
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334602555

Scalable 360 Video Streaming using HTTP/2

Conference Paper · July 2019

DOI: 10.1109/MMSP.2019.8901805

CITATIONS

6
READS

380

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Reducing Energy Consumption in Data Centre Networks based on Traffic Engineering (ECODANE) View project

Cost-effective 360-degree video streaming over networks View project

Nguyen Duc

Tohoku Institute of Technology

45 PUBLICATIONS 317 CITATIONS

SEE PROFILE

Trung V. Hoang

Hanoi University of Science and Technology

1 PUBLICATION 6 CITATIONS

SEE PROFILE

Huong Le Dieu Hoang

Hanoi University of Science and Technology

2 PUBLICATIONS 8 CITATIONS

SEE PROFILE

Truong Thu Huong

VNU University of Science

60 PUBLICATIONS 590 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nguyen Duc on 21 August 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/334602555_Scalable_360_Video_Streaming_using_HTTP2?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334602555_Scalable_360_Video_Streaming_using_HTTP2?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reducing-Energy-Consumption-in-Data-Centre-Networks-based-on-Traffic-Engineering-ECODANE?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cost-effective-360-degree-video-streaming-over-networks?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen-Duc-15?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen-Duc-15?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tohoku-Institute-of-Technology?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen-Duc-15?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Trung-Hoang-12?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Trung-Hoang-12?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hanoi-University-of-Science-and-Technology?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Trung-Hoang-12?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huong-Hoang-12?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huong-Hoang-12?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hanoi-University-of-Science-and-Technology?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huong-Hoang-12?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Truong-Huong?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Truong-Huong?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/VNU_University_of_Science2?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Truong-Huong?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen-Duc-15?enrichId=rgreq-45bc6401a269d4b31700f4c362a9f4c0-XXX&enrichSource=Y292ZXJQYWdlOzMzNDYwMjU1NTtBUzo3OTQyMDA1ODkyMTM2OTdAMTU2NjM2MzU4NDgxNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Scalable 360 Video Streaming using HTTP/2
Duc V. Nguyen1, Hoang Van Trung2, Hoang Le Dieu Huong2,

Truong Thu Huong2, Nam Pham Ngoc3, and Truong Cong Thang1
1The University of Aizu, Japan

2Hanoi University of Science and Technology, Vietnam
3 Vin-University Project

Abstract—360-degree video is the main content type of Virtual
Reality, providing users with immersive viewing experience. In
this paper, we propose a novel adaptation method for 360-degree
video streaming over HTTP/2, which can provide high viewing
experience to users under time-varying network conditions and
time-varying user head movements. The proposed method utilizes
Scalable Video Coding to solve the trade-off between network
adaptivity and user adaptivity. An optimal tile layer selection
algorithm is provided. To cope with sudden throughput drops,
the delivery of late layers is terminated using HTTP/2’s stream
termination feature. Also, a tile layer updating scheme is proposed
to deal with viewport estimation errors. Experimental results
show that the proposed method can improve the average bitrate
of viewport by 16-17% compared to a reference method.

I. INTRODUCTION

360-degree video (360 video for short) is the main content
type of Virtual Reality [1], being used in a wide range of
VR applications such as VR sport [2]. 360 video has a much
higher resolution and frame rate than conventional flat video.
For example, to offer a true immersion to the user, 360 video
is expected to have a resolution of 24K and a frame rate of
60fps [3]. As a result, 360 video requires high bandwidth when
streaming over networks.

To reduce the bandwidth required for 360 video streaming,
Viewport Adaptive Streaming (VAS) has been proposed. The
basic idea is to deliver the viewport (i.e., video part visible to
the user) at a high bitrate (quality) while delivering the other
parts at a lower bitrate (quality) [4]. In the literature, Viewport
Adaptive Streaming is usually implemented using the so-called
tiling-based approach [4], [5]. In tiling-based VAS, a 360 video
is spatially divided into multiple parts called tiles. Each tile
is independently encoded into multiple versions of different
bitrates (quality levels). Tiles overlapping (non-overlapping)
the viewport are delivered at high (low) bitrate.

