loss assigned to the majority classes. On an independent
test set of 777 studies, the proposed approach yields an
area under the receiver operating characteristic (AUC) of
0.709 (95% CI, 0.690–0.729). The sensitivity, specificity,
and F1-score at the cutoff value are 0.722 (0.694–0.750),
0.579 (0.563–0.595), and 0.389 (0.373–0.405), respec-
tively. These results significantly outperform previous state-
of-the-art methods on most of the target diseases. Moreover,
our ablation studies validate the effectiveness of the pro-
posed loss function compared to other standard losses, e.g.,
BCE and Focal Loss, for this learning task. Overall, we
demonstrate the potential of D-CNNs in interpreting pedi-
atric CXRs.

1. Introduction

Common respiratory pathologies such as pneumonia,
chronic obstructive pulmonary disease (COPD), bronchi-
olitis, asthma, and lung cancer are the primary cause of
mortality among children worldwide [40]. Each year, acute
lower respiratory tract infections (e.g., pneumonia, lung ab-
scess, or bronchitis) cause several hundred thousand deaths
among children under five years old [4, 37]. Chest ra-
diograph (CXR) is currently the most common diagnos-
tic imaging tool for diagnosing frequent thorax diseases in
children. Interpreting CXR scans, however, requires an in-
depth knowledge of radiological signs of different lung con-
ditions, making this process challenging, time-consuming,
and prone to error. For instance, Swingler et al. [31] re-
ported that the diagnostic accuracy of experienced special-
ist pediatricians and primary level practitioners in detecting
radiographic lymphadenopathy was low, with a sensitivity
of 67% and a specificity of 59%. Beyond that, the average
inter-observer agreement and intra-observer agreement in
the CXR interpretation in children were only 33% and 55%,
respectively [6]. Thus, it is crucial to develop computer-
aided diagnosis (CAD) systems that can automatically de-
tect common thorax diseases in children and add clinical
value, like notifying clinicians about abnormal cases for fur-
ther interpretation.

Deep learning (DL) has recently succeeded in many
biomedical applications, especially detecting chest abnor-
malities in adult patients [25, 24, 12, 1]. Nonetheless, few
studies have demonstrated the ability of DL models in iden-
tifying common lung diseases in pediatric patients. To the
best of our knowledge, most DL-based pediatric CXR in-
terpretation models have focused on a single disease such
as pneumonia [8, 22, 15] or pneumothorax [32]. Except
the work of Chen et al. [3], no work has been published to
date on the automatic multi-label classification of pediatric
CXR scans. Several obstacles that prevent the progress of
using DL for the pediatric CXR interpretation have been re-
ported in Moore et al. [18], in which key challenges for pe-
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diatric imaging DL-based computer-aided diagnosis (CAD)
development include: (1) acquire pediatric-specific big data
sets sufficient for algorithm development; (2) accurately la-
bel large volumes of pediatric CXR images; and (3) re-
quire the explainable ability of diagnostic models. Addi-
tionally, learning with real-world pediatric CXR imaging
data also faces the imbalance between the positive and neg-
ative samples, making the models more sensitive to the ma-
jority classes. To address these challenges, we develop
and validate in this study a DL-based CAD system that
can accurately detect multiple pediatric lung pathologies
from CXR images. A large pediatric CXR dataset is col-
lected and manually annotated by expert radiologists. To
address the high-class imbalance issue, we train DL net-
works with a modified version of “Distribution-Balanced
loss” that down-weights the loss assigned to the majority
of classes. Our experimental results validate the effective-
ness of the proposed loss function compared to other stan-
dard losses, and in the meantime, significantly outperform
previous state-of-the-art methods for the pediatric CXR in-
terpretation. To summarize, the main contributions of this
work are the following:

• We develop and evaluate state-of-the-art D-CNNs
for multi-label diseases classification from pediatric CXR
scans. To the best of our knowledge, the proposed approach
is the first to investigate the learning capacity of D-CNNs
on pediatric CXR scans to diagnose 10 types of common
chest pathologies.

• We propose modifying and applying the recently in-
troduced Distribution-Balanced loss to reduce the impact
of imbalance data issues. This loss function is designed
to encourage classifiers to learn better for minority classes
and lightens the dominance of negative samples. Our ab-
lation studies on the real-world imbalanced pediatric CXR
dataset validated the effectiveness of the proposed loss func-
tion compared to the other standard losses.