Since the user tends to change his/her viewing direction
when watching a 360 video, the viewport is usually varying
during a streaming session [6]. Hence, adaptation methods
for VAS should be able to adapt the tiles’ bitrates according
to the time-varying viewport. In addition, the throughput in
mobile networks may fluctuate significantly over time. Signif-
icant reductions in network throughput can lead to playback
interruptions [7], which can greatly reduce the user viewing
experience [8]. Hence, adaptation methods for VAS must also
adapt the tiles’ bitrates according to the time-varying network
throughput.

To provide smooth playback under varying network con-
ditions, the client should buffer some amount of video data
before the playback of the video begins [7]. However, large
buffer sizes can severely reduce the performances of VAS
methods, as shown in [9]. Thus, there exists a trade-off be-
tween network adaptivity and viewport adaptivity in viewport
adaptive streaming.

In this paper, we propose a novel adaptation method for
360 video streaming over mobile networks that can provide
high viewing experience to the users with the following key
features.
• Scalable Video Coding (SVC) is utilized to tackle the

trade-off between network adaptivity and viewport adap-
tivity.

• The tile layer selection problem is formulated and an
efficient algorithm is proposed.

• A late tile layer termination scheme is presented that can
save network resources by terminating the delivery of late
tile layers using HTTP/2’s stream termination feature.

• A tile layer updating scheme that can effectively deal
with viewport estimation errors is proposed. The scheme
makes use of HTTP/2’s stream priority feature.

Experimental results using real head movement traces and
real network throughput traces show that the proposed method
can improve the average viewport bitrate by 16-17% compared
to a reference method. Also, our method can avoid significant
reductions in the buffer level.

The remaining of this paper is organized as follows. Re-
lated work is given in Section II. The proposed method is
presented in Section III. The evaluation and results are given
in Section IV. Finally, the paper is concluded in Section V.

II. RELATED WORK

Most previous studies on 360 video streaming focused on
adapting the video content according to the user viewing
directions [4], [5], [10]–[13]. In [9], it is found that the state-
of-the-art adaptation methods perform well only for buffer
sizes less than or equal to 2 seconds. The reason is that it
is extremely difficult to estimate viewport positions far in the
future. From network adaptivity perspective, using such small
buffer sizes makes the system very vulnerable to network
throughput fluctuations, causing playback interruptions [7].
There are some work that focused on dealing with network
throughput variations using various HTTP/2’s features such
as [14].

Fig. 1: Solving the trade-off between network adaptivity and
viewport adaptivity using Scalable Video Coding.

In [15], the authors propose to use SVC to cope with
both network variations and viewport variations in 360 video
streaming. However, this method does not provide any mech-
anisms to deal with viewport estimation errors. In [16], a two-
tier system for 360 video streaming is proposed, which can
dynamically adapt the bitrates of the base tier and the enhance-
ment tier according to the network throughput variations and
FoV prediction errors. In this paper, our focus is on adapting
the tiles’ enhancement layer bitrates, with the base layer bitrate
being fixed.

The use of HTTP/2 protocol for tile delivery has been
studied in the literature. HTTP/2’s server push feature has
been used to increase network throughput under networks
with long end-to-end delay [12]. In [17], HTTP/2’s stream
priority and stream termination features are utilized to deal
with viewport estimation errors. Yet, their method is evaluated
using a simulator only. In this paper, we implement and
evaluate the proposed method on a real test-bed.

III. PROPOSED FRAMEWORK

Fig. 1 shows the basic idea of using SVC to solve the
trade-off between network adaptivity and viewport adaptivity
in VAS. At the beginning of a streaming session, the client
fills its buffer with the base layers of video segments. When
the buffer level achieves a pre-defined value at time t0, the
client enters the second phase. In the second phase, for each
adaptation interval, the client downloads the enhancement
layers of the next playing segment and the base layer of the
next segment. In the above example, from time t0 to time
t0 + τ , the enhancement layers of segment #2 is downloaded
first. Then, the base layers of segment #5 will be downloaded.
This will ensure that the client has enough buffered video
data to cope with network throughput fluctuations. Also, as
the enhancement layers of a segment are downloaded just one
segment duration before the playback of the segment, high
viewport quality can be achieved. In other words, the dialema
between network adaptivity and viewport adaptivity can be
mitigated.