• The proposed approach surpasses previous state-of-
the-art results. The codes and dataset used in this study
will be shared as a part of a bigger project that we will
release on our project website at https://vindr.ai/
datasets/pediatric-cxr.

2. Related Works

2.1. DL-based for pediatric CXR interpretation

Several DL-based approaches for pediatric CXR inter-
pretation have been introduced in recent years. However,
most of these studies focus on detecting one specific type
of lung pathology like pneumonia [8, 23, 14, 28, 29].
Most recently, Chen et al. [3] proposed a DL-based CAD
scheme for 4 common pulmonary diseases of children, in-
cluding bronchitis, bronchopneumonia, lobar pneumonia,
and pneumothorax. However, this approach was trained

and tested on a quite small dataset (N = 2668). We rec-
ognize that the lack of large-scale pediatric CXR datasets
with high-quality images and human experts’ annotations
is the main obstacle of the field. To fill this lack, we con-
structed a benchmark dataset of 5,017 pediatric CXR im-
ages in Digital Imaging and Communications in Medicine
(DICOM) format. Each image was manually annotated by
an experienced radiologist for the presence of 10 types of
pathologies. To our knowledge, this is currently the largest
pediatric CXR dataset for multi-disease classification task.

2.2. Multi-label learning and imbalance data issue

Predicting thoracic diseases from pediatric CXR scans is
considered as a multi-label classification problem, in which
each input example can be associated with possibly more
than one disease label. Many works have studied the prob-
lem of multi-label learning, and extensive overviews can be
found in Zhang et al. [41], Ganda et al. [7], and Liu et
al. [17]. A common approach to the multi-label classifi-
cation problem is to train a D-CNN model with the BCE
loss [41, 34], in which positive and negative classes are
treated equally. Multi-label classification tasks in medi-
cal imaging are often challenging due to the dominance of
negative examples. To handle this challenge, several ap-
proaches proposed to train D-CNNs using weighted BCE
losses [11, 25] instead of the ordinary BCE. In this work,
we propose a new loss function based on the idea of
Distribution-Balanced loss [38] to the multi-label classifi-
cation of pediatric CXR scans. The proposed loss func-
tion is based on two key ideas: (1) rebalance the weights
that consider the impact caused by label co-occurrence, in
particular in the case of absence of all pathologies; and (2)
mitigate the over-suppression of negative labels. Our ex-
periments show that the proposed loss achieves remarkable
improvement compared to other standard losses (i.e., BCE,
weighted BCE, Focal loss, and the original Distribution-
Balanced loss) in classifying pediatric CXR diseases.

3. Methodology
This section introduces details of the proposed approach.

We first give an overview of our DL framework for the pe-
diatric CXR interpretation (Section 3.1). We then provide
a formulation of the multi-label classification (Section 3.2).
Next, a new modified distribution-balanced loss that deals
with the imbalanced classes in pediatric CXR dataset is de-
scribed (Section 3.3). This section also introduces network
architecture choices and training methodology (Section 3.4
& Section 3.5). Finally, we visually investigate model be-
havior in its prediction of the pathology (Section 3.6).

3.1. Overall framework

The proposed approach is a supervised multi-label clas-
sification framework using D-CNNs. It accepts a CXR of
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children patients as input and predicts the presence of 10
common thoracic diseases: Reticulonodular opacity, Peri-
bronchovascular interstitial opacity (PIO), Other opacity,
Bronchial thickening, Bronchitis, Brocho-pneumonia, Bron-
chiolitis, Pneumonia, Other disease, and No finding. To
train the D-CNNs, a large-scale and annotated pediatric
CXR dataset of 5,017 scans has been constructed (Sec-
tion 4.1). With the nature of imbalance among disease la-
bels, the dataset could introduce a bias in favor of the major-
ity diseases. This leads to skew the model performance dra-
matically. To addresses this challenge, a new loss function
that down-weights the loss assigned to majority classes is
proposed to train the networks. Finally, a visual explanation
module based on Grad-CAMs [27] is also used to improve
the model’s transparency by indicating areas in the image
that are most indicative of the pathology. An overview of
the proposed approach is illustrated in Figure 1.

Figure 1. Illustration of our multi-label classification task, which
aims to build a DL system for predicting the probability of the
presence of 10 different pathologies in pediatric CXRs. The sys-
tem takes a pediatric CXR as input and outputs the probability of
multiple pathologies. It also localizes areas in the image most in-
dicative of the pathology via a heat map created by Grad-CAM
method [27].