When the network throughput drops significantly, it will
take a longer time than expected to download layers of
segments. This will cause the buffer level to decrease. In our
proposed method, the client will request only the base layers
to re-fill the buffer when the buffer size becomes lower than
Bmin seconds.

Because an enhancement layer cannot be used for the
playback if the layer arrives at the client after its playback
deadline, receiving all video data of the layer will waste net-
work resources (i.e., bandwidth). In our proposed framework,
the delivery of late layers will be terminated immediately by
utilizing HTTP/2’s stream termination feature.

As aforementioned, the enhancement layers of a segment
will be downloaded one segment duration before the playback
of the segment begins. In our framework, to deal with view-
port estimation errors, after deciding the appropriate layers
and sending the requests to the server, the client continues
to monitor the viewport positions and update the estimated
viewport. If the estimated viewport changes significantly, the
selected enhancement layers will be updated to accommodate
the difference.

A. Tile Layer Selection

In this part, the tile layer selection problem will be formu-
lated. Then, an efficient algorithm to decide the layer for each
tile will be presented.

The system needs to stream a 360 video with a duration
of VD seconds and a frame rate of FPS from a server to
a client over a communication network with time-varying
network bandwidth. On the server, the video is divided into
K segments, each has a playback duration of SD in seconds.
Each segment is further divided into M small parts called
tiles. Each tile is encoded into L layers with different quality
levels. Layer 0 is called base layer, which has the lowest
quality. Layers {l, 1 ≤ l ≤ L − 1} are called enhancement
layers, which provide higher video quality. An enhancement
layer can only be decoded and played if the base layer and all
lower enhancement layers are available at the client.

Suppose that, at a given time, the system needs to adapt a
segment to meet a bitrate constraint Rc. Layer l (0 ≤ l ≤
L− 1) of tile m (1 ≤ m ≤M) of segment k has a bitrate of
Rlm

m and a quality Qlm
m . Let Vn denotes the viewport position

at the nth (1 ≤ n ≤ N = SD × FPS) frame of the segment.
Typically, a position of a viewport can be defined by the
longitude and the latitude of the center point of the viewport.
Let lm (0 ≤ lm ≤ L − 1) denotes the max quality layer
selected for tile m (1 ≤ m ≤ M). The adaptation problem
for segment k can be formulated as follows.

Find {l1, l2, ..., lM} to maximize a quality objective
VQ, which is a function of the tiles’ quality values
{Qlm

m }1≤m≤M,0≤l≤L−1 and the viewport positions during the
playback of the segment {Vn}1≤n≤SD×FPS

VQ = f(Ql1
1 , Q

l2
2 , ..., Q

lM
M , V1, V2, ..., VN), (1)

and satisfy the bitrate constraint.
M∑

m=1

lm−1∑
l=0

Rlm
m ≤ Rc. (2)

In our proposed method, the bitrate constraint Rc is simply
set to the estimated throughput T e, i.e., Rc = T e. Here, the
estimated throughput T e is calculated as the average of the
last S throughput samples as follows.

T e =
1

S

ilast∑
i=ilast−S−1

T s(i) (3)

Here, ilast denotes the last download round. The throughput
sample T s of a download round is calculated as the ratio of
the downloaded data and the time taken to download that data.

The viewport position Vn (1 ≤ n ≤ N) is simply estimated
using the position of the viewport that the user is currently
looking at the moment. Let V cur be the current viewport
position and V e

n be the estimated viewport position, we have:
V e
n = V cur, 1 ≤ n ≤ N .
Currently, the quality objective is calculated as the average

viewport bitrate of the segment as follows. Let wm(V) denotes
the weight of tile m given a viewport position V . The quality
objective V Q is given by

V Q =
1

N

N∑
n=1

M∑
m=1

lm−1∑
l=0

wm(Vn)×Rlm
m (4)

Similar to [4], the weight wm(V) is calculated as the ratio
of the visible pixels of tile m and the total number of pixels
in the viewport.

Given the bitrate constraint Rc, the estimated viewport
positions {Vn, 1 ≤ n ≤ N}, and the quality objective VQ,
the optimal layers of tiles of problem (1) can be found by
performing a full-search on all possible selections.

Nevertheless, doing a full-search can be so time-consuming
that not suitable for real-time adaptation, especially when
the number of tiles and/or the number of layers are large.
Thus, we propose a heuristic to decide the layers of tiles as
follows. First, the tiles are sorted according to their weights.
Note that, only visible tiles are considered in the proposed
algorithm since all invisible tiles have a weight of zero. The
bitrate budget Rc will be allocated to the visible tiles layer-
by-layer. The details of the proposed algorithm are described
in Algorithm 1.

B. Throughput-aware Late Tile Termination
When the real network throughput is much lower than the

estimated value, some of the requested tiles’ layers will arrive
at the client after their playback deadlines. Since those tiles’
layers can not be used for playback, it is beneficial to terminate
the delivery of those late layers as soon as possible.

In our proposed system, we propose to utilize the stream
termination feature of HTTP/2 [18] to cancel the delivery
of late tile layers. Specifically, the client will send the RST
STREAM frames, which contains the stream ids of the ter-
minated tile layers to the server. The server will discard all

Algorithm 1: Tile Layer Selection

Input: M,N,Rc, Rl
m, V

e
n , wm(V e

n)
Output: {lm}1≤m≤M

1 lm ← 0 for 1 ≤ m ≤M ;
2 ∆R← Rc −

∑M
m=1

∑lm−1
l=0 Rlm

m ;
3 sortedTile← sort(wm(V e

n));
4 for l = 1 to L− 1 do
5 foreach m ∈ sortedTile do
6 if lm < L− 1 and Rlm+1

m < ∆R then
7 ∆R← ∆R−Rlm+1

m ;
8 lm ← lm + 1;
9 end

10 end
11 end
12 return {lm}1≤m≤M ;

Algorithm 2: Late Tiles’ Layers Termination

Input: {llate
m , 1 ≤ m ≤M}

1 for m = 1 to M do
2 foreach l ∈ llate

m do
3 send RST STREAM frame for the stream

corresponding to layer l;
4 end
5 end

HTTP/2’s frames belonging to the stream specified in the RST
STREAM frame. Typically, at playback time tp(k) of segment
k, the client will send RST STREAM frames for the tiles’
layers that have not been completely received as described in
Algorithm 2. In Algorithm 2, llate

m is the set of late layers of
tile m.

C. Viewport-aware Tile Layer Updating

By downloading the enhancement layers of tiles of a seg-
ment approximately one segment duration before its playback,
the proposed framework can reduce the viewport estimation
horizon down to the duration of one segment. This will help
improve the viewport estimation accuracy, especially when
the segment duration is short (i.e., typically ≤ 1s). However,
errors in viewport position estimation are unavoidable due to
random user’s head movements. Also, the segment duration
can be large in several cases. Thus, it is important to deal
with viewport estimation errors.

Specifically, we will continuously re-estimate the viewport
position. If the newly estimated value includes some tiles
that have not been initially requested, we will send additional
requests for those tiles’ layers. Let Ω(V) denotes the set
of viewport tiles given the estimated viewport position V .
Let V e(t) be the estimated viewport position at time t. At
time t + ∆t, we obtain the new estimated viewport position
V e(t + ∆t). Let ΩNew denotes the set of tiles that are in
Ω(V e(t+ ∆t)) but not in Ω(V e(t)). We have:

ΩNew = Ω(V e(t+ ∆t))− Ω(V e(t)) (5)

Algorithm 3: Viewport-aware Tile Layer Updating
Input: Ω(t),Ω(t+ ∆t)

1 Calculate ΩNew and ΩOld using Eq. (5) and Eq. (6);
2 if |ΩNew| > 0 then
3 Select a tile m′ in ΩNew;
4 foreach m ∈ ΩOld do
5 set priority (m′, 1, 0);
6 send PRIORITY frame for tiles m;
7 end
8 foreach k ∈ ΩNew do
9 send request for tile k;

10 end
11 end

(a) Head Mov. Trace #1 (b) Head Mov. Trace #2

Fig. 2: Two head movement traces used in our experiments.

The tiles in ΩNew are called new viewport tiles and the tiles
in ΩOld is called old viewport tiles. Similarly, we calculate the
set of tiles that is in Ω(V (t)) but not in Ω(V (t+ ∆t)).