3.2. Problem formulation

In a multi-label classification setting, we are given
a training set D consisting of N samples, D ={(

x(i), y(i)
)
; i = 1, . . . , N

}
where each input image x(i) ∈

X is associated with a multi-label vector y(i) ∈ [0, 1]C .
Here, C denotes the number of classes. Our task is to learn a
discriminant function fθ : X → RC to make accurate diag-
noses of common thoracic diseases from unseen pediatric
CXRs. In general, this learning task could be performed
by training a D-CNN, parameterized by weights θ that the
BCE loss function is minimized over the training set D.
For multi-label classification problem, the sigmoid activa-
tion function (1 + e−zk)−1 is applied to the logits zk at the
last layer of the network. The total BCE loss L(θ) is sim-

ple average of all BCE terms over all training examples and
given by

L(θ) = 1

N

1

C

N∑
i=1

C∑
k=0

[
y
(i)
k log(1 + e−z

(i)
k )

+(1− y
(i)
k ) log(1 + ez

(i)
k )
]
,

(1)

and training the model f(θ) is to find the optimal weights
θ∗ by optimizing the loss function in Eq.(1).

3.3. Distribution-Balanced loss

Two practical issues, called “label co-occurrence” and
the “over-suppression of negative labels” that make multi-
label classification problems more challenging than con-
ventional single-label classification problems. To overcome
these challenges, Wu et al. [38] proposed a modified version
of the standard BCE loss, namely Distribution-Balanced
loss, which consists of two terms: (1) re-balanced weight-
ing and (2) negative-tolerant regularization. The first com-
ponent, i.e., re-balance weighting, was used to tackle the
problem of imbalance between classes while taking the
co-occurrence of labels into account. Specifically, the re-
balanced weighting is defined as

r
(i)
k =

PC
k (x(i))

P I(x(i))
, (2)

where PC
k (x(i)) and P I(x(i)) are the expectation of Class-

level sampling frequency and the expectation of Instance-
level sampling frequency, respectively. For each image x(i)

and class k, nk =
∑N

i=1 y
(i)
k denotes the number of train-

ing examples that contain disease class k, PC
k (x(i)) and

P I(x(i)) are given as

PC
k (x(i)) =

1

C
1

nk
, (3)

and

P I(x(i)) =
1

C
∑

y
(i)
k =1

1

nk
. (4)

To prevent the case where r towards zero and make the
training process stable, a smoothing version of the weight

r̂
(i)
k = α+

1

1 + exp(−β × (r
(i)
k − µ))

(5)

is designed to map r into a proper range of values. Here
α lifts the value of the weight, while β and µ controls the
shape of the mapping function. r̂k can be adopted to both
positive and negative labels although it is initially deduced
from positive labels only, in order to preserve class-level
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consistency. However, we observe that in [38], the most
frequently appearing classes usually have the highest co-
existing probability on the condition of other classes. While
in the pediatric CXR dataset, the No Finding class, the most
common class, always presents alone. Thus, in each im-
age x(i) with y

(i)
No Finding = 1, the re-balancing weight of No

Finding class is always equal to 1, which is the maximum
value of r. This will result in not thoroughly eliminate the
class imbalance and may even exaggerate it. To address this
problem, we propose a modified version of rNo Finding which
lowers the impact of No Finding samples to the total loss
function. Concretely, we define a fixed term

ĉ =
1

C2

C∑
k=0

1

nk
. (6)

We then add ĉ to the formulation of rNo Finding

r
(i)
No Finding =

PC
No Finding(x(i))
P I(x(i)) + ĉ

. (7)

In multi-label classification problems, an image is usu-
ally negative with most classes. Using the standard BCE
loss would lead to the over-suppression of the negative
side due to its symmetric nature. To tackle this challenge,
the second component, namely negative-tolerant regular-
ization,

LNT(x(i), y(i)) =
1

C

C∑
k=0

[
y
(i)
k log(1 + e−(z

(i)
k −vk))

+
1

λ
(1− y

(i)
k ) log(1 + eλ(z

(i)
k −vk))

] (8)

is constructed, which contains a margin v and a re-scaling
factor λ. Here v is designed by considering intrinsic model
bias and played a role of a threshold. The formulation of v
is given as

vk = κ log(
N

nk
− 1), (9)

where κ is used as a scale factor to get v. We refer the
reader to the original work in [38] for more details. The fi-
nal Distribution-Balanced loss is constructed by integrating
two components

LDB(x(i), y(i)) =
1

C

C∑
k=0

[
y
(i)
k log(1 + e−(z

(i)
k −vk))

+
1

λ
(1− y

(i)
k ) log(1 + eλ(z

(i)
k −vk))

]
r̂
(i)
k ,

(10)

where r̂No Finding is calculated by Eq. (5), with rNo Finding is
given by Eq. (7).

3.4. Network architecture

Three D-CNNs were exploited for classifying com-
mon thoracic diseases in pediatric CXR images, including
DenseNet-121 [10], Dense-169 [10], and ResNet-101 [9].
These networks have achieved significant performance on
the ImageNet dataset [13], a large-scale used to benchmark
classification models [5]. More importantly, these network
architectures were well-known as the most successful D-
CNNs for medical applications, particularly for the CXR
interpretation [25, 12, 20]. For each network, we followed
the original implementations [10, 9] with some minor modi-
fications. Specifically, we replaced the final fully connected
layer in each network with a fully connected layer pro-
ducing a 10-dimensional output. We then applied the sig-
moid nonlinearity to produce the final output, representing
the predicted probability of the presence of each pathology
class.

3.5. Training methodology

We applied state-of-the-art techniques in training deep
neural networks to improve learning performance on the im-
balanced pediatric CXR dataset, including transfer learning
and ensemble learning. Details are described below

3.5.1 Transfer learning from adult to pediatric CXR

Pediatric CXR data is limited due to the high labeling cost
and the protocol of limiting children’s exposure to radia-
tion. Fortunately, there is a large amount of adult CXR
data available that we can leverage. To improve the learning
performance on the pediatric CXR, we propose to train D-
CNNs on a large-scale adult CXR dataset (source domain)
and then finetune the pre-trained networks on our pediatric
CXR dataset (target domain). In the experiments, we first
trained DenseNet-121 [10] on CheXpert [12] – a large adult
CXR dataset that contains 224,316 CXR scans. We then
initialized the network with the pre-trained weights and fi-
nally finetuned it on the pediatric CXR dataset. An ablation
study was conducted to verify the effectiveness of the pro-
posed transfer learning method. Experimental results are
reported in Section 4.4.1, and Table 2.

3.5.2 Ensemble learning

It is hard for a single D-CNN model to obtain a high
and consistent performance across all pathology classes
in a multi-label classification task. Empirically, the diag-
nostic accuracy for each pathology often varies and de-
pends on the choice of network architecture. An ensem-
ble learning approach that combines multiple classifiers
should be explored to achieve a highly accurate classifier.
In this work, we leveraged the power of ensemble learn-
ing by combining the predictions of three different pre-
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trained D-CNNs: DenseNet-121 [10], DenseNet-169 [10],
and ResNet-101 [9]. Concretely, the outputs of the pre-
trained networks were concatenated into a prediction vec-
tor, and then the averaging operation was used to produce
the final prediction.

3.6. Visual interpretability

Explainability is a crucial factor in transferring artificial
intelligence (AI) models into clinical practice [33, 35]. An
interpretable AI system [26] is able to provide the links be-
tween learned features and predictions. Such systems help
radiologists understand the underlying reasoning of diag-
nostic results and identify individual cases for which the
predictors potentially give incorrect predictions. In this
work, Gradient-weighed Class Activation Mapping (Grad-
CAM) [27] was used to highlight features that strongly cor-
relate with the output of the proposed model. This method
aims to stick to the gradient passed through the network to
determine the relevant features. Given a convolutional layer
l in a trained model, denoting Ak

l as the activation map for
the k-th channel, and Y c as the probability of class c. The
Grad-CAM Lc

Grad-CAM, is constructed [36] as

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k
l

)
, (11)

where

αc
k = GP

(
∂Y c

∂Ak
l

)
, (12)

and GP (·) denotes the global pooling operation.

4. Experiment and Result
4.1. Datasets & Implementation details

Data collection The pediatric CXR dataset used in this
study was retrospectively collected from a primary Chil-
dren’s Hospital between the period 2020-2021. The study
has been reviewed and approved by the institutional review
board (IRB) of the hospital. The need for obtaining in-
formed patient consent was waived because this work did
not impact clinical care. The raw data were completely
in DICOM format, in which each study contains a single
instance. To keep patient’s Protected Health Information
(PHI) secure, all patient-identifiable information has been
removed except several DICOM attributes that are essential
for evaluating the lung conditions like patient’s age and sex.