ΩOld = Ω(V e(t))− Ω(V e(t+ ∆t)) (6)

Because it is more likely that the tiles in ΩNew will be the
actual viewport tiles than the tiles in ΩOld, the delivery of tiles
in ΩNew will be done first. The highest layer is selected for
each tile in ΩNew. When the delivery of all tiles in ΩNew is
completed, the delivery of tiles in ΩOld will be continued.

In HTTP/2, the order in which tiles’ layers are delivered
can be specified using the so-called stream priority feature.
The stream priority feature allows either the client or the
server to define the dependence between streams. For example,
if stream A is set to be dependent on the stream B, the
delivery of stream B can only start after stream A has been
terminated. The process of updating tiles’ layers is described
in Algorithm 3.

IV. EVALUATION

A. Experimental Settings

To evaluate the performance of the proposed method, we
build a test-bed that consists of a client connects to a server
over a communication network. The proposed method is im-
plemented on the client using nghttp2, an open-source HTTP/2
library. The network conditions including bandwidth and delay

(a) Bandwidth trace #1 (b) Bandwidth trace #2

Fig. 3: Two network bandwidth traces used in our experi-
ments [19].

are emulated using DummyNet tool [20], which runs on the
client. The end-to-end delay is set to 10ms in all experiments.

We use a 360-degree video in Cubemap projection format.
The video has a duration of 70 seconds, a resolution of
2880x1920, a frame rate of 30 fps. The video is divided into
24 tiles by partitioning each face of the cube into 4 equal-
size tiles. Each tile is encoded into 3 layers. The base layer
has a bitrate of 125 kbps. The bitrate of the first and second
enhancement layers are respectively 200 kbps and 400 kbps.
The segment duration is 1 second. Two head movement traces
as shown in Fig. 2 are used.

In the proposed method, the value of S in Eq. (3) is set
to 3. The value of ∆t in Algorithm 3 is set to a half of the
download budget time. The buffer size B is set to 6 seconds.
The Bmin threshold is set to 3 seconds.

The proposed framework is compared to a reference method
denoted UTD2017, which is proposed in [15]. The UTD2017
method also utilizes Scalable Video Coding to encode each tile
into multiple layers. For viewport adaptation, the same layer
is selected for all viewport tiles as allowed by the available
network throughput.

B. Experiment Results

1) Simple Bandwidth Trace: In this part, we will investigate
the performance of the proposed method under a simple
bandwidth trace. Specifically, the bandwidth is set to 12Mbps
in the first 14 seconds, then drops to 1Mbps for 5 seconds. The
bandwidth increases to 5Mbps at time t=19s. At time t=40s,
the bandwidth increases to 12Mbps and remains unchanged
until the end of the streaming session.

Figure 4 shows the viewport bitrate and the buffer size over
time of the proposed and reference methods under the simple
bandwidth trace and the head movement trace #1 as shown in
Fig. 2a. The number of request tiles, new viewport tiles, and
canceled tiles over time of the proposed method are shown in
Fig 5.

We can see that the proposed method achieves higher
viewport bitrate than the UTD2017 method for most of the
segments. This is because that, thanks to the proposed tile
layer selection algorithm, our method is able to request higher
numbers of enhancement layers than the UTD2017 method as
can be seen in Fig. 5. Also, the proposed viewport-awre tile

(a) Viewport bitrate (kbps)

(b) Buffer size (s)

Fig. 4: Viewport bitrate (kbps) and buffer size (seconds) over
time of the proposed and reference methods under a simple
bandwidth trace (Head movement trace #1).

Fig. 5: Number of request tiles, new viewport tiles, and
canceled tiles over time of the proposed method under a simple
bandwidth trace (Head movement trace #1).

layer updating scheme frequently updates the viewport tiles,
improving the viewport quality (Fig. 5)

When the throughput decreases dramatically from 12Mbps
to 1Mbps at time t=14s, it can be seen that the buffer size
of the UTD2017 method reduces drastically, resulting in an
interruption at time t=19s. On the other hand, the proposed
method can mitigate the impact of the throughput reduction
on the client’s buffer size by canceling late tiles’ layers as can
be seen in Fig 5. As a result, playback interruption can be
avoided as can be seen in Fig. 4b.