Data annotation A total of 5,017 pediatric CXR scans
(normal = 1,906 [37.99%]; abnormal = 3,111 [62.01%])
were collected and annotated by a team of expert radiol-
ogists who have at least 10 years of experience. During
the labeling process, each scan was assigned and notated
by one radiologist. The labeling process was performed via

an in-house DICOM labeling framework called VinDr Lab
(https://vindr.ai/vindr-lab) [19]. The dataset
was labeled for the presence of 10 pathologies. The “No
finding” label was intended to represent the absence of all
pathologies. We randomly stratified the dataset into train-
ing (70%), validation (15%), and test (15%) sets and en-
sured that there is no patient overlap between these data
sets. The patient characteristics of each data set are sum-
marized in Table 1. Figure 2 shows several representative
pediatric CXR samples from the dataset. The distribution
of different disease categories, which reveals the class im-
balance problem in the dataset, is shown in Figure 3.

Implementation details To evaluate the effectiveness of
the proposed method, several experiments have been con-
ducted. First, we investigated the impact of transfer learning
by comparing the model performance when finetuning with
pre-trained weights from CheXpert [12], ImageNet [5], and
training from scratch with random initial weights. We then
verified the impact of the ensembling method on the clas-
sification performance of the whole framework. For all ex-
periments, we enhanced the contrast of the image by equal-
izing histogram and then rescaled them to 512×512 resolu-
tion before inputting the images into the networks. Model’s
parameters were updated using stochastic gradient descent
(SGD) with a momentum of 0.9. Each network was trained
end-to-end for 80 epochs with a total batch size of 32 im-
ages. The learning rate was initially set at 1 × 10−3 and
updated by the triangular learning rate policy [30]. All net-
works were implemented and trained using Python (v3.7.0)
and Pytorch framework (v1.7.1). The hardware we used for
the experiments was two NVIDIA RTX 2080Ti 11GB RAM
intergrated with the CPU Intel Core i9-9900k 32GB RAM.

4.2. Evaluation metrics

The performance of the proposed method was measured
using the area under the receiver operating characteristic
curve (AUC). The AUC score represents a degree of mea-
sure of separability and the higher the AUROC achieves.
We also reported sensitivity, specificity and, F1-score at the
optimal cut-off point. Specifically, the optimal threshold
c∗ of the classifier is determined by maximizing Youden’s
index [39] J(c) where J(c) = q(c) + r(c) − 1. Here the
sensitivity q and the specificity r are functions of the cut-off
value c. To assess the statistical significance of performance
indicators, we estimate the 95% confidence interval (CI) by
bootstrapping with 10,000 replications.

4.3. Comparison to state-of-the-art

To demonstrate the effectiveness of the proposed ap-
proach, we compared our result with recent state-of-the-art
methods for the pediatric CXR interpretation [29, 21, 2].
To this end, we reproduced these approaches on our pedi-
atric CXR dataset and reported their performance on the
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Figure 2. Several representative pediatric CXR images for “No finding” and other common lung pathologies in children patients. Bounding
box annotations indicate lung abnormalities and are used for visualization purposes.

Variables Training set Validation set Test set Total

St
at

is
tic

s

Acquisition time (years) 2020 – 2021 2020 – 2021 2020 – 2021 2020 – 2021
Age(†), mean (range) 1.55 (0–10) 1.45 (0–10) 1.36 (0–10) 1.51 (0–10)
Image size, mean 1,639×1,346 1,645×1,352 1,622×1,339 1,637×1,345
Gender(†), male (%) 60.71 60.14 57.39 60.12
Number of images 3,550 744 777 5,071

Pa
th

ol
og

y

1. Reticulonodular opacity (%) 402 (11.32) 90 (12.10) 103 (13.26) 595 (11.73)
2. Peribronchovascular interstitial opacity (%) 1,116 (31.44) 232 (31.18) 252 (32.43) 1,600 (31.55)
3. Other opacity (%) 453 (12.76) 97 (13.04) 118 (15.19) 668 (13.17)
4. Bronchial thickening (%) 477 (13.44) 101 (13.58) 110 (14.16) 688 (13.57)
5. Bronchitis (%) 730 (20.56) 161 (21.64) 161 (20.72) 1,052 (20.75)
6. Brocho-pneumonia (%) 438 (12.34) 97 (13.04) 120 (15.44) 655 (12.92)
7. Bronchiolitis (%) 417 (11.75) 87 (11.69) 101 (13.0) 605 (11.93)
8. Pneumonia (%) 354 (9.97) 72 (9.68) 85 (10.94) 511 (10.08)
9. Other disease (%) 396 (11.15) 87 (11.69) 108 (13.9) 591 (11.65)
10. No finding (%) 1,387 (39.07) 287 (38.58) 232 (29.86) 1,906 (37.59)

Table 1. Demographic data of training, validation, and test sets. (†) These calculations were performed on the number of studies where
gender and age were available.

test set (N = 777) using the AUC score. For a fair com-
parison, we applied the same training methodologies and
hyper-parameter settings as reported in the original pa-
pers [29, 21, 2]. We report the experimental results in Sec-
tion 4.4.1, and Table 4.

Figure 3. Distribution of disease classes in the whole pediatric
CXR dataset used in this study.
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4.4. Experimental results & quantitative analysis

4.4.1 Model performance

The mean AUC score of 10 classes of DenseNet-121 [10]
with different initial weight values is shown in Table 2.
The model finetuning with pre-trained weights on CheX-
pert [12] showed the best performance with an AUC of
0.715 (95% CI, 0.693–0.737), 0.696 (95% CI, 0.675–0.716)
on the validation and test set, respectively. Meanwhile,
DenseNet-121 [10] trained with random initial weight val-
ues reported an AUC of 0.686 (95% CI, 0.664–0.708) on the
validation set, and 0.657 (95% CI, 0.636–0.678) on the test
set, which is the worst performance compared to the other
two approaches.

Initialization Validation set Test set
Random 0.673 (0.650-0.696) 0.657 (0.636-0.679)
ImageNet 0.686 (0.664-0.708) 0.657 (0.636-0.678)
CheXpert (ours) 0.715 (0.693-0.737) 0.696 (0.675-0.716)

Table 2. Mean AUC with different initial weight values for
DensetNet-121 on the validation and test sets. Best results are
in bold.

Table 3 provides a comparison of the classification per-
formance between 3 single models (i.e., DenseNet-121 [10],
DenseNet-169 [10], ResNet-101 [9]) and the ensemble
model that combines results of all models. On both the val-
idation and test sets, the ensemble model outperformed all
three single models with an AUC of 0.733 (95% CI, 0.713–
0.754) and 0.709 (95% CI, 0.690–0.729), respectively. The
ensemble model’s performance for each disease class in the
test set is shown in Table 5. At the optimal cut-off point, it
achieved a sensitivity of 0.722, a specificity of 0.579, and
an F1-score of 0.389 on the test set. We observed that the
reported performances varied over the target diseases, e.g.,
the final ensemble model performed best on 2 classes Pneu-
monia and No finding, while the worst was on Bronchiolitis
class. The ROC of each disease class is further shown in
Figure 4.

Model Validation set Test set
DenseNet-121 [10] 0.715 (0.693-0.737) 0.696 (0.675-0.716)
DenseNet-169 [10] 0.721 (0.699-0.741) 0.691 (0.672-0.711)
ResNet-101 [9] 0.717 (0.696-0.737) 0.700 (0.680-0.719)
Ensemble 0.733 (0.713-0.754) 0.709 (0.690-0.729)

Table 3. Mean AUC score of single architectures and the ensemble
model on the validation and test sets.

Label AUROC Sensitivity Specificity F1-score
Other opacity 0.703 0.856 0.373 0.320
Reticulonodular opacity 0.739 0.786 0.559 0.337
PIO(∗) 0.706 0.817 0.522 0.581
Bronchial thickening 0.673 0.627 0.571 0.297
No finding 0.776 0.668 0.739 0.586
Bronchitis 0.691 0.571 0.69 0.414
Brocho-pneumonia 0.696 0.725 0.581 0.361
Other disease 0.669 0.806 0.445 0.307
Bronchiolitis 0.638 0.683 0.496 0.270
Pneumonia 0.802 0.682 0.809 0.422
Mean 0.709 0.722 0.579 0.389

Table 5. Performance of the ensemble model for each disease class
on the test set.