It should be noted that the proposed method downloads only

(a) Average viewport bitrate (kbps) (b) Max. buffer reduction (s)

Fig. 6: Viewport bitrate (kbps) and buffer size (seconds) of
the proposed and reference methods under a simple bandwidth
trace.

TABLE I: Performance of the proposed and reference methods
under the network bandwidth trace #1.

Metrics Head Mov. Trace #1 Head Mov. Trace #2
UTD2017 Proposed UTD2017 Proposed

Avg. viewport bitrate (kbps) 1030.1 1193.4 1135.4 1337.3
Max. buffer reduction (s) 1.3 1.3 1.5 1.4

the base layer from time t=20s to t=29s. During this interval,
the client re-fills the buffer until the buffer level exceeds
B = 6s. From time t=30s to the end of the streaming session,
we can see that the proposed method again achieves higher
viewport bitrate than the UTD2017 method for most of the
segments, thanks to the optimal tile layer selection algorithm
and the user-aware tile layer updating scheme.

The average viewport bitrates and the maximum buffer
reductions of the proposed and reference methods under the
two head movement traces are shown in Figure 6. It can
be seen that the proposed method outperforms the UTD2017
method in both terms of viewport bitrate and buffer reduction.
Specifically, our method improves the average viewport bitrate
by 17% and 8% for the head movement trace #1 and #2,
respectively. Furthermore, the proposed method can offer more
stable buffer level with lower maximum buffer reduction the
UTD2017 method.

2) Real bandwidth trace: In this part, we will investigate
the performance of the proposed method using a real band-
width trace. For that purpose, we use two network bandwidth
traces from 4G network provided in [19]. The used bandwidth
traces are shown in Fig. 3.

Fig. 7 shows the viewport bitrate and the buffer size over
time of the proposed method and the UTD2017 method under
the bandwidth trace #2 and the head movement trace #2. As
can be seen in Fig. 7a, the viewport bitrate of the proposed
method is higher than that of the UTD2017 method for most
of the segments. This implies that our method is effective in
improving the viewport quality under the real bandwidth trace.

Table I and Table II show the average viewport bitrates and
the maximum buffer reductions of the proposed and reference
methods under the two network bandwidth traces and the two
head movement traces. We can see that the proposed method

(a) Viewport bitrate (kbps)

(b) Buffer size (s)

Fig. 7: Viewport bitrate (kbps) and buffer size (seconds) over
time of the proposed and reference methods under bandwidth
trace #2 and head movement trace #2.

TABLE II: Performance of the proposed and reference meth-
ods under the network bandwidth trace #2.

Metrics Head Mov. Trace #1 Head Mov. Trace #2
UTD2017 Proposed UTD2017 Proposed

Avg. viewport bitrate (kbps) 1115.4 1295.8 1196.8 1396.9
Max. buffer reduction (s) 2.3 1.5 1.8 1.4

outperforms the UTD2017 method in both terms of average
viewport bitrate and maximum buffer reduction. Specifically,
the average viewport bitrate of the proposed method is 16-
17% higher than that of the UTD2017 method for all four
cases. In addition, the proposed method always has lower
maximum buffer reduction than that of the UTD2017 method.
This implies that the proposed late tile terminate algorithm is
effective in dealing with network throughpout variations.

V. CONCLUSIONS

In this paper, we have proposed a new adaptation method
for 360-degree video streaming, which can adapt the video
according to both network throughput variations and user’s
behaviors. The trade-off between user-adaptive and network-
adaptive is solved by using Scalable Video Coding. In addition,
an effective tile layer selection method is proposed. To mitigate
the impact of drastic throughput reductions, HTTP/2’s stream
termination feature is used. It is found that the proposed
method can improve the average viewport bitrate by 16-
17%, while providing more stable buffer level compared to
a reference method.

REFERENCES

[1] T. Stockhammer. MPEG Immersive Media. Accessed:
2018-09-30. [Online]. Available: https://www.itu.int/en/ITU-
T/studygroups/2017-2020/16/Documents/ws/201701ILE/S2P2-1701-01-
19-MPEG-Immersive-Media-Thomas-Stockhammer.pdf

[2] M. Chen, K. Hu, I. Chung, and C. Chou, “Towards VR/AR Multimedia
Content Multicast over Wireless LAN,” in 2019 16th IEEE Annual
Consumer Communications Networking Conference (CCNC), Las Vegas,
US, Jan 2019, pp. 1–6.