4.4.2 Effect of modified Distribution-Balanced loss

We conducted ablation studies on the effect of the modified
Distribution-Balanced loss. Specifically, we reported the di-
agnostic accuracy of DenseNet-121 [10] on our pediatric
CXR test set when trained with the modified Distribution-
Balanced loss and other standard losses, including the BCE
loss, weighted BCE loss [25], Focal loss [16], and the orig-
inal Distribution-Balanced (DB) loss [38]. For all exper-
iments, we used the same hyperparameter setting for net-
work training. Table 6 shows the result of this experi-
ment. The network trained with the modified Distribution-
Balanced loss achieved an AUC of 0.683 (95% CI, 0.662–
0.703) and a F1-score of 0.368 (95% CI, 0.350–0.385),
respectively. These results outperformed all other stan-
dard losses with large margins. For instance, our approach
showed an improvement of 1.3% in AUC and of 0.4%
in F1-score compared to the second-best results. These
improvements validated the effectiveness of the modified
Distribution-Balanced loss in learning disease patterns from
the unbalanced pediatric CXR dataset.

Loss AUROC F1-score
BCE 0.657 (0.636-0.678) 0.346 (0.328-0.364)
Weighted-BCE [25] 0.670 (0.650-0.691) 0.354 (0.336-0.371)
Focal loss [16] 0.668 (0.647-0.689) 0.355 (0.338-0.371)
DB loss [38] 0.665 (0.644-0.686) 0.363 (0.345-0.380)
Ours 0.683 (0.662-0.703) 0.368 (0.350-0.385)

Table 6. Performance of the DenseNet-121 [10] on the test set of
our pediatric CXR dataset using different loss functions.

4.4.3 Model interpretation

We computed Grad-CAM [27] to visualize the areas of the
radiograph which the network predicted to be most indica-
tive of each disease. Saliency maps generated by Grad-
CAM were then rescaled to match the dimensions of the
original images and overlay the map on the images. Fig-
ure 5(A–C) shows some pediatric CXR scans with differ-
ent respiratory pathologies, while Figure 5D represents a
normal lung. Heatmap images are provided alongside the
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Pathology Chouhan et al. [29] (2020) Rahman et al. [21] (2020) Chen et al. [2] (2020) Proposed method
Other opacity 0.6737 0.636 0.656 0.703
Reticulonodular opacity 0.6870 0.652 0.701 0.739
PIO 0.6624 0.619 0.653 0.706
Bronchial thickening 0.6791 0.648 0.647 0.673
No finding 0.7740 0.734 0.746 0.776
Bronchitis 0.6613 0.648 0.652 0.691
Brocho-pneumonia 0.6710 0.648 0.677 0.696
Other disease 0.6754 0.581 0.653 0.669
Bronchiolitis 0.6089 0.639 0.648 0.638
Pneumonia 0.7097 0.682 0.737 0.802
Mean 0.6802 0.649 0.677 0.709

Table 4. Experimental results on the validation dataset and comparison with the state-of-the-art. The proposed method outperforms other
previous methods on most pathologies in our dataset. Here we highlight the best result in red and the second-best in blue.

Figure 4. ROC curves of the ensemble model for 10 pathologies on the test set. Best viewed in a computer by zooming-in.

ground-truth boxes annotated by board-certified radiolo-
gists. As we can see, the trained models can localize the
regions that have lesions in positive cases and shows no fo-
cus on the lung region in negative cases.

Figure 5. Saliency maps indicated the regions of each radiograph
with the most significant influence on the models’ prediction.

5. Conclusion

In this paper, we introduced a deep learning-based ap-
proach to detect common pulmonary pathologies on CXR
of pediatric patients. To the best of our knowledge, this
is the first effort to address the classification of multiple
diseases from pediatric CXRs. In particular, we proposed
modifying the Distribution-Balanced loss to reduce the im-
pact of class imbalance in classification performance. Our
experiments demonstrated the effectiveness of the proposed
method. Although the proposed system surpassed previous
state-of-the-art approaches, we recognized that its perfor-
mance remains low compared to the human expert perfor-
mance. This reveals the major challenge in learning dis-
ease features on pediatric CXR images using deep learning
techniques, opening new aspects for future research. Future
works include developing a localization model for identify-
ing abnormalities on the pediatric CXR scans and investi-
gating the impact of the proposed deep learning system on
clinical practice.
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