[3] Huewei. (2017) Virtual reality/augmented reality white
paper. [Online]. Available: http://www-file.huawei.com/-
/media/CORPORATE/PDF/ilab/vr-ar-en.pdf

[4] D. V. Nguyen, H. T. T. Tran, A. T. Pham, and T. C. Thang, “An optimal
tile-based approach for viewport-adaptive 360-degree video streaming,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 1, pp. 29–42, March 2019.

[5] C. Ozcinar, A. De Abreu, and A. Smolic, “Viewport-aware adaptive
360 video streaming using tiles for virtual reality,” in 2017 IEEE
International Conference on Image Processing (ICIP), Beijing, China,
Sep. 2017, pp. 2174–2178.

[6] X. Corbillon, F. De Simone, and G. Simon, “360-degreee video head
movement dataset,” in Proc. 8th ACM MMsys, ser. MMSys’17. Taipei,
Taiwan: ACM, 2017, pp. 199–204.

[7] T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro, “An evaluation of
bitrate adaptation methods for HTTP live streaming,” IEEE Journal on
Selected Areas in Communications, vol. 32, no. 4, pp. 693–705, 2014.

[8] H. T. T. Tran, N. P. Ngoc, A. T. Pham, and T. C. Thang, “A Multi-
Factor QoE Model for Adaptive Streaming over Mobile Networks,” in
2016 IEEE Globecom Workshops (GC Wkshps), Dec 2016, pp. 1–6.

[9] D. V. Nguyen and H. T. T. Tran and T. C. Thang, “Impact of delays
on 360-degree video communications,” in 2017 TRON Symposium
(TRONSHOW), 12 2017, pp. 1–6.

[10] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360ProbDASH: Im-
proving QoE of 360 Video Streaming Using Tile-based HTTP Adaptive
Streaming,” in Proc. of 2017 ACM Multimedia Conference, CA, USA,
Oct. 2017, pp. 315–323.

[11] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Hu, “An optimal
spatial-temporal smoothness approach for tile-based 360-degree video
streaming,” in 2017 IEEE Visual Communications and Image Processing
(VCIP), St. Petersburg, FL, USA, Dec 2017, pp. 1–4.

[12] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, “An
http/2-based adaptive streaming framework for 360 virtual reality
videos,” in 2017 ACM Multimedia (MM) Conference, 2017, pp. 1–9.

[13] J. Chakareski, R. Aksu, X. Corbillon, G. Simon, and V. Swaminathan,
“Viewport-driven rate-distortion optimized 360 video streaming,” in
2018 IEEE International Conference on Communications (ICC), MO,
USA, May 2018, pp. 1–7.

[14] D. H. Nguyen, M. Nguyen, N. P. Ngoc, and T. C. Thang, “An adaptive
method for low-delay 360 vr video streaming over http/2,” in 2018 IEEE
Seventh International Conference on Communications and Electronics
(ICCE), July 2018, pp. 261–266.

[15] A. T. Nasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash, “Adaptive
360-degree video streaming using Scalable Video Coding,” in Proc.
25th ACM Multimedia, Mountain View, California, USA, Oct. 2017,
pp. 1689–1697.

[16] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai, “A two-
tier system for on-demand streaming of 360 degree video over dynamic
networks,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 1, pp. 43–57, March 2019.

[17] M. Ben Yahia, Y. Le Louedec, G. Simon, and L. Nuaymi, “Http/2-based
streaming solutions for tiled omnidirectional videos,” in 2018 IEEE ISM,
Dec 2018, pp. 89–96.

[18] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol
version 2 (http/2),” Tech. Rep., 2015.

[19] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “Http/2-based adaptive streaming of hevc
video over 4g/lte networks,” IEEE Communications Letters, vol. 20,
no. 11, pp. 2177–2180, Nov 2016.

[20] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Comput.
Commun. Rev., vol. 40, no. 2, pp. 12–20, Apr. 2010. [Online].
Available: http://doi.acm.org/10.1145/1764873.1764876

View publication stats

https://www.researchgate.net/publication/334602555

